

Table of Contents

Part I: About the Ingredients

Chapter 1: The History of Unix, GNU,

and Linux

Unix

GNU

Linux

Summary

Chapter 2: Getting Started

Choosing an OS

Choosing an Editor

Setting Up the Environment

Summary

Chapter 3: Variables

Using Variables

Preset and Standard Variables

SECONDS

Summary

Chapter 4: Wildcard Expansion

Filename Expansion (Globbing)

Regular Expressions and Quoting

Summary

Chapter 5: Conditional Execution

If/Then

Else

elif

Test ([)

Case

Summary

Chapter 6: Flow Control Using Loops

For Loops

While Loops

Nested Loops

Breaking and Continuing Loop Execution

While with Case

Until Loops

Select Loops

Summary

Chapter 7: Variables Continued

Using Variables

Searching Strings

Providing Default Values

Indirection

Sourcing Variables

Summary

Chapter 8: Functions and Libraries

Functions

Variable Scope

Libraries

Getopts

Summary

Chapter 9: Arrays

Assigning Arrays

Accessing Arrays

Associative Arrays

Manipulating Arrays

Advanced Techniques

Summary

Chapter 10: Processes

The ps Command

killall

The /proc pseudo-filesystem

prtstat

I/O Redirection

Exec

Pipelines

Background Processing

Other Features of /proc and /sys

Summary

Chapter 11: Choosing and Using

Shells

The Bourne Shell

The KornShell

The C Shell

The Tenex C Shell

The Z Shell

The Bourne Again Shell

The Debian Almquist Shell

Dotfiles

Command Prompts

Aliases

History

Tab Completion

Foreground, Background, and Job Control

Summary

Part II: Recipes for Using and

Extending System Tools

Chapter 12: File Manipulation

stat

cat

cat Backwards is tac

Redirection

dd

df

mktemp

join

install

grep

split

tee

touch

find

find -exec

Summary

Chapter 13: Text Manipulation

cut

echo

Fmt

Head and Tail

od

paste

pr

printf

shuf

sort

tr

uniq

wc

Summary

Chapter 14: Tools for Systems

Administration

basename

date

dirname

factor

identity, groups, and getent

logger

md5sum

mkfifo

Networking

nohup

seq

sleep

timeout

uname

uuencode

xargs

yes

Summary

Part III: Recipes for Systems

Administration

Chapter 15: Shell Features

Recipe 15-1: Installing Init Scripts

Recipe 15-2: RPM Report

Recipe 15-3: Postinstall Scripts

Chapter 16: Systems Administration

Recipe 16-1: init Scripts

Recipe 16-2: CGI Scripts

Recipe 16-3: Configuration Files

Recipe 16-4: Locks

Chapter 17: Presentation

Recipe 17-1: Space Game

Chapter 18: Data Storage and

Retrieval

Recipe 18-1: Parsing HTML

Recipe 18-2: CSV Formatting

Chapter 19: Numbers

Recipe 19-1: The Fibonacci Sequence

Recipe 19-2: PXE Booting

Chapter 20: Processes

Recipe 20-1: Process Control

Chapter 21: Internationalization

Recipe 21-1: Internationalization

Part IV: Reference

Appendix: Further Reading

Shell Tutorials and Documentation

Shell Services

Glossary

Title Page

Introduction

What This Book Covers

How This Book Is Structured

What You Need to Use This Book

Conventions

Source Code

Errata

p2p.wrox.com

Advertisement

Part I: About the Ingredients

Chapter 1: The History of Unix, GNU, and Linux

Chapter 2: Getting Started

Chapter 3: Variables

Chapter 4: Wildcard Expansion

Chapter 5: Conditional Execution

Chapter 6: Flow Control Using Loops

Chapter 7: Variables Continued

Chapter 8: Functions and Libraries

Chapter 9: Arrays

Chapter 10: Processes

Chapter 11: Choosing and Using Shells

Chapter 1

The History of Unix, GNU, and

Linux

The Unix tradition has a long history, and Linux comes

from the Unix tradition, so to understand Linux one must

understand Unix and to understand Unix one must

understand its history. Before Unix, a developer would

submit a stack of punched cards, each card representing a

command, or part of a command. These cards would be

read and executed sequentially by the computer. The

developer would receive the generated output after the job

had completed. This would often be a few days after the job

had been submitted; if there was an error in the code, the

output was just the error and the developer had to start

again. Later, teletype and various forms of timesharing

systems sped up the matter considerably, but the model

was basically the same: a sequence of characters (punch

cards, or keys on keyboards — it’s still just a string of

characters) submitted as a batch job to be run (or fail to

run), and for the result to come back accordingly. This is

significant today in that it is still how data is transmitted on

any computerized system — it’s all sequences of characters,

transmitted in order. Whether a text file, a web page, a

movie, or music, it is all just strings of ones and zeroes,

same as it ever was. Anything that looks even slightly

different is simply putting an interface over the top of a

string of ones and zeroes.

Unix and various other interactive and timesharing

systems came along in the mid-1960s. Unix and its

conventions continue to be central to computing practices

today; its influences can be seen in DOS, Linux, Mac OS X,

and even Microsoft Windows.

Unix

In 1965, Bell Labs and GE joined a Massachusetts Institute

of Technology (MIT) project known as MULTICS, the

Multiplexed Information and Computing System. Multics was

intended to be a stable, timesharing OS. The “Multiplexed”

aspect added unnecessary complexity, which eventually led

Bell Labs to abandon the project in 1969. Ken Thompson,

Dennis Ritchie, Doug McIlroy, and Joe Ossanna retained

some of the ideas behind it, took out a lot of the complexity,

and came up with Unix (a play on the word MULTICS, as this

was a simplified operating system inspired by MULTICS).

An early feature of Unix was the introduction of pipes —

something that Doug McIlroy had been thinking about for a

few years and was implemented in Unix by Ken Thompson.

Again, it took the same notion of streamed serial data, but

pipes introduced the idea of having stdin and stdout, through

which the data would flow. Similar things had been done

before, and the concept is fairly simple: One process creates

output, which becomes input to another command. The Unix

pipes method introduced a concept that dramatically

affected the design of the rest of the system.

Most commands have a file argument as well, but existing

commands were modified to default to read from their

“Standard Input” (stdin) and “Standard Output” (stdout); the

pipe can then “stream” the data from one tool to another.

This was a novel concept, and one that strongly defines the

Unix shell; it makes the whole system a set of generically

useful tools, as opposed to monolithic, single-purpose

applications. This has been summarized as “do one thing

and do it well.” The GNU toolchain was written to replace

Unix while maintaining compatibility with Unix tools. The

developers on the GNU project often took the opportunity

presented by rewriting the tool to include additional

functionality, while still sticking to the “do one thing and do

it well” philosophy.

The GNU project was started in 1983 by Richard Stallman, with

the intention of replacing proprietary commercial Unices with

Free Software alternatives. GNU had all but completed the task

of replacing all of the userspace tools by the time the Linux

kernel project started in 1991. In fact, the GNU tools generally

perform the same task at least as well as their original Unix

equivalents, often providing extra useful features borne of

experience in the real world. Independent testing has shown

that GNU tools can actually be more reliable than their

traditional Unix equivalents

(http://www.gnu.org/software/reliability.html).

For example, the who command lists who is logged in to the

system, one line per logged-in session. The wc command

counts characters, words, and lines. Therefore, the following

code will tell you how many people are logged in:

who | wc -l

There is no need for the who tool to have an option to count

the logged-in users because the generic wc tool can do that

already. This saves some small effort in who, but when that is

applied across the whole range of tools, including any new

tools that might be written, a lot of effort and therefore

complexity, which means a greater likelihood of the

introduction of additional bugs, is avoided. When this is

applied to more complicated tools, such as grep or even more,

the flexibility of the system is increased with every added

tool.

http://www.gnu.org/software/reliability.html

In the case of more, this is actually more tricky than it seems;

first it has to find out how many columns and rows are available.

Again, there is a set of tools that combine to provide this

information. In this way, every tool in the chain can be used by

the other tools.

Also this system means that you do not have to learn how

each individual utility implements its “word count” feature.

There are a few defacto standard switches; -q typically

means Quiet, -v typically means Verbose, and so on, but if

who -c meant “count the number of entries,” then cut -c <n>,

which means “cut the first n characters,” would be

inconsistent. It is better that each tool does its own job, and

that wc do the counting for all of them.

For a more involved example, the sort utility just sorts

text. It can sort alphabetically or numerically (the difference

being that “10” comes before “9” alphabetically, but after it

when sorted numerically), but it doesn’t search for content

or display a page at a time. grep and more can be combined

with sort to achieve this in a pipeline:

grep foo /path/to/file | sort -n -k 3 | more

This pipeline will search for foo in /path/to/file. The output

(stdout) from that command will then be fed into the stdin of

the sort command. Imagine a garden hose, taking the

output from grep and attaching it to the input for sort. The

sort utility takes the filtered list from grep and outputs the

sorted results into the stdin of more, which reads the filtered

and sorted data and paginates it.

It is useful to understand exactly what happens here; it is

the opposite of what one might intuitively assume. First, the

more tool is started. Its input is attached to a pipe. Then sort

is started, and its output is attached to that pipe. A second

pipe is created, and the stdin for sort is attached to that.

grep is then run, with its stdout attached to the pipe that will

link it to the sort process.

When grep begins running and outputting data, that data

gets fed down the pipe into sort, which sorts its input and

outputs down the pipe to more, which paginates the whole

thing. This can affect what happens in case of an error; if

you mistype “more,” then nothing will happen. If you mistype

“grep,” then more and sort will have been started by the time

the error is detected. In this example, that does not matter,

but if commands further down the pipeline have some kind

of permanent effect (say, if they create or modify a file),

then the state of the system will have changed, even

though the whole pipeline was never executed.

“Everything Is a File” and Pipelines

There are a few more key concepts that grew into Unix as

well. One is the famous “everything is a file” design,

whereby device drivers, directories, system configuration,

kernel parameters, and processes are all represented as

files on the filesystem. Everything, whether a plain-text file

(for example, /etc/hosts), a block or character special device

driver (for example, /dev/sda), or kernel state and

configuration (for example, /proc/cpuinfo) is represented as a

file.

The existence of pipes leads to a system whereby tools are

written to assume that they will be handling streams of text,

and indeed, most of the system configuration is in text form

also. Configuration files can be sorted, searched,

reformatted, even differentiated and recombined, all using

existing tools.

The “everything is a file” concept and the four operations

(open, close, read, write) that are available on the file mean

that Unix provides a really clean, simple system design.

Shell scripts themselves are another example of a system

utility that is also text. It means that you can write programs

like this:

#!/bin/sh

cat $0

echo "==="

tac $0

This code uses the cat facility, which simply outputs a file,

and the tac tool, which does the same but reverses it. (The

name is therefore quite a literal interpretation of what the

tool does, and quite a typical example of Unix humor.) The

variable $0 is a special variable, defined by the system, and

contains the name of the currently running program, as it

was called.

So the output of this command is as follows:

#!/bin/sh

cat $0

echo "==="

tac $0

===

tac $0

echo "==="

cat $0

#!/bin/sh

The first four lines are the result of cat, the fifth line is the

result of the echo statement, and the final four lines are the

output of tac.

BSD

AT&T/Bell Labs couldn’t sell Unix because it was a

telecommunications monopoly, and as such was barred

from extending into other industries, such as computing. So

instead, AT&T gave Unix away, particularly to universities,

which were naturally keen to get an operating system at no

cost. The fact that the schools could also get the source

code was an extra benefit, particularly for administrators

but also for the students. Not only could users and

administrators run the OS, they could see (and modify) the

code that made it work. Providing access to the source code

was an easy choice for AT&T; they were not (at that stage)

particularly interested in developing and supporting it

themselves, and this way users could support themselves.

The end result was that many university graduates came

into the industry with Unix experience, so when they

needed an OS for work, they suggested Unix. The use of

Unix thus spread because of its popularity with users, who

liked its clean design, and because of the way it happened

to be distributed.

Although it was often given away at no cost or low cost

and included the source code, Unix was not Free Software

according to the Free Software Foundation’s definition,

which is about freedom, not cost. The Unix license

prohibited redistribution of Unix to others, although many

users developed their own patches, and some of those

shared patches with fellow Unix licensees. (The patches

would be useless to someone who didn’t already have a

Unix license from AT&T. The core software was still Unix; any

patches were simply modifications to that.) Berkeley

Software Distribution (BSD) of the University of California at

Berkeley created and distributed many such patches, fixing

bugs, adding features, and just generally improving Unix.

The terms “Free Software” and “Open Source” would not

exist for a long time to come, but all this was distributed on

the understanding that if something is useful, then it may as

well be shared. TCP/IP, the two core protocols of the

Internet, came into Unix via BSD, as did BIND, the DNS

(Domain Name System) server, and the Sendmail MTA (mail

transport agent). Eventually, BSD developed so many

patches to Unix that the project had replaced virtually all of

the original Unix source code. After a lawsuit, AT&T and BSD

made peace and agreed that the few remaining AT&T

components of BSD would be rewritten or relicensed so that

BSD was not the property of AT&T, and could be distributed

in its own right. BSD has since forked into NetBSD,

OpenBSD, FreeBSD, and other variants.

GNU

As mentioned previously, the GNU project was started in

1983 as a response to the closed source software that was

by then being distributed by most computer manufacturers

along with their hardware. Previously, there had generally

been a community that would share source code among

users, such that if anyone felt that an improvement could be

made, they were free to fix the code to work as they would

like. This hadn’t been enshrined in any legally binding

paperwork; it was simply the culture in which developers

naturally operated. If someone expressed an interest in a

piece of software, why would you not give him a copy of it

(usually in source code form, so that he could modify it to

work on his system? Very few installations at the time were

sufficiently similar to assume that a binary compiled on one

machine would run on another). As Stallman likes to point

out, “Sharing of software…is as old as computers, just as

sharing of recipes is as old as cooking.” 1

Stallman had been working on the Incompatible

Timesharing System (ITS) with other developers at MIT

through the 1970s and early 1980s. As that generation of

hardware died out, newer hardware came out, and — as the

industry was developing and adding features — these new

machines came with bespoke operating systems. Operating

systems, at the time, were usually very hardware-specific,

so ITS and CTSS died as the hardware they ran on were

replaced by newer designs.

ITS was a pun on IBM’s Compatible Time Sharing System

(CTSS), which was also developed at MIT around the same time.

The “C” in CTSS highlighted the fact that it was somewhat

compatible with older IBM mainframes. By including

“Incompatible” in its name, ITS gloried in its rebellious

incompatibility.

Stallman’s turning point occurred when he wanted to fix a

printer driver, such that when the printer jammed (which it

often did), it would alert the user who had submitted the

job, so that she could fix the jam. The printer would then be

available for everyone else to use. The user whose job had

jammed the printer wouldn’t get her output until the

problem was fixed, but the users who had submitted

subsequent jobs would have to wait even longer. The

frustration of submitting a print job, then waiting a few

hours (printers were much slower then), only to discover

that the printer had already stalled before you had even

submitted your own print job, was too much for the users at

MIT, so Stallman wanted to fix the code. He didn’t expect

the original developers to work on this particular feature for

him; he was happy to make the changes himself, so he

asked the developers for a copy of the source code. He was

refused, as the driver software contained proprietary

information about how the printer worked, which could be

valuable competitive information to other printer

manufacturers.

What offended Stallman was not the feature itself, it was

that one developer was refusing to share code with another

developer. That attitude was foreign to Stallman, who had

taken sharing of code for granted until that stage. The

problem was that the software — in particular the printer

driver — was not as free (it didn’t convey the same

freedoms) as previous operating systems that Stallman had

worked with. This problem prevailed across the industry; it

was not specific to one particular platform, so changing

hardware would not fix the problem.

GNU stands for “GNU’s Not Unix,” which is a recursive acronym;

if you expand the acronym “IBM,” you get “International

Business Machines,” and you’re done. If you expand “GNU,” you

get “GNU’s Not Unix’s Not Unix.” Expand that, and you get

“GNU’s Not Unix’s Not Unix’s Not Unix” and so on. This is an

example of “hacker humor,” which is usually quite a dry sense

of humor, with something a little bit clever or out of the ordinary

about it. At the bottom of the grep manpage, under the section

heading “NOTES” is a comment: “GNU’s not Unix, but Unix is a

beast; its plural form is Unixen,” a friendly dig at Unix.

Richard Stallman is a strong-willed character (he has

described himself as “borderline autistic”), with a very

logical mind, and he determined to fix the problem in the

only way he knew how: by making a new operating system

that would maintain the old unwritten freedoms to allow

equal access to the system, including the code that makes it

run. As no such thing existed at the time, he would have to

write it. So he did.

Stallman Charges Ahead!

From CSvax:pur-ee:inuxc!ixn5c!ihnp4!houxm!mhuxi!eagle!mit-

vax!mit-eddie!RMS@MIT-OZ

Newsgroups: net.unix-wizards,net.usoft

Organization: MIT AI Lab, Cambridge, MA

From: RMS%MIT-OZ@mit-eddie

Subject: new Unix implementation

Date: Tue, 27-Sep-83 12:35:59 EST

Free Unix!

Starting this Thanksgiving I am going to write a complete Unix-

compatible software system called GNU (for Gnu’s Not Unix), and give

it away free to everyone who can use it. Contributions of time, money,

programs and equipment are greatly needed.

To begin with, GNU will be a kernel plus all the utilities needed to write

and run C programs: editor, shell, C compiler, linker, assembler, and a

few other things. After this we will add a text formatter, a YACC, an

Empire game, a spreadsheet, and hundreds of other things. We hope

to supply, eventually, everything useful that normally comes with a

Unix system, and anything else useful, including on-line and hardcopy

documentation.

GNU will be able to run Unix programs, but will not be identical to Unix.

We will make all improvements that are convenient, based on our

experience with other operating systems. In particular, we plan to

have longer filenames, file version numbers, a crashproof file system,

filename completion perhaps, terminal-independent display support,

and eventually a Lisp-based window system through which several

Lisp programs and ordinary Unix programs can share a screen. Both C

and Lisp will be available as system programming languages. We will

have network software based on MIT’s chaosnet protocol, far superior

to UUCP. We may also have something compatible with UUCP.

Who Am I?

I am Richard Stallman, inventor of the original much-imitated EMACS

editor, now at the Artificial Intelligence Lab at MIT. I have worked

extensively on compilers, editors, debuggers, command interpreters,

the Incompatible Timesharing System and the Lisp Machine operating

system. I pioneered terminal-independent display support in ITS. In

addition I have implemented one crashproof file system and two

window systems for Lisp machines.

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must

share it with other people who like it. I cannot in good conscience sign

a nondisclosure agreement or a software license agreement.

So that I can continue to use computers without violating my

principles, I have decided to put together a sufficient body of free

software so that I will be able to get along without any software that is

not free.

How You Can Contribute

I am asking computer manufacturers for donations of machines and

money. I’m asking individuals for donations of programs and work.

One computer manufacturer has already offered to provide a machine.

But we could use more. One consequence you can expect if you

donate machines is that GNU will run on them at an early date. The

machine had better be able to operate in a residential area, and not

require sophisticated cooling or power.

Individual programmers can contribute by writing a compatible

duplicate of some Unix utility and giving it to me. For most projects,

such part-time distributed work would be very hard to coordinate; the

independently-written parts would not work together. But for the

particular task of replacing Unix, this problem is absent. Most interface

specifications are fixed by Unix compatibility. If each contribution

works with the rest of Unix, it will probably work with the rest of GNU.

If I get donations of money, I may be able to hire a few people full or

part time. The salary won’t be high, but I’m looking for people for

whom knowing they are helping humanity is as important as money. I

view this as a way of enabling dedicated people to devote their full

energies to working on GNU by sparing them the need to make a living

in another way.

For more information, contact me.

Unix already existed, was quite mature, and was nicely

modular. So the GNU project was started with the goal of

replacing the userland tools of Unix with Free Software

equivalents. The kernel was another part of the overall goal,

although one can’t have a kernel in isolation — the kernel

needs an editor, a compiler, and a linker to be built, and

some kind of initialization process in order to boot. So

existing proprietary software systems were used to

assemble a free ecosystem sufficient to further develop

itself, and ultimately to compile a kernel. This subject had

not been ignored; the Mach microkernel had been selected

in line with the latest thinking on operating system kernel

design, and the HURD kernel has been available for quite

some time, although it has been overtaken by a newer

upstart kernel, which was also developed under, and can

also work with, the GNU tools.

HURD is “Hird of Unix-Replacing Daemons,” because its

microkernel approach uses multiple userspace background

processes (known as daemons in the Unix tradition) to achieve

what the Unix kernel does in one monolithic kernel. HIRD in turn

stands for “Hurd of Interfaces Representing Depth.” This is

again a recursive acronym, like GNU (“GNU’s Not Unix”) but this

time it is a pair of mutually recursive acronyms. It is also a play

on the word “herd,” the collective noun for Gnus.

As the unwritten understandings had failed, Stallman

would need to create a novel way to ensure that freely

distributable software remained that way. The GNU General

Public License (GPL) provided that in a typically intelligent

style. The GPL uses copyright to ensure that the license

itself cannot be changed; the rest of the license then states

that the recipient has full right to the code, so long as he

grants the same rights to anybody he distributes it to

(whether modified or not) and the license does not change.

In that way, all developers (and users) are on a level playing

field, where the code is effectively owned by all involved,

but no one can change the license, which ensures that

equality. The creator of a piece of software may dual-license

it, under the GPL and a more restrictive license; this has

been done many times — for example, by the MySQL

project.

One of the tasks taken on by the GNU project was — of

course — to write a shell interpreter as free software. Brian

Fox wrote the bash (Bourne Again SHell) shell — its name

comes from the fact that the original /bin/sh was written by

Steve Bourne, and is known as the Bourne Shell. As bash

takes the features of the Bourne shell, and adds new

features, too, bash is, obviously, the Bourne Again Shell.

Brian also wrote the readline utility, which offers flexible

editing of input lines of text before submitting them for

parsing. This is probably the most significant feature to

make bash a great interactive shell. Brian Fox was the first

employee of the Free Software Foundation, the entity set up

to coordinate the GNU project.

You’ve probably spotted the pattern by now; although bash isn’t

a recursive acronym, its name is a play on the fact that it’s

based on the Bourne shell. It also implies that bash is an

improvement on the original Bourne shell, in having been

“bourne again.”

Linux

Linus Torvalds, a Finnish university student, was using Minix,

a simple Unix clone written by Vrije Universiteit

(Amsterdam) lecturer Andrew Tanenbaum, but Torvalds was

frustrated by its lack of features and the fact that it did not

make full use of the (still relatively new) Intel 80386

processor, and in particular its “protected mode,” which

allows for much better separation between the kernel and

userspace. Relatively quickly, he got a working shell, and

then got GCC, the GNU C compiler (now known as the GNU

Compiler Collection, as it has been extended to compile

various flavors of C, Fortran, Java, and Ada) working. At that

stage, the kernel plus shell plus compiler was enough to be

able to “bootstrap” the system — it could be used to build a

copy of itself.

Torvalds’ Newsgroup Post

On August 25, 1991, Torvalds posted the following to the MINIX

newsgroup comp.os.minix:

From: torvalds@klaava.helsinki.fi (Linus Benedict Torvalds) To:

Newsgroups: comp.os.minix Subject: What would you like to see most

in minix? Summary: small poll for my new operating system

Hello everybody out there using minix-

I’m doing a (free) operating system (just a hobby, won’t be big and

professional like gnu) for 386 (486) AT clones. This has been brewing

since april, and is starting to get ready. I’d like any feedback on things

people like/dislike in minix, as my OS resembles it somewhat (same

physical layout of the file-sytem due to practical reasons) among other

things.

I’ve currently ported bash (1.08) an gcc (1.40), and things seem to

work. This implies that i’ll get something practical within a few months,

and I’d like to know what features most people want.

Any suggestions are welcome, but I won’t promise I’ll implement them

:-)

Linus Torvalds torvalds@kruuna.helsinki.fi

What is interesting is that Torvalds took the GNU project’s

inevitable success for granted; it had been going for eight

years, and had basically implemented most of its goals (bar

the kernel). Torvalds also, after initially making the mistake

of trying to write his own license (generally inadvisable for

those of us who are not experts in the minutiae of

international application of intellectual property law),

licensed the kernel under the GNU GPL (version 2) as a

natural license for the project.

In practice, this book is far more about shell scripting with

Unix and GNU tools than specifically about shell scripting

under the Linux kernel; in general, the majority of the tools

referred to are GNU tools from the Free Software

Foundation: grep, ls, find, less, sed, awk, bash itself of course,

diff, basename, and dirname; most of the critical commands for

shell scripting on Linux are GNU tools. As such, some people

prefer to use the phrase “GNU/Linux” to describe the

combination of GNU userspace plus Linux kernel. For the

purposes of this book, the goal is to be technically accurate

while avoiding overly political zeal. RedHat Linux is what

RedHat calls its distribution, so it is referred to as RedHat

Linux. Debian GNU/Linux prefers to acknowledge the GNU

content so we will, too, when referring specifically to

Debian. When talking about the Linux kernel, we will say

“Linux”; when talking about a GNU tool we will name it as

such. Journalists desperate for headlines can occasionally

dream up a far greater rift than actually exists in the

community. Like any large family, it has its disagreements —

often loudly and in public — but we will try not to stoke the

fire here.

Unix was designed with the assumption that it would be

operated by engineers; that if somebody wanted to achieve

anything with it, he or she would be prepared to learn how the

system works and how to manipulate it. The elegant simplicity

of the overall design (“everything is a file,” “do one thing and

do it well,” etc.) means that principles learned in one part of the

system can be applied to other parts.

The rise in popularity of GNU/Linux systems, and in

particular, their relatively widespread use on desktop PCs

and laptop systems — not just servers humming away to

themselves in dark datacenters — has brought a new

generation to a set of tools built on this shared philosophy,

but without necessarily bringing the context of history into

the equation.

Microsoft Windows has a very different philosophy: The

end users need not concern themselves with how the

underlying system works, and as a result, should not expect

it to be discernable, even to an experienced professional,

because of the closed-source license of the software. This is

not a difference in quality or even quantity; this is a

different approach, which assumes a hierarchy whereby the

developers know everything and the users need know

nothing.

As a result, many experienced Windows users have

reviewed a GNU/Linux distribution and found to their

disappointment that to get something configured as it

“obviously” should be done, they had to edit a text file by

hand, or specify a certain parameter. This flexibility is

actually a strength of the system, not a weakness. In the

Windows model, the user does not have to learn because

they are not allowed to make any decisions of importance:

which kernel scheduler, which filesystem, which window

manager. These decisions have all been made to a “one size

fits most” level by the developers.

Summary

Although it is quite possible to administer and write shell

scripts for a GNU/Linux system without knowing any of the

history behind it, a lot of apparent quirks will not make

sense without some appreciation of how things came to be

the way they are. There is a difference between scripting for

a typical Linux distribution, such as RedHat, SuSE, or

Ubuntu, and scripting for an embedded device, which is

more likely to be running busybox than a full GNU set of tools.

Scripting for commercial Unix is slightly different again, and

much as a web developer has to take care to ensure that a

website works in multiple browsers on multiple platforms, a

certain amount of testing is required to write solid cross-

platform shell scripts.

Even when writing for a typical Linux distribution, it is

useful to know what is where, and how it came to be there.

Is there an /etc/sysconfig? Are init scripts in /etc/rc.d/init.d

or /etc/init.d, or do they even exist in that way? What

features can be identified to see what tradition is being

followed by this particular distribution? Knowing the history

of the system helps one to understand whether the syntax

is tar xzf or tar -xzf; whether to use /etc/fstab or

/etc/vfstab; whether running killall httpd will stop just your

Apache processes (as it would under GNU/Linux) or halt the

entire system (as it would on Solaris)!

The next chapter follows on from this checkered history to

compare the variety of choices available when selecting a

Unix or GNU/Linux environment.

Free Software, Free Society, 2002, Chapter 1. ISBN 1-

882114-98-1

Chapter 2

Getting Started

Before you can work through and test the code in this

book, you will need to get some kind of Unix-like

environment running. Since you are reading this book, it is

likely that you already have access to a Unix or Linux

system, but this chapter provides an overview of some of

the choices available, how to get them, and how to get up

and running with your test environment. It might also be

worth considering running a virtual machine, or at least

creating a separate account on your existing system when

working on the code in this book.

Although GNU/Linux and the Bash shell is probably the

most common operating system and shell combination

currently in use, and that combination is the main focus of

this book, there are lots of other operating systems

available, and a variety of shells, too. For shell scripting, the

choice of operating system does not make a huge difference

much of the time, so this chapter focuses more on operating

system and editor choices.

Choosing an OS

First of all, it is worth mentioning that Linux is not the only

option available; other freely available operating systems

include the BSDs (FreeBSD, NetBSD, OpenBSD), Solaris

Express, Nexenta, and others. However, there are many

GNU/Linux distributions available, and these generally have

support for the widest range of hardware and software. Most

of these distributions can be downloaded and used totally

legally, even for production use. Of the Linux distributions

mentioned here, RedHat Enterprise Linux (RHEL) and SuSE

Linux Enterprise Server (SLES) have restricted availability

and access to updates; Oracle Solaris is restricted to a 90-

day trial period for production use.

GNU/Linux

RHEL is the commercial distribution based on Fedora. It is

particularly popular in North America and much of Europe.

Because the RHEL media includes RedHat trademarks and

some non-Free Software (such as the RedHat Cluster),

distribution of the media is restricted to licensed customers.

However, the CentOS project rebuilds RHEL from source,

removing RedHat trademarks, providing a Linux distribution

that is totally binary and source code–compatible with RHEL.

This can be very useful as a lot of commercial software for

Linux is tested and supported only on RHEL, but those

vendors will often also support the application running on

CentOS, even if they do not support the OS itself.

RHEL itself is available by paid subscription only. However,

CentOS and Oracle Enterprise Linux are two clones built by

stripping the RedHat trademarks from the source code and

rebuilding in exactly the same way as the RedHat binaries

are built. CentOS is available from http://centos.org/, and

Oracle Enterprise Linux is available from

http://edelivery.oracle.com/linux.

Fedora is the community-maintained distribution that

feeds into RHEL. It has a highly active, generally very

technical user base, and a lot of developments tested in

Fedora first are then pushed upstream (to the relevant

project, be it GNOME, KDE, the Linux kernel, and so on). Like

Ubuntu, it has six-month releases, but a much shorter one-

year support cycle. The technologies that have been proven

in Fedora make their way into RedHat Enterprise Linux. As

with Ubuntu, KDE, XFCE, and LXDE respins are available as

http://centos.org/
http://edelivery.oracle.com/linux

well as the main GNOME-based desktop. DVD images can be

obtained from http://fedoraproject.org/.

SLES is Novell’s enterprise Linux. It is based on OpenSUSE,

which is the community edition. SLES and OpenSUSE are

particularly popular in Europe, partly due to SuSE’s roots as

a German company before Novell purchased it in 2004.

SuSE’s biggest differentiator from other Linux distributions

is its YaST2 configuration tool. SLES has a fairly stable

release cycle; with a new major release every 2–3 years, it

is updated more frequently than RHEL but less frequently

than most other Linux distributions.

SLES is available for evaluation purposes from

http://www.novell.com/products/server/. Like RedHat

Enterprise Linux, a support contract is required to use the

full version.

OpenSUSE is to SLES as Fedora is to RHEL — a possibly

less stable but more community-focused, cutting-edge

version of its Enterprise relative. Test versions are available

before the official release. OpenSUSE is available from

http://software.opensuse.org/. The main OpenSUSE website

is http://www.opensuse.org/.

Ubuntu is based on the Debian “testing” branch, with

additional features and customizations. It is very easy to

install and configure, has lots of Internet forums providing

support, and is a polished GNU/Linux distribution. Ubuntu

offers a Long-Term Support (LTS) release once every 2 years,

which is supported for 2 years on the desktop and 5 years

for servers. There are also regular releases every 6 months,

which are numbered as YY-MM, so the 10-10 release (Lucid

Lynx) was released in October 2010. Although widely known

for its desktop OS, the server version, without the graphical

features, is growing in popularity.

Ubuntu can be installed in many ways — from a CD/DVD, a

USB stick, or even from within an existing Windows

installation. Instructions and freely downloadable media and

http://fedoraproject.org/
http://www.novell.com/products/server/
http://software.opensuse.org/
http://www.opensuse.org/

