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Preface
The aim of this book is to provide the reader with a clear

exposition of some of the fundamental mathematical tools

and techniques that are frequently used in financial risk

management. The book has been written with a wide

audience in mind. For instance, it should appeal to

numerate graduates who seek an accessible and self-

contained account of the science behind the evolving story

of financial risk management. In addition, it should also be

of interest to the market practitioner who is interested in

gaining a deeper understanding of the mathematical theory

which underpins some of the most commonly used

quantitative (black-box) techniques.

Most of the existing books devoted to financial risk

management tend to fall into two categories, those that

tackle a large number of topics with only brief overviews of

the mathematical ideas (e.g., Hull (2007), Dowd (2002) and

Jorion (2006)) and, on the other hand, rigorous

mathematical expositions that are too advanced for an

introductory level (e.g., McNeil, Frey and Embrechts (2005)

and Moix (2001)). In view of this I have designed this book

to occupy the middle ground, namely one that delivers an

accessible yet thorough mathematical account of a broad

sweep of carefully selected topics that an experienced risk

manager is likely to encounter on a regular basis. In order to

maintain focus I have devoted the book entirely to the

mathematics of market risk management; there are already

a whole host of excellent texts that cover the science of

credit risk management, Bielecki, and Rutkowski (2010) and

Schönbucher (2003) being excellent examples. The book, as

its title suggests, is focused firmly on the essential

mathematics of the subject and so, by design, it should

equip the reader with the required scientific background to

either embark on a rewarding career in risk management or

to study the subject at a more advanced level. In particular,



it is hoped that this text will serve as a useful companion to

Alexander (2008a), Alexander (2008b) and Christoffersen

(2003); three excellent books which place the emphasis

firmly on practical examples and implementation.

The book itself has evolved from two courses on risk

management that I teach regularly at Birkbeck, University of

London. Both courses form part of a wider qualification in

financial engineering, one at graduate diploma level and the

other at masters level. The graduate diploma courses at

Birkbeck are aimed at students who are familiar with basic

calculus, linear algebra and probability theory, and they are

designed to serve as a stepping stone to the more

technically demanding masters level courses. Students who

take this route invariably perform extremely well and, in

view of this, the book represents a blend of introductory

material (from the graduate diploma) and advanced topics

(from the masters course). The field of market risk

management is so vast that one could devote an entire

textbook to several of its sub-branches (e.g., volatility

modelling, simulation methods, extreme value theory) and

thus I do not claim that this text represents an exhaustive

account of state-of-the-art topics in this field. However, it is

hoped that the book will inspire the reader to go on and

investigate these topics in more depth.

It is a pleasure to thank the people who have helped make

this book possible. I would like to acknowledge my

colleagues Brad Baxter and Raymond Brummelhuis at

Birkbeck for their support and encouragement. I also

gratefully appreciate many of my past students for their

valuable feedback on the structure and content of the book;

special thanks go to Mafalda Alabort Jordan who provided

many of the figures that appear in Chapter 19.



Chapter 1

Introduction

In life we simply cannot avoid the presence of risk. However,

we tend to avoid its potential impact because, on the whole,

we do a good job of risk management; we wear a bicycle

helmet when cycling, we fasten our seat belts in a moving

car, we use gloves when handling corrosive substances, etc.

In the world of financial investments the universally held

view is that the more risk we take the more we stand to gain

but, just as importantly, the greater the chance we will lose.

The task of the financial risk manager is to be aware of the

presence of risk, to understand how it can damage a

potential investment and, most of all, to be able to reduce

the exposure to it in order to avert a potential disaster. It is

the aim of this book to develop the mathematical tools

which can be used to manage and control risks that are

inherent in the financial market. We will be guided by two

basic principles. Firstly, we shall endeavour to ensure that,

on average, a financial investment provides a healthy return

rate for a tolerable amount of risk. Secondly, we shall be

prepared for rare market events whose impact could trigger

a potentially catastrophic loss. The purpose of this chapter

is to shed light on both the day-to-day issues and also the

big challenges that a typical risk manager is likely to face,

thus it serves as aperitif to stimulate the mathematical

journey ahead.



1.1 Basic Challenges in Risk

Management

We open our discussion by considering a seemingly simple

problem. Assume that we are armed with a wealth of $W

and we decide to invest this today, at time t, in a single

financial asset for a period of τ days into the future. The

value of the asset today is known and denoted by S(t) but

its future value S(t + τ) is uncertain. We think of our asset

being a simple market product such as a share in a stock, an

amount of foreign currency or the ownership of a bond or

some other commodity. In this situation there are two

possible strategies:

The holding strategy.

If we believe the asset price will rise then we simply

buy it today and sell it in the future at the (hopefully)

higher price. In which case we make a profit from the

purchase.

The short-selling strategy.

If we believe the asset price will fall then we can profit

out of this situation by employing the strategy of short

selling. This is summarized as follows.

t t + τ

Borrow the asset today Buy the asset for S(t + τ)

and and

sell it immediately return it to the lender

to receive S(t)

If, as we suspected, the value of the asset falls (i.e., if S(t +

τ) < S(t)) then we have made a profit.

The risk profiles of the two strategies are very different.

The asset price can never drop below zero but, theoretically,

it can grow without bound. For the holding strategy this

means potentially unlimited profits and a bounded loss.

However, for short selling the reverse is true and there is a



potential for unlimited losses. In view of this one finds that,

in practice, the process of pure short selling is

supplemented by certain restrictions and safeguards.

We now suppose that we choose to invest our $W in a

collection of n risky assets denoted by {S
1
, …, S

n
}. Our

strategy is simply to invest a fraction of our wealth, w
i
 say,

in asset S
i
 for i = 1, …, n. We shall assume that short selling

is allowed and so some of the w
i
 may be negative. This

scenario leads us to our next challenging problem:

The Portfolio Problem

How can we choose an optimal set of weights {w
1
, …, w

n
}, so that

our overall investment is likely to yield a promising return with

minimal risk?

Occasionally in mathematics one finds that seemingly

complex problems have the most elegant and rewarding

solutions. The portfolio problem above is such an example

and it is the perfect starting point for our mathematical

journey through risk management. The problem itself was

solved in the early 1950s by Harry Markowitz (1952) in his

PhD studies. The route that Markowitz took to derive his

famous solution is as follows:

Establish a formula for the random return rate for the

portfolio, denoted by r
p
, as a function of its weights w

1
,

…, w
n
.

Use basic probability theory to derive expressions for

the expected return μ
p
 (a measure of potential reward)

and the volatility σ
p
 (a measure of risk) of r

p
.

We now search for the weights  that provide a

desired level of expected return while ensuring that the

risk involved is as small as possible.

The mathematical tools needed to attack this problem are

developed in Chapters 2–4 and its full solution is delivered



in Chapter 5; this will represent our first major landmark

result.

Before Markowitz's theory emerged most investment

decisions were made on the basis of gut instinct or simple

advice such as don't put all of your eggs in one basket,

there was little in the way of quantitative analysis.

Markowitz gave investment theory a scientific footing and,

in Chapter 6, we will discover some intriguing consequences

of his pioneering work. Indeed these discoveries

subsequently inspired many other researchers to investigate

more deeply the relationship between the value of an asset

and its perceived riskiness. This is a tough problem and one

that is made even more difficult by the fact that asset prices

do not always move of their own accord. More often than

not we find that asset prices are related to each other.

Strong price fluctuations in one asset will influence the

movements of another and vice versa, we say they possess

a correlation structure. This leads us to address the

following.

The Modelling Challenge

How can we accurately model the way the price of a risky asset

evolves through time?

 

The Correlation Challenge

How can we accurately model the correlation structure of a

collection of many risky assets?

In the early 1960s Markowitz encouraged a PhD student,

William Sharpe, to investigate these problems. To do this

Sharpe imagined a world where all investors build their

portfolios with Markowitz weights and, in this setting, he



developed the famous Capital Asset Pricing Model (CAPM)

Sharpe (1964). Chapter 7 of this book is devoted to the

mathematical derivation of this model. We shall

demonstrate some of its practical uses and its

consequences, including the follwing intriguing discovery:

1.1 

This revelation tells us that, in the Markowitz world, a

single known risk factor can be viewed as the main driving

force behind the movements and co-movements of all our

risky assets. This conclusion is a remarkable one and, not

surprisingly, it fuelled much debate amongst financial

economists. Indeed, a great deal of empirical work has been

done over the years to test the validity of the CAPM and its

underlying assumptions.

In the 1970s a more cavalier approach to the development

of financial risk models was taken. Specifically, inspired by

the CAPM, the following more general situation was

considered:

1.2 

In response to the above hypothesis a more general class

of risk model was proposed, the so-called linear factor

model. We will examine this popular approach in greater

detail in Chapter 8 of this book. The most appealing feature

of the linear factor model is the fact that there is a great

deal of flexibility in the choice and composition of the

driving factors. This flexibility leads us to an important

practical risk management challenge.

The Factor Selection Challenge



How do we choose the number and nature of the driving risk

factors?

We shall conclude Chapter 8 by describing how principal

components analysis, a famous dimension-reduction tool

from multivariate statistics, can be used to deliver a useful

scientific solution to this challenge.

1.2 Value at Risk

In the late 1980s fund managers and traders with

complicated risk positions looked increasingly to a new

breed of so-called derivative products as a means of

dampening their risk profiles. Derivatives are literally

products that are derived from simpler assets like those we

have already encountered (i.e., stocks and shares,

commodities, foreign currencies and bonds). When used

correctly derivatives are able to protect those who hold

them against risk; they can be viewed as a kind of insurance

policy. However, as their popularity began to rise it became

clear that the misuse of these products can have

devastating consequences. Indeed, throughout the mid-

1990s a whole host of derivatives-related disasters finally

led to a much needed shake-up in the way banks were

regulated. New tighter controls were imposed on financial

institutions and consequently the industry as a whole had to

rethink its approach to risk management. In the present day

all financial institutions have dedicated research teams of

applied scientists who employ sophisticated mathematical

and statistical methods to quantify and control exposure to

risk. The risk-management revolution was initiated in the

early 1990s when the famous Basel committee (on banking

supervision) began a consultation process which,

essentially, set about addressing the following important

questions.



Ensuring Against Large Losses

How can investment banks measure their exposure to unfavourable

and unanticipated movements of the basic financial assets?

How can they use this measure to determine their capital adequacy

requirements?

In order to attack this problem the committee proposed

that each investment bank should divide its market

positions into two books, the trading book and the bank

book. The trading book, as its name suggests, contains all

products that are used as part of an active day-to-day

trading strategy (e.g., investment portfolios and derivatives

would belong in the trading book). In contrast, the bank

book consists of positions that are held over a much longer

time horizon such as long-term loans.

The Basel committee directed its attention on the trading

book and investigated how its riskiness could be quantified.

The value of each product in the trading book has a price

which can be discovered on the market (provided there is

enough liquidity). The prices of these products in the future

however are unknown, and thus, even though we may know

the value of the trading book today, its value tomorrow or at

any time in the future is unknown. When market conditions

are calm one would hope that the trading portfolio would

report a daily profit or at least only a mild, manageable loss.

However, we cannot control market conditions and history

dictates that, once in a while, we can expect a financial

storm where an increase in market volatility can wipe away

significant value from a financial product. In view of this a

natural question to ask could be the following:

What is the largest loss the trading book is likely to suffer

99 out of every 100 days?

The answer to this question is known as the Value at Risk

(VaR) for the trading book at the 99% confidence level;

obviously the same question can be posed for other



confidence levels, e.g., 95% represents the maximum likely

loss in 95 out of 100 days. The idea of measuring the VaR of

a portfolio is popular with practitioners; it represents a

potential monetary loss and, in that respect, it is concise,

practical and easy to understand. In 1996, the Basel

committee added their own support to the VaR concept by

proposing that banks could use VaR as a measure of its

trading book's exposure to market risk. The final Basel

committee report is viewed as pioneering for two reasons:

1. It endorses that investment banks can use their own

internal models to calculate VaR estimates.

2. It provides all investment banks with a universal

formula which they can use to calculate their own capital

adequacy requirements; the formula is based upon the

bank's own VaR estimates.

Value at Risk is widely regarded as one of the key

milestones in the new risk-management revolution.

However, the simplicity of the VaR concept disguises the

complexity involved in its measurement. For instance,

before a single computation takes place we need to ensure

that we have access to all relevant financial data, both

historical and real time. Thus, a typical financial institution

faces the following significant task:

The IT Challenge

Construct an IT system with the following functionality:

Real-time position data for all products in the trading portfolio

are gathered and correctly mapped to the risk calculation

engine.

A database that is dynamically populated with historical prices

at regular intervals (e.g., daily prices) is accessible.

This IT challenge is enormous, especially for multinational

investment banks whose trading portfolio consists of

products that span the global markets. Not surprisingly most

investment banks choose to hand these data management



projects over to one of the many IT consultancy firms with

specialized skills in database architecture.

The VaR concept can be viewed as the trigger for a new

approach to risk management; indeed, it marks the starting

point of an exciting area of science where academic

progress and real-world applications are in constant

exchange. We consider the VaR calculation challenge in two

parts.

The VaR Calculation Challenge

For a given confidence level α ∈ (0, 1) how can we measure the

corresponding Value at Risk for a portfolio which consists entirely

of:

1. Basic financial assets such as stocks and shares, commodities,

foreign currencies and bonds.

2. More complex derivatives products.

We take up the first part of the VaR challenge in Chapter 9

where we examine its mathematical properties. We shall

discover some of VaR's enticing features, however we also

reveal some unfortunate problems. We endeavour to correct

these problems by investigating alternative risk measures,

and ask whether such candidates can be viewed as serious

competitors to VaR.

In Chapter 10 we turn to the practical calculation of VaR

and its associated challenges. As a starting point, we

propose a basic model which assumes that the random

variable representing the daily portfolio loss is normally

distributed. In particular, for this simplified framework, we

will show how we can derive neat closed-form solutions to

almost all of the crucial VaR-related challenges.

The second part of the VaR challenge involves an

additional level of complexity as we now allow derivative

products to be included in the portfolio. In order to attack

this problem we need some advanced results from



probability theory and statistics and these are developed in

Chapters 11 and 12. At the simplest level we can invest in a

single derivative whose value depends upon the price of its

underlying asset. Mathematically we say that the derivative

price is a function of the asset price and write

where f is some non-linear function. In order to examine the

potential profit/loss associated with the derivative we need

to determine, as accurately as possible, the form of f. This

leads us to our next challenge:

Derivative Pricing

For a given derivative how can we determine the relationship

between its value and the level of the underlying asset?

Derivative pricing is a branch of mathematical finance in

its own right and there are a whole host of excellent

textbooks written on this subject (e.g., Higham (2004), Joshi

(2005), Neftci (1996) and Wilmott, Howison and Dewynne

(1995)). However, in Chapter 13 we provide a self-contained

derivation of the celebrated Black–Scholes option pricing

model for the simplest plain European options. This model

dates back to the early 1970s and yet its impact on the

development of modern mathematical finance cannot be

overstated; a great deal of the pioneering work on

derivative pricing can be viewed as an extension or an

innovation of the original Black–Scholes model.

We will not pursue derivative pricing in any further depth,

but will simply assume that a calculation engine exists and

is able to deliver a price for any derivative we encounter. In

this situation we are able to tackle the problem of

computing VaR estimates for a portfolio of derivatives. In a

deliberate effort to reduce the computational burden of this

problem we shall investigate the possibility of providing a



closed-form solution. We remark that this problem is difficult

for at least two reasons:

1. The number of underlying assets (upon which the

derivatives are written) can be very large, i.e., the

problem is a high-dimensional one.

2. Even if we understand the probabilistic nature of a

particular asset it is much harder to predict how a non-

linear function (i.e., a derivative) of it will behave.

In the late 1990s Britten-Jones and Schaeffer (1999)

tackled the above issues and proposed the following recipe:

Step 1. Dimension reduction.

A linear factor model is proposed as a model for the

changes in the underlying asset returns. It is assumed

that the number of factors is much smaller than the

number of assets and thus the size (dimension) of the

problem is greatly reduced.

Step 2. Probabilistic assumptions.

Some simplifying assumptions are proposed for the

probabilistic laws that govern the random nature of the

risk factors.

Step 3. Function approximations.

A local approximation of the non-linear derivative

function is made.

In Chapter 14 we will develop the above steps in detail

and show how the local approximations to the derivatives

can be used to provide closed-form expressions for so-called

non-linear Value at Risk.

1.3 Further Challenges in Risk

Management

The early attempts to calculate VaR were made in the mid-

1990s and, during this time, the main priority for most

practitioners was to establish a straightforward solution that



could be implemented with ease. As a result these early

attempts were based upon rather simple assumptions

regarding the random behaviour of the financial

losses/returns. Towards the end of the 1990s almost all

financial institutions took advantage of the rapid advances

in information technology, where faster computing speed

coupled with increased data storage enabled teams of

quantitative analysts to perform deeper scientific

investigations. A particularly important example is to use

historical data to help gain an insight into the characteristic

properties of the underlying financial variables; indeed, this

becomes the focus of our next challenge:

Statistical Investigation

Using realized price data, perform a statistical investigation to

determine the key empirical properties of asset losses/returns.

In Chapters 15–18 we develop the statistical tools and

techniques needed to tackle this problem. Then, in Chapter

19, we put these tools into action and conduct a scientific

investigation whose aim is to pin down the key statistical

properties that characterize the true nature of financial

losses/returns. These properties are commonly referred to

as the stylized facts and they serve as a guide for the

development of new and improved risk models; a successful

mathematical model should capture as many (if not all) of

these properties as possible.

One particular result of our investigation is the observation

that extreme values tend to occur more often than some of

the basic models would predict, with large losses occurring

more often than large profits. In relation to this we also

discover that the future volatility of a basic financial asset is

closely related to its past. This is an important observation

because it implies that when an asset experiences a period

of high volatility the likelihood of an extreme swing is



increased; unfortunately, the swing can be downward as

well as upward. These observations lead us to one of the

central questions that all risk managers must address:

The Volatility Challenge

How can we construct a time-dependent volatility model which

accurately captures the stylized facts of financial losses?

The topic of volatility modelling is so large that it can also

be regarded as a branch of mathematical finance in its own

right, indeed there are several textbooks devoted to this

topic (e.g., Gouriéroux (1997), Poon (2005) and Taylor

(2007)). We take on the volatility challenge in Chapter 20

where, rather than provide a bite-size review of the many

different approaches, we present the mathematical story of

one of the most popular, the so-called GARCH family of

models. GARCH models have found a wide range of

applications in financial modelling because, as we shall

discover, they have the ability to capture almost all of the

stylized facts and, what's more, they are also fairly simple to

implement. The GARCH modelling framework is also

extremely flexible; once one understands the basic model, it

is then possible to introduce extensions designed to

enhance its performance. This is reflected in the vast range

of innovative GARCH-type volatility models on the market.

In order to motivate the next important challenge we recall

that our Value at Risk measure, as we know it, is designed

to cope with those unanticipated events which typically

occur two or three times in a year. Unfortunately, however,

experience has shown that financial markets can also be

exposed to tornado-like events such as terrorist attacks,

political instabilities and natural disasters. These events

have the potential to wipe billions off the value of global

stock markets. Thus, one of the new challenges of

mathematical risk management is to develop a



methodology to cater for such extreme events. In this

respect we face a new challenge:

The Challenge of Quantifying

Losses Due to Rare Events

How do we assign appropriate probabilities to potential extreme

movements of a financial asset?

We tackle this problem in Chapter 21 where we appeal to

extreme value theory (EVT), a branch of probability theory

that is concerned with describing the statistical properties of

extreme events. EVT has applications in many areas of

science and engineering. In particular, hydrologists have

successfully used EVT to help predict the likelihood and size

of potentially damaging floods, the hydrologist then uses

these findings to estimate the optimal height of a dam

which is to be constructed to protect against such floods. In

finance the application of EVT is much the same; the risk

manager uses the theory to model the likelihood and size of

a portfolio loss due to a financial storm, he can then use this

data to determine the size of the buffer fund which is

designed to absorb such losses.

A common situation in finance (and other branches of

science and engineering) is that closed-form solutions to

real-world problems only tend to be available in the simplest

of cases. For instance, the fair price of a plain European

option can be derived analytically, however numerical

methods are needed for most non-standard options. We find

this in risk management too, for instance if we (erroneously)

assume that the portfolio loss random variable is normally

distributed then we can derive expressions for almost any

risk measure, however if a more sophisticated risk model is

used then we must turn to numerical techniques. This leads

us to our next challenge:



Numerical Methods for Risk

Quantification

How can we develop numerical techniques to compute the Value at

Risk for a financial portfolio?

In order to address this problem we must study the

mathematical ideas behind one of the most crucial

numerical tools in risk management—the ability to perform

numerical simulations. We take on this challenge in Chapter

22 where we demonstrate how simulation techniques can

be used to deliver estimates of financial risk measures such

as Value at Risk. In particular we describe how to design a

simulation algorithm whose purpose is to generate a range

of potential future prices for each asset and/or derivative in

the portfolio, these are then combined to produce a

simulated value of the portfolio. Then, as more and more

simulated values are generated, a clearer picture of the

crucial statistical properties of the portfolio loss random

variable emerges and, as a result, estimates for VaR (and

other risk measures) can easily be derived. The success of

the method lies in the specification of the algorithm. It may

depend upon the past price history of the portfolio

(historical simulation) or it may depend upon some

mathematical model that is calibrated to real market prices

(Monte Carlo simulation).

Obviously, from a practitioner's perspective, an accurate

closed-form expression for VaR is highly desirable. Indeed,

in the late 1990s several alternative VaR methodologies

were proposed, each delivering closed-form solutions while

attempting to simultaneously capture the true statistical

properties of the loss random variable. In Chapter 23 we

shall present two of the most commonly used methods and

by doing so we bring the story of VaR calculation methods

to a close.


