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Plants are so unlike people that it’s very difficult for us to

appreciate fully their complexity and sophistication.

Michael Pollan, The Botany of Desire



Preface
When starting to rearrange my lecture notes I had a ‘short

introduction to multivariate vegetation analysis’ in mind. It

ended up as a ‘not so short introduction’. The book now

summarizes some of the well-known methods used in

vegetation ecology. The matter presented is but a small

selection of what is available to date. By focusing on

methodological issues I try to explain what plant ecologists

do, and why they measure and analyse data. Rather than

just generating numbers and pretty graphs, the models and

methods I discuss are a contribution to the understanding of

the state and functioning of the ecosystems analysed. But

because researchers are usually driven by their curiosity

about the functioning of the systems I successively began to

integrate examples encountered in my work. These now

occupy a considerable portion of this book. I am convinced

that the fascination of research lies in the perception of the

real world and its amalgamation in the form of high-quality

data with hidden content processed by a variety of methods

reflecting our model view of the world. Neither my results

nor my conclusions are final. Hoping that the reader will like

some of my ideas and perspectives, I encourage them to

use and to improve on them. There remains considerable

scope for innovation.

The examples presented in this book all come from Central

Europe. While this was not intended originally, I became

convinced the topics they cover are of general relevance, as

similar investigations exist almost everywhere in the world.

An example is the pollen data set: pollen profiles offer the

unique chance to study vegetation change over millennia.

This is the time scale of processes such as climate change

and the expansion of the human population. Another, much

shorter time series than that of pollen data is found in

permanent plot data originating from the Swiss National

Park that I had the opportunity to look at. The unique



feature of this is that it dates back to the year 1917, when

Josias Braun-Banquet personally installed the first wooden

poles, which are still in place. Records of the full set of

species have been collected ever since in five-year steps. A

totally different data set comes from the Swiss Forest

Inventory, presented in the last chapter of this book.

Whereas many vegetation surveys are merely preferential

collections of plot data, this data set is an example of

systematic sampling on a grid encompassing huge

environmental gradients. It helps to assess which patterns

really exist, and whether some of those described in papers

or textbooks are real or merely reflect the imagination or

preference of researchers scanning the landscape for nice

locations. In this case the data set available for answering

the question is still moderate in size, but handling of large

data sets will eventually be needed in similar contexts. I

used the Swiss wetland data set as an example for handling

data of much larger size, in this case with n = 17608

relevés. Although this is outnumbered by others, it resides

on a statistical sampling design.

Some basic knowledge of vegetation ecology might be

needed to understand the examples presented in this book.

Readers wishing to acquire this are advised to refer, for

example, to the comprehensive volumes Vegetation Ecology

by Eddy van der Maarel (2005) and Aims and Methods of

Vegetation Ecology by Mueller-Dombois and Ellenberg

(1974), presently available as a reprint. The structure of my

book is influenced by Orlócis (1978) Multivariate Analysis in

Vegetation Research, which I explored the first time when

proofreading it in 1977. Various applications are found in the

books of Gauch (1982), Pielou (1984) and Digby and

Kempton (1987) and many multivariate methods used in

vegetation ecology are introduced in Jongman et al. (1995).

To study statistical methods used in this book in more detail,

I strongly recommend the second edition of Numerical



Ecology by Legendre and Legendre, probably the most

comprehensive textbook existing today. Several books

provide an introduction to the use of statistical packages,

which are referred to in the appendix. For many reasons I

decided to omit the software issue in the main text; upon

the request of several reviewers I added a section to the

appendix where I reveal how I calculated my examples and

mention programs, program packages and databases.

I would like to express my thanks to all individuals that

have contributed to the success of this book. First of all

Rachel Wade from Wiley-Blackwell, who strongly supported

the efforts to print the manuscript in time and organized all

the technical work. I thank Tim West for careful copy-

editing, and Robert Hambrook for managing the production

process. My colleagues Anita C. Risch and Martin Schütz

revised the entire text, providing corrections and

suggestions. Meinrad Küchler helped in the computation of

several examples. André F. Lotter provided the pollen data

set. I cannot remember all the people who had an influence

on the point of view presented here: many ideas came from

László Orlóci through our long lasting collaboration, others

from Madhur Anand, Enrico Féoli, Valério de Patta Pillar,

Janos Podani and Helene Wagner. I particularly thank my

family for encouraging me to tackle this work and for their

tolerance when I was working at night and on weekends to

get it completed.

Otto Wildi

Birmensdorf, 1 December 2009
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1

Introduction

This book is about understanding vegetation systems in a

scientific context, one topic of vegetation ecology. It is

written for researchers motivated by the curiosity and

ambition to assess and understand vegetation dynamics.

Vegetation, according to van der Maarel (2005) ‘can be

loosely defined as a system of largely spontaneously

growing plants.’ What humans grow in gardens and fields is

hence excluded. The fascination of investigating vegetation

resides in the mystery of what plants ‘have in mind’ when

populating the world. The goal of all efforts in plant ecology,

as in other fields of science, is to learn more about the rules

governing the world. These rules are causing patterns, and

the assessment of patterns is the recurrent theme of this

book.

Unfortunately, our access to the real world is rather

restricted and – as we know from experience – differs

among individuals. To assure progress in research an image

of the real world is needed: the data world. In this we get a

description of the real world in the form of numbers. (An

image can be a spreadsheet filled with numbers, a digital



photograph or a digital terrain model.) Upon analysis we

then develop our model world, which represents our

understanding of the real world. Typical elements are

orders, patterns or processes governing systems. It is the

aim of most analytical methods to identify patterns as

elements of our model view.

Finding models reflecting the real world is a difficult task

due to the complexity of systems. Complexity has its origin

in a number of fairly well known phenomena, one being the

scale effect. Any regularity in ecosystems will emerge at a

specific spatial and temporal scale only: at short spacial

distance competition and facilitation among plants can be

detected (Connell & Slatyer 1977); these would remain

undetected over a range of kilometres. In order to study the

effect of global climate change (Orlóci 2001, Walther et al.

2002) the scale revealed by satellite photographs is

probably more promising. Choosing the best scale for an

investigation is a matter of decision, experience and often

trial and error. For this a multi-step approach is needed, in

which intermediate results are used to evaluate the next

decision in the analysis. Poore (1955, 1962) called this

successive approximation and Wildi & Orlóci (1991) flexible

analysis. Hence, the variety and flexibility of methods is

nothing but an answer to the complex nature of the

systems. Once the proper scale is found there is still a need

to consider an ‘upper’ and a ‘lower’ level of scale, because

these usually also play a role. Parker & Pickett (1998)

discuss this in the context of temporal scales and interpret

the interaction as follows: ‘The middle level represents the

scale of investigation, and processes of slower rate act as

the context and processes of faster rates reflect the

mechanisms, initial conditions or variance.’

A second source of complexity is uncertainty in data

measured. Data are restricted by trade-offs and practical

limitations. A detailed vegetation survey is time-consuming,



and while sampling, vegetation might already be changing

(Wildi et al. 2004). Such data will therefore exhibit an

undesired temporal trend. A specific bias causes variable

selection. It is easier to measure components above ground

than below ground (van der Maarel 2005, p. 6), a distinction

vital in vegetation ecology. Once the measurements are

complete they may reflect random fluctuation or chaotic

behaviour (Kienast et al. 2007) while failing to capture

deterministic components. It is a main objective in data

analysis to distinguish random from deterministic

components. Even if randomness is controlled there is

nonlinearity in ecological relationships, a term used when

linearity is no longer valid. This would not be a problem if

we knew the kind of relationship that was hidden in the data

(e.g. Gaussian, exponential, logarithmic, etc.), but finding a

proper function is usually a challenging task.

Further, spatial and temporal interactions add to the

complexity of vegetation systems. In space, the problem of

order arises, as the order of objects depends on the

direction considered. In most ecosystems, the

environmental conditions, for example elevation or

humidity, change across the area. Biological variables

responding to this will also be altered and become space-

dependent (Legendre & Legendre 1998). If there is no

general dependency in space, a local phenomenon may

exist: spatial autocorrelation. This means that sampling

units in close neighbourhood are more similar than one

could expect from ecological conditions. One cause for this

comes from biological population processes: the chance that

an individual of a population will occur in unfavourable

conditions is increased if another member of the same

population resides nearby. It will be shown later in this book

how such a situation can be detected (Section 7.3.3).

Similarly, correlation over time also occurs. In analogy to

space, there is temporal dependence and temporal



autocorrelation. This comes from the fact that many

processes are temporally continuous. The systems will

usually only change gradually, causing two subsequent

states to be similar. Finally, time and space are not

independent, but linked. Spatial patterns tend to change

continuously over time. In terms of autocorrelation, spatial

patterns observed within a short time period are expected

to be similar. Similarly, a time series observed at one point

in space will be similar to another series observed nearby.

In summary, all knowledge we generate by analysing the

data world contributes to our model world. However, this is

aimed at serving society. When translating this into practice

we experience yet another world, the man-made world of

values. This is people’s perception and valuation of the

world, which we know from experience is continuously

changing. The results we derive in numerical analysis carry

the potential to deliver input into value systems, but we

should keep in mind what Diamond (1999) mentioned when

talking about accepting innovations: ‘Society accepts the

solution if it is compatible with the society’s values and

other technologies.’ Proving the existence of global

warming, as an example, can be a matter of modelling.

Convincing people of the practical relevance of the problem

is a question of evaluation and communication, for which

different skills may be required.



2

Patterns in vegetation ecology

2.1 Pattern recognition

Why search for patterns in vegetation ecology? Because the

spatial and temporal distribution of species is non-random.

The species are governed by rules causing detectable,

regular patterns that can be described by mathematical

functions, such as a straight line (e.g. a regression line), a

hyperbola-shaped point cloud, or, in the case of a temporal

pattern, an oscillation. But it might also be a complex shape

that is familiar to us: Figure 2.1 shows the portrait of former

US President Abraham Lincoln. Although drastically

simplified, we immediately recognize his face. Typically, this

picture contains more information than just the face: there

is also the regular grid, best seen in the image on the right.

This geometrically overlayed pattern tends to dominate our

perception. The entire central image including the grid is

blurred, helping the human brain to recognize the face more

easily. So patterns are frequently overlayed, and this also

happens in ecosystems, where it is actually the rule. One of

the aims of pattern recognition is in fact to separate



superimposed patterns by partitioning the data in an

appropriate way. A well-known application of pattern

recognition is (vegetation) mapping. The usually

inhomogeneous and complex vegetation cover of an area is

reduced to a limited number of types. The picture in Figure

2.2 shows the centre of a peat bog in the Bavarian Pre-Alps.

Three vegetation types of decreasing wetness are

distinguished from the foreground to the background. Before

drawing such a map the types have to be defined, a difficult

task discussed in more detail in Chapter 6.

Figure 2.1 Portrait of Abraham Lincoln. Pixel image (left),

blurred (centre), with superimposed raster (right).

Figure 2.2 Vegetation mapping as a method for

establishing a pattern (bog vegetation with a wetness

gradient from the foreground to the background).

Patterns are often obscured not just by overlay, but by

random variation (sometimes referred to as statistical noise)

hiding the regularities. Methods are needed to divide the



total variation into two components, one containing the

regularity and one representing randomness.

One (statistical) property of any series of measurements is

variance (s2):

This is the sum of the squared deviation of all elements from

the mean of vector . The mean can be interpreted as the

deterministic component and the deviations as the random

component of a measurement. Even in the simplest natural

system the existence of a deterministic pattern and a

random component can be expected. A typical example in

vegetation ecology is the representation of a vegetation

gradient as an ordination. A continuous change in

underlying conditions, time or environmental factors leads

to a nonlinear change in vegetation composition. When a

vegetation gradient of this type is analysed, it will not

manifest as a straight line but as a curve instead, also

known as a horseshoe (see Section 5.5). What deviates from

this can be considered statistical noise, but it can also come

from yet another pattern. The issue is sketched in Figure 2.3

with data from a gradient in the Swiss National Park

depicting the change from nutrient-rich pasture towards

reforestation by Pinus montana. In this ordination the main

pattern is the curved line and the random component

comes from the deviations of the data points from this line.

Alternatively, one may detect another pattern in the point

cloud. As will be shown in Chapter 6, applying cluster

analysis will result in determination of groups. This might be

the preferred pattern for some practical applications like

vegetation mapping.

Figure 2.3 Ordination of a typical horseshoe-shaped

vegetation gradient in the Swiss National Park. Relevés on

the left-hand side are taken from the forest edge, those at



the right-hand side from the centre of a pasture. If the arrow

is assumed to represent the true trend then the distance of

any one point from the arrow is caused by noise.

I have shown so far that patterns refer to different kinds of

regularities, some in space, some in time, others related to

the similarity of objects, one-dimensional or

multidimensional, deterministic or random. This book

presents a strategy towards recognition of patterns. In

Section 2.3 I refer to the sampling problem, a big issue as

sampling yields the data and only these are subjected to

analysis. Mathematical analysis starts with Chapter 3 on

transformation, a step in any analysis that allows

adjustment of the data to the objective of the investigation,

while also partly overcoming restrictions imposed by the

measurements. First, transformations address individual

measurements (scalars), such as species cover, abundance

or biomass, for which I frequently use the neutral term

species performance. Second, vectors are subjected to

transformation. A relevé vector includes all measurements

belonging to this, including species performance scores and

site factors. A species vector considers performance scores

in all relevés where it occurs. In a synoptic table (Section

6.6) a relevé vector is a column and a species vector a row.


