

Michael Weigend

Adobe Flash CS5 mit ActionScript 3 Praxiseinstieg

Michael Weigend

Flash CS5 mit ActionScript 3

Praxiseinstieg

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-8266-8496-8 1. Auflage 2011

E-Mail: kundenbetreuung@hjr-verlag.de

Telefon: +49 89/2183-7928 Telefax: +49 89/2183-7620

www.mitp.de

© 2011 mitp, eine Marke der Verlagsgruppe Hüthig Jehle Rehm GmbH Heidelberg, München, Landsberg, Frechen, Hamburg

Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Lektorat: Sabine Schulz Sprachkorrektorat: Petra Heubach-Erdmann Satz: III-satz, Husby, www.drei-satz.de Cover: © p!xel 66 – Fotolia.de

Inhaltsverzeichnis

	Einleit	ung	15
I	Die ers	sten Schritte mit Flash	19
1.1	Die So	ftware	19
	I.I.I	Entwicklungsumgebung und Player	19
	I.I.2	Geschichte	20
	1.1.3	ActionScript	20
1.2	Die Be	enutzungsoberfläche von Flash	20
	I.2.I	Bedienfelder und Arbeitsbereiche	20
	I.2.2	Das Fenster-Layout	21
	1.2.3	Umgang mit Registerkarten	22
	1.2.4	Die Einstellung der Benutzungsoberfläche speichern	24
	1.2.5	Das Bedienfeld »Eigenschaften«	25
1.3	Am Ar	nfang war die Linie	25
	1.3.1	Die Müller-Lyer-Illusion	26
	1.3.2	Eine perspektivische Illusion	30
1.4	Eine P	arallelillusion	34
1.5	Symbo	ole und Instanzen	36
1.6	Filme	testen und veröffentlichen	39
	1.6.1	Testen	40
	1.6.2	Veröffentlichen	40
1.7	Flash-l	Hilfe	44
1.8	Aufgal	ben	44
1.9	Lösun	gen	45
2	Anima	ttionen	47
2.1	Projek	t »Sonnenaufgang«	47
	2.I.I	Die Grundidee des klassischen Tweens	47
	2.1.2	Zeitleiste und Ebenen	48
	2.1.3	Wie benutzt man ein Zeichenwerkzeug?	50
	2.1.4	Der Himmel	50
	2.1.5	Die Sterne	53
	2.1.6	Die Sonne	54
	2.1.7	Was ist der Unterschied zwischen dem Ellipsenwerkzeug	
	1	und dem Werkzeug für Ellipsengrundform?	55
	2.1.8	Die Landschaft – mit dem Freihandwerkzeug zeichnen	56
	2.1.9	Das erste klassische Bewegungs-Tween – die aufsteigende Sonne	58
	2.1.10	Den Film testen	61

	2.I.II	Das Playerfenster konfigurieren – »Alles zeigen« versus »100%«	61
	2.1.12	Mit Farbeffekten Tweens gestalten	62
	2.1.13	Erweiterung: Den Film am Ende anhalten	63
2.2	Modern	e Bewegungs-Tweens	64
	2.2.1	Eine animierte Version der Müller-Lyer-Illusion	64
	2.2.2	In der Bibliothek ein neues Symbol erstellen	65
	2.2.3	Ein Symbol duplizieren	66
	2.2.4	Ebenen einrichten	67
	2.2.5	Ein Bewegungs-Tween erstellen	68
2.3	Aufgab	en	70
2.4	Lösung	en	71
3	Form-T	weens	75
3.I	A candl	e in the wind	75
3.2	Aufgab	e	81
3.3	Lösung		81
4	Bilder u	und visuelle Effekte	85
т 4.Т	Eine Ar	nimation mit Fotos	85
	4.T.T	Ein Foto importieren	86
	4.1.2	Ein Obiekt aus einem Foto ausschneiden	88
	4.T.3	Weitere Ebenen und Tweens einrichten	92
	4.T.A	Filter verwenden	93
12	2D-Effe	kte	95
4.2	Wie ma	lt man eine Blume? Fotos in Vektorgrafiken umwandeln	99
4 J	Eine Ca	urtoon-Figur auf der Basis eines Fotos entwickeln	101
4.4	Aufoah	en	106
4.5	Lösung	en	107
4.0	Losuiig		107
5	Ein Ent	wicklungsprozess	109
5.1	Projekt	»Aus Einzelteilen entsteht ein Ganzes«	109
	5.1.1	Vorgehensweise	110
5.2	Die Ein	zelteile	110
	5.2.1	Eine Fläche ohne Umrandung zeichnen	111
	5.2.2	Das Dach	112
	5.2.3	Die Pflanzen	113
	5.2.4	Exkurs: Mit dem Pinselwerkzeug malen	114
5.3	Die Ani	imation	115
	5.3.I	Movieclip und Film testen	118
	5.3.2	Einen Movieclip im Kontext der Bühne bearbeiten	120
	5.3.3	Pfade	121
	5.3.4	Tweeneigenschaften: Drehung und Beschleunigung	122
	5.3.5	Ein animiertes Dach	124
	5.3.6	Frei transformieren	124

	5.3.7	Die Bewegung des Hausdachs	126
	5.3.8	Maskieren	127
5.4	Stop ar	nd go	128
	5.4.1	Stopp-Punkte einfügen	128
	5.4.2	Einer Instanz einen Namen geben	130
	5.4.3	Einem Mausklick Aktivität zuordnen	131
5.5	Aufgab	be	132
5.6	Lösung	<u>z</u>	132
6	Mause	reignisse und Schaltflächen	137
6.1	Wie ste	euert man einen Ventilator? Mausereignisse	137
	6.1.1	Szenerie mit Ventilator	137
	6.1.2	Den Ventilator durch Anklicken starten	141
	6.1.3	Weitere Mausereignisse – den Ventilator starten und anhalten	143
6.2	Das Au	issehen von Schaltflächen	145
6.3	Event-I	Listener hinzufügen und entfernen	148
6.4	Movied	lips steuern	152
	6.4.1	Eigenschaften von Movieclips	152
6.5	Action	Script im Überblick	153
	6.5.1	Mausereignisse	153
	6.5.2	Methoden der Movieclips	153
	6.5.3	Eigenschaften von Movieclips	154
6.6	Aufgat	pen	154
6.7	Lösung	gen	156
7	Grund	lagen der Programmierung mit ActionScript	161
7.1	Variabl	len	161
7.2	Compi	lerfehler	163
7.3	Wie sir	nd Variablennamen aufgebaut?	164
7.4	Zuweis	sungen und Ausdrücke	165
	7.4.1	Erweiterte Zuweisungen	166
7.5	Komm	entare	167
7.6	Einfacł	ne Datentypen	168
	7.6.1	Zahlen	168
	7.6.2	Boolean	169
7.7	String.		170
	7.7.1	Objektorientiertes Programmieren	170
	7.7.2	Ein String-Objekt erzeugen	172
	7.7.3	Strings verarbeiten	172
7.8	Funkti	onen	173
	7.8.1	Datentypen spezifizieren	175
	7.8.2	Prozeduren – der Datentyp »void«	176
7.9	Progra	mmverzweigungen – die if-Anweisung	177

	7.9.1	Bedingte Anweisung (if-Anweisung)	177
	7.9.2	Bedingungen	178
	7.9.3	Verzweigung (if-else-Anweisung)	179
	7.9.4	Mehrfachverzweigung	179
7.10	Wieder	rholungen	181
	7.10.1	Die while-Schleife	181
	7.10.2	Die for-Schleife	182
7.11	Progra	mmieren per Mausklick	183
7.12	Einrüc	kungsstil	184
7.13	Action	Script im Überblick: Strings	185
7.14	Aufgab	pen	185
7.15	Lösung	gen	188
8	Ein ma	thematisches Lernspiel	191
8.1	Projekt	t »Mein Mathehaus«	191
8.2	Die Gr	undversion	192
	8.2.1	Aufbau der Szene	192
	8.2.2	Der Hintergrund	193
	8.2.3	Eine Instanz des Entwicklungsfilms aus einer anderen	
		Flash-Applikation holen	193
	8.2.4	Die Schaltflächen	194
	8.2.5	Textfelder	196
	8.2.6	Programmierung mit ActionScript 3.0	199
8.3	Erweite	erung: Eine Rückmeldung mit Zufallselementen	204
	8.3.1	Eine Kollektion von Bildern	204
	8.3.2	Auswahl nach dem Zufallsprinzip	205
	8.3.3	Feedback mit Zufallsbild	205
	8.3.4	Das Ende des Spiels	206
	8.3.5	Zielpfade und Referenzieren	207
8.4	Ereigni	isse akzentuieren	208
	8.4.1	Der Blitz	208
	8.4.2	Das Tween	210
	8.4.3	Den Akzent in die Applikation einfügen	211
8.5	Sound		212
	8.5.1	Die Sound-Bibliothek	212
	8.5.2	Klänge aus einem beliebigen Verzeichnis importieren	213
	8.5.3	Einen Ereignissound zur Zeitleiste hinzufügen	213
8.6	Aufgab	pen	213
8.7	Lösung	gshinweise	214
9	Arrays	– Daten in einer Reihe	219
9.1	Progra	mmieren mit Arrays	219
	9.1.1	Der Index-Zugriff auf Elemente eines Arrays	220
	9.1.2	Arrays aus Strings erzeugen	220

	9.1.3	Eigenschaften und Methoden von Arrays	221
	9.1.4	Iterationen – die Methode »forEach()»	225
	9.1.5	Die forin-Schleife	226
9.2	Projekt	: »Ballonknaller«	227
	9.2.1	Vorgehensweise	227
	9.2.2	Erste Iteration	228
	9.2.3	Zweite Iteration	232
	9.2.4	Dritte Iteration	238
	9.2.5	Vierte Iteration	243
9.3	Action	Script im Überblick: Arrays	250
9.4	Aufgab	en	251
9.5	Lösung	shinweise	252
10	Tastatu	r und Mikrofon	255
10.1	Ein bev	vegliches Objekt über die Tastatur steuern	255
	10.1.1	Der Roboter	256
	10.1.2	Die Barriere	258
10.2	Einen 🕻	Гastaturevent auswerten	258
	10.2.1	Tastennummern	258
	10.2.2	Buchstabieren	259
	10.2.3	Ein Raumschiff steuern	262
	10.2.4	Jump and run	265
10.3	Über d	as Mikrofon eine Animation steuern	268
	10.3.1	Lenken durch Rufen und Pfeifen	268
	10.3.2	Zählen durch Klatschen	270
10.4	Action	Script im Überblick: Tastatur und Mikrofon	272
	10.4.1	Tastaturereignisse	273
	10.4.2	Tastaturcodes	273
	10.4.3	Die Klasse Microphone	273
10.5	Aufgab	e	274
10.6	Lösung	Ţ	275
11	Direkte	Manipulation von Objekten	279
II.I	Objekt	e bewegen – Drag&Drop	279
11.2	Projekt	»Die Entenkönigin«	283
11.3	Erste It	eration – die Grundidee des Spiels	284
	11.3.1	Die Architektur	284
	11.3.2	Story 1: Verschiebbare Objekte	286
	11.3.3	Story 2: Ein Smiley mit zwei Gesichtsausdrücken	288
	11.3.4	Story 3: Eine neue Zufallszahl generieren	289
	11.3.5	Story 4: Prüfung der Lösung	291
11.4	Zweite	Iteration	293
	11.4.1	Storys	294
	11.4.2	Story 1: Die Königin	295

	11.4.3	Story 2: Aus dem Kasten wird ein Teich	295
	11.4.4	Story 3: Aus Punkten werden Enten	295
	11.4.5	Story 4: Ein neues Bild für die Schaltfläche	295
	11.4.6	Story 5: Die Uhr	296
	11.4.7	Story 6: Die Spielseite überarbeiten	297
	11.4.8	Die Startseite	300
	11.4.9	Das Schlussbild	302
11.5	Weiter	e Ideen für Lernspiele nach dem Muster der »Entenkönigin«	302
11.6	Aufgab	pen	303
11.7	Lösung	gshinweise	304
12	Mit Ac	tionScript Formen konstruieren	313
I2.I	Zeiche	nmethoden der Klasse »Graphics«	313
	I2.I.I	Ein Kreis	314
	12.1.2	MovieClip, Sprite und Shape	314
	12.1.3	Farben	315
	12.1.4	Linien zeichnen	316
12.2	Ebener	n – Die Methode »addChildAt()«	317
12.3	Projekt	x»Der Trapezkünstler«	319
12.4	Erste It	teration – Dynamische Trapeze	320
	12.4.1	Aufbau des Spiels	321
	12.4.2	Konstruktion des Trapezes	322
12.5	Ein Lin	eal modellieren – Die zweite Iteration	324
-	12.5.1	Ein Lineal mit Skala – Raster und Ausrichten	325
	12.5.2	Ein Pfeilkreuz konstruieren	326
	12.5.3	Eine Schaltfläche zum Verschieben	326
	12.5.4	Das verschiebbare Lineal	327
12.6	Vom d	ynamischen Trapez zum Lernspiel –	
	Die dri	tte Iteration	330
	12.6.1	Auswählbare Optionen	330
	12.6.2	Überarbeitung des Symbols »Spiel«	334
12.7	Action	Script im Überblick: Graphics	337
, 12.8	Aufgab	en	338
12.9	Lösung	gen	340
13	Zeit un	ıd Wiederholung	343
13.1	Datum	und Zeit	343
	13.1.1	Die Klasse Date	343
	13.1.2	Wiederholen im Zeittakt – Die Funktionen »setInterval()«	
	-	und »clearInterval«	344
	13.1.3	Zeitgeber – Die Klasse Timer	345
13.2	Projekt	t »Reaktionstest«	347
-	13.2.1	Die visuellen Elemente der Applikation.	348
	13.2.2	Das ActionScript-Programm	349
	-		

13.3	Projekt »Eine digitale Stoppuhr«	351
13.4	Projekt »Wie gut schätzen Sie Geschwindigkeiten?« Mit einem	
	Timer-Objekt Bewegungen steuern	356
	13.4.1 Die visuellen Elemente	357
	13.4.2 Das ActionScript-Programm	358
	13.4.3 Bildrate und Timer-Steuerung	360
13.5	ActionScript im Überblick: Datum und Zeit	360
	13.5.1 Die Klasse Date	360
	13.5.2 Die Klasse Timer	361
13.6	Aufgaben	361
13.7	Lösungshinweise	363
14	Projekte mit Zeitfunktionen	373
14.1	Projekt »Mentale Rotation«	373
	14.1.1 Das Experiment aus Sicht der Versuchsperson	373
	14.1.2 Die Struktur der Applikation	375
	14.1.3 Erste Iteration	375
	14.1.4 Zweite Iteration	382
	14.1.5 Dritte Iteration	386
14.2	Projekt »Memory«	389
14.3	Solitär-Memory	390
	14.3.1 Die Struktur der Applikation	390
	14.3.2 Rückseite und Vorderseite.	391
	14.3.3 Eine Schaltfläche zum Kartenaufdecken	392
	14.3.4 Die Memorykarte	392
	14.3.5 Das Symbol »Memory«	397
	14.3.6 Testen und Erweitern.	400
14.4	Aufgabe	400
14.5	Lösung	401
15	Grafische Editoren und intelligente Baukästen	405
15.1	Behälter für visuelle Elemente	405
15.2	Verwaltung der Anzeigeliste	406
15.3	Projekt »Ein Editor zur Gestaltung einer Zimmereinrichtung«	406
15.4	Die Grundversion	407
	15.4.1 Das manipulierbare Element	407
	15.4.2 Die Schaltflächen	409
	15.4.3 Die statischen visuellen Elemente des Editors	411
	15.4.4 Einem Symbol eine Klasse zuordnen	411
	15.4.5 Der Programmtext	412
15.5	Die zweite Iteration – Klicken und Drehen	413
15.6	Die dritte Iteration – Hand und Schlagschatten	415
,	15.6.1 Das Aussehen des Schlagschattens verändern	417
15.7	Vierte Iteration – Buchführung.	417
· ·		

15.8	Projekt	t »Space-Shuttle-Baukasten«	420
15.9	Erste It	teration	421
	15.9.1	Unsichtbare Marke	421
	15.9.2	Die Bilder der Einzelteile	421
	15.9.3	Die verschiebbaren Objekte	422
	15.9.4	Das Symbol »Space Shuttle«	422
	15.9.5	Der Unterschied zwischen »currentTarget« und »target«	426
15.10	Zweite	Iteration	428
	15.10.1	Die Erfolgsmeldung	428
	15.10.2	Programmierung	428
15.11	Action	Script im Überblick: Anzeigeobjekte	431
	15.11.1	Anzeigeobjekte verwalten	431
	15.11.2	Eigenschaften von MouseEvent-Objekten	432
	15.11.3	Das Aussehen des Mauszeigers	433
	15.11.4	Filter der Anzeigeobjekte	433
15.12	Aufgab	pen	433
15.13	Lösung	gen	434
16	Objekt	orientierte Programmierung	437
16.1	Projekt	t »Kugelbahn«	437
	16.1.1	Die Spielregeln von Logball	438
	16.1.2	Die Projektmetapher	440
	16.1.3	Planung	440
16.2	Erste It	teration – eine rollende Kugel	440
	16.2.1	Die visuellen Elemente	441
	16.2.2	Klassendefinitionen und AS-Dateien	442
	16.2.3	Eine Klasse definieren	444
	16.2.4	Die Klasse testen	448
	16.2.5	Eine Klasse für die Schaltfläche	450
	16.2.6	Die Klasse Start	450
	16.2.7	Die Klasse an die Symbol-Instanz koppeln	451
	16.2.8	Beziehungen zwischen Objekten	452
16.3	Zweite	Iteration	452
	16.3.1	Die unsichtbare Marke	453
	16.3.2	Die Klasse Wegweiser	453
	16.3.3	Die Rinnen	455
	16.3.4	Die Klasse Rinne	457
	16.3.5	Die Rinnen in die Kugelbahn einbinden	459
16.4	Dritte l	Iteration – Weichen	461
	16.4.1	Die visuellen Komponenten	461
	16.4.2	Ein Wegweiser mit zwei Richtungen	462
	16.4.3	Die Klasse Weiche	464
	16.4.4	Weichen in die Kugelbahn einbinden	465
16.5	Vierte	Iteration – Ziele und Anzeige	467
-		*	

16.6	Vererb	ung	471
16.7	Aufgab	en	474
16.8	Lösung	yen	475
17	Inverse	Kinematik mit Bones	481
17.1	Ein wa	ndernder Seestern	481
	17.1.1	Die Form	482
	17.1.2	Das Skelett	483
	17.1.3	Die Animation	484
17.2	Es were	de Licht	488
	17.2.1	Struktur und einfache visuelle Elemente	488
	17.2.2	Steckdose mit Marke	489
	17.2.3	Stecker	489
	17.2.4	Das Kabel als kinematische Kette	490
	17.2.5	Aufbau des Zimmers	493
17.3	Wie fu	nktioniert eine Dampfmaschine?	496
	17.3.1	Die Struktur	496
	17.3.2	Das Schwungrad	497
	17.3.3	Vom Kolben zum Schwungrad	498
	17.3.4	Das Ventil	501
	17.3.5	Die Dampfmaschine zusammenbauen	502
	17.3.6	Die Steuerung der Kolbenbewegung	503
17.4	Aufgab	en	504
17.5	Lösung	<u>.</u>	505
18	Flucht	aus dem Bunker	509
18.1	Die Sto	ory	509
18.2	Struktu	ır des Spiels	512
	18.2.1	Die Bibliothek	513
	18.2.2	Vorgehensweise	514
18.3	Der Ko	ntrollraum	514
18.4	Der Ra	hmen	516
	18.4.1	Rahmenbild	517
	18.4.2	Verschiebbare Chipkarte	517
18.5	Minim	alversion des Gesamtsystems	519
	18.5.1	Eine Bilderserie mit einem fertigen Bild und drei Dummies	519
	18.5.2	Die Szene aufbauen und die Einzelteile justieren	520
18.6	Blick at	uf den Schrank	522
	18.6.1	Eine Schaltfläche für die Chipkarte	522
	18.6.2	Der Movieclip für die Detailansicht auf die Schrankoberseite	523
18.7	Blick at	uf die Tür des Kontrollraums	524
	18.7.1	Eine Tür, die sich öffnet und schließt	525
	18.7.2	Den Movieclip zusammensetzen und integrieren	526

18.8	Gang und Außentür	528
	18.8.1 Die Schiebetür	528
	18.8.2 Die Kontrollbox	529
	18.8.3 Die Teile zusammensetzen.	531
	18.8.4 Abschluss des Projekts	532
18.9	Hase-und-Igel-Modellierung	532
18.10	Aufgabe	533
18.11	Lösung	534
Α	Die Projektbeispiele	539
	Stichwortverzeichnis	545

Einleitung

Visualisierungen gehören seit den ersten Höhlenmalereien in der Altsteinzeit zur menschlichen Kultur. Auch heute noch, obwohl wir inzwischen über eine hoch entwickelte Sprache verfügen, lässt sich vieles in Bildern besser ausdrücken als mit Worten. Reichhaltiger noch ist die Kombination von Text, bewegten Bildern, Ton und Interaktivität. Mit Flash CS5 können Sie derartige multimediale Applikationen in relativ kurzer Zeit entwickeln. Flash-Dokumente sind heute ein allgegenwärtiger Teil des World Wide Web. Sie benötigen (in Form von Shockwave-Dateien) wenig Speicherplatz und können deshalb schnell über das Internet heruntergeladen werden. Praktisch alle Webbrowser verfügen über integrierte Flash-Player und ermöglichen die Interaktion mit einem Flash-Film. Man verwendet Flash für Online-Spiele zur Unterhaltung, veranschaulichende Animationen auf den Webseiten von Museen, Simulationen technischer Geräte, psychologische Experimente, Trainingsprogramme und vieles mehr.

Flash ist aber nicht nur ein Format für Multimedia-Dokumente, sondern auch eine Entwicklungsumgebung. Die aktuelle Version heißt Flash CS5 und ist ein Produkt der Firma Adobe. Die Flash-Entwicklungsumgebung unterstützt zwei grundsätzliche Methoden zur Gestaltung digitaler Artefakte:

- Analoge Vorgehensweise. Statische Bilder werden mit der Maus (oder einem Tablett oder Touchscreen) und den üblichen Zeichenwerkzeugen auf einer Arbeitsfläche entwickelt. In einer Zeitleiste, die einen Film mit vielen Einzelbildern repräsentiert, definieren Sie Bewegungsabläufe.
- *Abstrakt-digitale Vorgehensweise*. Aktivitäten, aber auch variable geometrische Formen definieren Sie durch Programmtext mit der Programmiersprache ActionScript.

Mein Ziel ist, einem möglichst breiten Publikum, also auch Leuten ohne Erfahrungen mit Programmierung und Computergrafik, einen Einstieg in Flash und ActionScript zu ermöglichen. Es werden keine Vorkenntnisse vorausgesetzt.

Vorgehensweise bei Projekten

Im Wesentlichen ist dieses Buch eine Aneinanderreihung von Flash-Projekten. Wir fangen mit einfachen Vorhaben an, aber die wirklich interessanten Sachen sind schon ziemlich komplex. Jonathan Gay, der Erfinder von Flash, beschreibt die von ihm bevorzugte Entwicklungsmethode am Beispiel eines LEGO-Projekts. (http://www.adobe.com/macromedia/ events/john_gay/) Er berichtet, dass er als Kind gerne mit LEGO-Bausteinen gespielt hat und dabei so vorgegangen ist:

- 1. Wähle ein Problem, das dich interessiert und fasziniert. Baue ein LEGO-Schiff.
- 2. *Eine Vision entwickeln*. Welche Art von Schiff soll es sein? Wie groß soll es sein? Was wird es transportieren?
- 3. Bauen. Baue ein einfaches Grundmodell des Schiffs.
- 4. Details einfügen. Entwirf Details des Schiffs wie Rampen, Türen etc.
- 5. Testen. Spiele mit dem Schiff und probiere es auf dem Wasser aus.
- 6. Verfeinern. Entferne Teile aus dem Schiff und mache sie besser.
- 7. *Lernen*. Überlege dir, was du beim Bauen des Schiffs gelernt hast, und baue ein neues besseres Schiff.

In der Informatik ist diese Vorgehensweise zu einer Entwicklungsmethode verfeinert worden, die man *agiles Programmieren* nennt. Es gibt verschiedene Varianten, am bekanntesten ist vielleicht das *Extreme Programming*, das von Kent Beck Ende der Neunzigerjahre zum ersten Mal beschrieben wurde. Einige der Hauptideen übernehme ich gelegentlich für die Strukturierung und Darstellung der Projekte in diesem Buch:

- Projektmetapher. Die Idee des gesamten Projekts wird durch eine zusammenhängende Metapher dargestellt. Manchmal reicht ein einziger Satz. Beispiel: »Die Applikation modelliert eine mechanische Digitaluhr mit sich drehenden Ziffernscheiben.« In anderen Fällen ist es eine kleine Geschichte, die an alltägliche Begebenheiten anknüpft, die jeder kennt oder die man leicht nachvollziehen kann.
- 2. *Iterationen*. Größere Projekte werden in mehreren Iterationen entwickelt. Am Ende jeder Iteration steht ein lauffähiges Programm, das ausprobiert und getestet werden kann.
- 3. *Storys.* Das, was die Flash-Applikation am Ende einer Iteration leisten soll, wird zu Beginn in Form kurzer Storys beschrieben. Sie sind nicht sehr detailliert und keinesfalls eine vollständige funktionale Spezifikation. Jede Story enthält das Versprechen, Einzelheiten später zu klären. Hinweis: Bei einer professionellen Softwareentwicklung stammen die Storys von den Kunden, für die die Software entwickelt wird.
- 4. *Refactoring*. Manchmal wird in einer Iteration das bisherige Programm geändert, weil man eine strukturelle Schwäche erkannt hat. Im einfachsten Fall ändert man Namen von Variablen und Funktionen, weil einem inzwischen schönere Namen eingefallen sind. Oder man ändert ein Stück Programmtext, weil man mittlerweile eine elegantere Lösung weiß. An den Beispielen sehen Sie: Refactoring hat etwas mit Dazulernen zu tun. Auch in diesem Buch gibt es einige Beispiele für Refactoring. Das passiert hier allerdings viel seltener als bei richtigen Projekten in der Wirklichkeit, und es geschieht nur dann, wenn es die Lesbarkeit des Textes verbessert.

Hinweise zur Typografie

Achten Sie beim Lesen auf den Schrifttyp. Formale Texte wie ActionScript-Programmtext, Namen von Objekten, mathematische Ausdrücke oder Funktionsnamen werden in einem Zeichenformat mit fester Breite gesetzt. Beispiele:

```
stop();
var x:int = 0;
```

Bei Erklärungen von Funktionen erscheinen in formalen Texten auch Wörter, die kursiv gesetzt sind. Hierbei handelt es sich um Platzhalter, die durch konkrete Zahlen oder Zeichenfolgen ersetzt werden müssen. Beispiel:

gotoAndPlay(bildnummer)

Hier bezeichnet *bildnummer* eine ganze Zahl, nämlich die Nummer eines Bildes in einer Zeitleiste.

Kommandos der Entwicklungsumgebung und die Namen von Werkzeugen werden in Kapitälchen gesetzt. Dabei werden immer exakt die Bezeichnungen der deutschsprachigen Entwicklungsumgebung von Flash CS5 verwendet. Beispiel:

Wählen Sie das AUSWAHLWERKZEUG.

Bei einem Kommando, das über eine Folge von Menüs erreicht wird, werden die Elemente des Pfades in Kapitälchen hintereinandergeschrieben und durch senkrechte Striche getrennt. Beispiel:

Wählen Sie das Kommando MODIFIZIEREN TRANSFORMIEREN VERTIKAL SPIEGELN.

Namen von Symbolen in der Symbolbibliothek oder Instanznamen von Elementen werden kursiv geschrieben. Beispiel: Erzeugen Sie eine Instanz des Symbols *RoterKnopf*.

Projektbeispiele im Internet

Das Buch enthält zahlreiche Beispiele zum Ausprobieren, Nachmachen und Weiterentwickeln. Alle Flash-Dateien und einige Bilddateien und Audio-Dateien mit Geräuschen finden Sie auf der Website des mitp-Verlages unter http://www.mitp.de/9083. Eine Übersicht über die Beispielprojekte finden Sie im Anhang A.

Für Axel und Sigrid

Die ersten Schritte mit Flash

Fast alles, was sich im World Wide Web bewegt und Töne von sich gibt, ist mit Flash entwickelt worden. Browser wie Internet Explorer, Firefox oder Opera besitzen Abspielprogramme für Flash-Filme (Flash-Player). Für viele Menschen ist Flash sogar die Grundlage ihres beruflichen Alltags. Auf der ganzen Welt gibt es inzwischen zwei Millionen Software-Entwickler und Grafiker, die mit Adobe Flash arbeiten.

Flash-Dokumente nennt man zwar oft Filme, aber meistens sind es nicht nur bewegte Bilder, sondern interaktive multimediale Applikationen. Typische Flash-Dokumente im WWW sind kleine animierte visuelle Elemente oder außergewöhnliche Navigationshilfen, die eine Website interessant machen sollen. Sie finden aber auch viele Spiele, Lernprogramme, visuelle Simulationen oder grafische Editoren auf der Basis von Flash. Dieses erste Kapitel führt Sie in den Umgang mit der Flash-Entwicklungsumgebung ein. Sie lernen einige Grundlagen und bekommen schon einmal einen Vorgeschmack, was alles mit Flash möglich ist.

1.1 Die Software

1.1.1 Entwicklungsumgebung und Player

Man unterscheidet zwischen dem Flash-Player und der Flash-Entwicklungsumgebung. Ein Flash-Player ist kostenlos und meistens in die Webbrowser bereits integriert. Er dient allein dem *Betrachten* von Flash-Applikationen und nicht deren Erstellung. Die aktuelle Version des Players ist Version 10. Laut Herstellerfirma Adobe sind weltweit auf 99% aller Desktop-Computer, die mit dem Internet verbunden sind, Flash-Player installiert (http://www.adobe.com/products/player_census/flashplayer/).

Die Entwicklungsumgebung von Adobe Flash dagegen ist kostenpflichtig und nicht billig. Entwicklungsumgebungen existieren in mehreren Versionen. Grundlage dieses Buches ist Flash CS5 (Creative Suite 5), die im April 2010 auf den Markt kam. Eine reguläre Flash-Lizenz kostet etwa $800 \in$. Angehörige einer Bildungseinrichtung zahlen erheblich weniger. Adobe macht damit Reklame, Rabatte von bis zu 80% für Angehörige von Bildungseinrichtungen zu bieten. Wer ohnehin viel mit dem Computer gestaltet oder dies vorhat, sollte sich die gesamte Creative Suite mit zahlreichen Produkten zur Gestaltung von Medien aller Art zulegen. Bekannte Werkzeuge aus dieser Kollektion sind (neben Flash) Photoshop, Dreamweaver, Illustrator und Acrobat. Eine Lizenz für den Bildungsbereich darf nur für nichtkommerzielle Projekte verwendet werden. Man kann unter Umständen preiswert Lizenzen älterer Versionen von Flash erstehen. Ich empfehle aber, keine ältere Version als Flash MX aus dem Jahre 2004 zu verwenden.

1.1.2 Geschichte

Die Idee zu Flash hatte der US-Amerikaner Jonathan Gay. Im Jahre 1996 brachte er den Future Splash Animator heraus, ein Programm zur Entwicklung von Animationen auf der Basis einer Zeitleiste. Noch im gleichen Jahr wurde die Firma Future Wave von Macromedia (heute Adobe) übernommen und Gays Programm wurde unter dem Label Flash verkauft. Man kann davon ausgehen, dass der Name Flash durch Zusammenziehen der beiden ersten Worte von Future Splash Animator entstanden ist. Jonathan Gay leitete bei Macromedia die Weiterentwicklung von Flash bis zur Version 4.

2007 erschien Flash CS3. Inzwischen ist die Firma Macromedia von Adobe übernommen worden. Flash wurde zu einem Teil der Creative Suite von Adobe. Für die Praxis bedeutet das vor allem, dass Produkte, die mit Adobe Photoshop oder Adobe Illustrator entwickelt worden sind, leicht in Flash-Applikationen integriert werden können und dass die Benutzungsoberflächen dieser Werkzeuge ähnlich sind.

Die aktuelle Version Flash CS5, auf der dieses Buch basiert, besitzt eine kaum überschaubare Fülle von Features, darunter

- Effekte wie z.B. Glühen, die existierenden visuellen Elementen einfach aufgesetzt werden
- Inverse Kinematik, das ist eine moderne Technik, Bewegungen von Figuren mit Gliedmaßen zu definieren
- 3D-Perspektiven zweidimensionaler Elemente
- Komponenten zur schnellen Entwicklung grafischer Benutzungsoberflächen

Einige dieser modernen Möglichkeiten werden Sie in diesem Buch kennen lernen. Doch der Schwerpunkt liegt auf grundlegenden Visualisierungstechniken. Deshalb können Sie die meisten Projekte (eventuell mit leichten Abstrichen oder in etwas veränderter Form) auch mit älteren Flash-Versionen (ab Flash MX aus dem Jahre 2004) realisieren.

1.1.3 ActionScript

Die Programmiersprache von Flash, mit der Aktivität definiert werden kann, heißt Action-Script. Ihre Syntax ähnelt der einer modernen universellen Programmiersprache wie Java. Flash CS5 unterstützt ActionScript 2.0 (AS2) und ActionScript 3.0 (AS3). Die beiden Versionen unterscheiden sich in einigen wenigen Punkten so grundsätzlich, dass Sie zu Beginn eines Projekts sich für eine von ihnen entscheiden müssen.

1.2 Die Benutzungsoberfläche von Flash

Starten Sie die Entwicklungsumgebung *Adobe Flash*. Im Begrüßungsfenster klicken Sie in der mittleren Spalte NEU ERSTELLEN auf die Zeile ACTIONSCRIPT 3.0.

1.2.1 Bedienfelder und Arbeitsbereiche

Flash ist eine professionelle Entwicklungsumgebung, die eine riesige Fülle von Funktionen bereithält und unterschiedliche Arbeitsstile unterstützt. Sie können die Oberfläche von Flash – also das, was Sie auf dem Bildschirm sehen –, mit einer Küche, einer Werkstatt oder

einem Labor vergleichen. Flash ist wie ein Raum, in dem mit Hilfe von Werkzeugen produktiv gearbeitet wird.

Nehmen wir die Werkstatt als Beispiel. In jeder Werkstatt gibt es eine Arbeitsfläche, Regale, Schränke und Schubladen für Werkzeuge, Schrauben, Holzleisten und andere Materialien. Manche Dinge liegen immer griffbereit am Rand Ihrer Arbeitsfläche, andere sind in Schränken oder Schubladen verstaut und müssen bei Bedarf erst hervorgeholt werden. Manchmal legen Sie sich für spezielle Aufgaben einzelne Werkzeuge so zurecht, dass Sie immer direkt auf sie zugreifen können. Später werden diese Hilfsmittel wieder in ihren Schränken verstaut. Derartige Techniken der Organisation der Arbeitsumgebung werden auch bei Flash (und anderen Entwicklungsumgebungen) verwendet.

Die Einstellung der Benutzungsoberfläche ist eine sehr persönliche Sache. Jeder hat da eigene Vorlieben und Gewohnheiten. Viele Ratschläge kann ich nicht geben. Aber man muss natürlich wissen, wie man seine Arbeitsumgebung verändern kann. Dazu folgen jetzt einige Hinweise.

1.2.2 Das Fenster-Layout

Die gesamte Benutzungsoberfläche von Flash befindet sich im Hauptfenster, das in kleinere Fenster unterteilt ist, die meist wie Fliesen nebeneinanderliegen. Flash CS5 bietet einige voreingestellte Oberflächenlayouts an, so genannte Arbeitsbereiche, die auf bestimmte Entwicklungstätigkeiten zugeschnitten sind: ANIMATOR, KLASSISCH usw. Der aktuelle Arbeitsbereich wird standardmäßig am oberen Rand des Hauptfensters angezeigt.

Wählen Sie den Arbeitsbereich KLASSISCH und versuchen Sie, das Layout der Oberfläche in etwa so einzurichten wie in Abbildung 1.1. Hinweise zum Verändern des Layouts folgen gleich. Gehen wir zunächst den prinzipiellen Aufbau der Benutzungsoberfläche durch.

In der Mitte befindet sich die Arbeitsfläche. Hier zeichnen Sie mit den Zeichenwerkzeugen (links) Bilder für Animationen. Das weiße Rechteck in der Mitte nennt man die Bühne. Es ist der Bereich, der später *zumindest* sichtbar ist. Je nach Form des Browserfensters oder Playerfensters kann es auch sein, dass man Bereiche außerhalb der Bühne noch sieht.

Rechts sieht man übereinander mehrere Registergruppen. Statt Registergruppe kann man auch Register sagen. Jede Registergruppe enthält mehrere Registerkarten (Tabs), von denen immer nur eine zu sehen ist. Die anderen sind verdeckt. Man sieht aber oben ihre Reiter jeweils mit dem Namen der Registerkarte. Die obere rechte Registergruppe in der Abbildung enthält z.B. die Bedienfelder Farbe, Farbfelder und Eigenschaften.

Ein wichtiges Element ist die Zeitleiste. Sie repräsentiert die Bilder (Frames) eines Films. Ein rosafarbenes Rechteck mit einer senkrechten Line nach unten (der so genannte Abspielkopf) markiert das aktuelle Bild, das auf der Bühne darunter dargestellt wird.

Tipp

Am effizientesten arbeiten Sie mit einem zweiten Display. Auf dem ersten Display (vielleicht das an Ihrem Laptop) haben Sie die Arbeitsfläche, auf der Sie durch direkte Manipulation grafische Elemente bearbeiten, und darüber die Zeitleiste. Wenn Sie viel programmieren, ist auch der ActionScript-Programmeditor auf dem primären Display hilfreich. Auf dem zweiten Display, z.B. ein LCD-Monitor neben dem Laptop, befinden sich alle anderen Bedienfelder, die Sie oft brauchen.

Kapitel 1 Die ersten Schritte mit Flash

Abb. 1.1: Die Benutzungsoberfläche von Flash im leicht veränderten Arbeitsbereich KLASSISCH

Die Hauptsymbolleiste

Mit dem Kommando FENSTER|SYMBOLLEISTE|HAUPT bringen Sie die Hauptsymbolleiste auf den Bildschirm. Die Hauptsymbolleiste kann nicht zur Registerkarte gemacht werden und bleibt immer ein separates Fenster. Sie enthält Schaltflächen mit Symbolen für wichtige und häufig verwendete Funktionen wie Abspeichern und Rückgängig machen.

Abb. 1.2: Die Hauptsymbolleiste

1.2.3 Umgang mit Registerkarten

Jedes Bedienfeld kann als separates Fenster oder als Registerkarte dargestellt werden. In der Regel sind Bedienfelder in Registergruppen organisiert, in denen jeweils mehrere Registerkarten zusammengefasst sind.

Jede Registerkarte besitzt oben einen Reiter, auf dem der Name des Bedienfelds steht (z.B. Info, Eigenschaften etc.). Klicken Sie einmal auf den Reiter, kommt die Registerkarte in den Vordergrund. Wenn Sie auf den Reiter der obersten Registerkarte einer Registergruppe doppelklicken, wird die Registergruppe so weit verkleinert, dass man nur noch die Reiter sieht. Klicken Sie *einmal* (nicht doppelt) auf einen Reiter eines zugeklappten Registers, geht es wieder auf und Sie sehen den Inhalt der gewählten Karte.

Farbe Farbfelder Eigenschaften	Farbe Farbfelder Eigenschaften
Ausrichten Info Transformieren	Durchgehende 🔻
Bibliothek	\$ 1
	O H: 150 °
	O H: 150 ° O S: 100 % O B: 40 %

Abb. 1.3: Zugeklapptes und geöffnetes Register. Vorne ist die Registerkarte FARBE.

Registerkarten können Sie mit Drag&Drop verschieben. Klicken Sie auf den Reiter, halten Sie die Maustaste gedrückt und bewegen Sie die Maus. Am Ziel lassen Sie die Maustaste wieder los. Sie können die Registerkarte in eine andere Registergruppe verschieben. Sie erkennen beim Verschieben durch einen optischen Effekt, wenn die Registerkarte »einrastet«. Wenn Sie das Bedienfeld an eine andere Stelle schieben, die nicht für ein Register vorgesehen ist, wird es zu einem separaten Fenster.

Das Menü Fenster

Im Menü FENSTER (zweites Feld von rechts in der Hauptmenüleiste) können Sie durch Anklicken bestimmen, welche Bedienfelder zu sehen sein sollen. Um ein Bedienfeld zu schließen, klicken Sie auf das kleine Rechteck mit waagerechten Linien rechts oben in der Ecke (eingekreist in Abbildung I.4). Es erscheint ein Menü, das bei jedem Bedienfeld anders aussieht. Aber die untere Befehlsgruppe ist immer gleich. Wählen Sie den Befehl SCHLIES-SEN. Dann wird das Bedienfeld aus dem Layout der Benutzungsoberfläche entfernt. Über das Menü FENSTER (Hauptmenü) können Sie es wieder auf die Arbeitsfläche bringen.

		Farbfeld hinzufügen
ehende 🗸	1	Hilfe
	2	Schließen N
O H: 150 °		Registergruppe schließen

Abb. 1.4: Ein Bedienfeld schließen

Bedienfelder auf Symbole reduzieren

Fenster und zusammenhängende Registergruppen haben ganz oben rechts eine kleine Schaltfläche in Form zweier Dreiecke mit der Spitze nach rechts (in Abbildung 1.5 links eingekreist). Wenn Sie darauf klicken, werden alle Registerkarten der betroffenen Gruppen verkleinert und durch Symbole dargestellt. Diese Aktion nennt man auch *Ikonisieren*. Das Bedienfeld FARBE zum Beispiel wird durch eine Palette repräsentiert. Die Gruppe von Symbolen besitzt nun oben eine Schaltfläche mit zwei Dreiecken, die nach links weisen. Wenn Sie darauf klicken, wird die alte Registerstruktur wieder entfaltet.

Kapitel 1 Die ersten Schritte mit Flash

Abb. 1.5: Registergruppen ikonisieren und vergrößern

Segmente vergrößern und verkleinern

Wenn Sie den Mauszeiger auf die Grenzlinie zwischen zwei rechteckigen Segmenten der Benutzungsoberfläche bewegen, ändert er seine Form und wird zu einem Doppelpfeil. Jetzt können Sie mit Drag&Drop die Grenzlinie verschieben und so die Größe der Segmente verändern.

Abb. 1.6: Segmente des Layouts vergrößern und verkleinern

1.2.4 Die Einstellung der Benutzungsoberfläche speichern

Wenn Sie eine Anordnung von Bedienfeldern gefunden haben, die Ihnen gefällt, sollten Sie diese Einstellung abspeichern. Klicken Sie dazu auf das kleine Dreieck neben dem Namen des Arbeitsbereichs und wählen Sie im Menü den Befehl NEUER ARBEITSBEREICH.

Abb. 1.7: Eine GUI-Einstellung als neuen Arbeitsbereich speichern

Es öffnet sich ein modales Fenster mit einem Textfeld, in das Sie den Namen Ihres neuen Arbeitsbereiches eingeben können. Modale Dialogelemente müssen erst (durch OK oder ABBRECHEN) geschlossen werden, bevor Sie irgendetwas anderes machen können.

Name:	Michael klassisch	
	OK	Abbrachen

Abb. 1.8: Modales Fenster

Im Bedienfeld ARBEITSBEREICHE VERWALTEN (unterste Zeile des gleichen Menüs) können Sie u.a. Arbeitsbereiche umbenennen und löschen.

1.2.5 Das Bedienfeld »Eigenschaften«

Mit dem PFEILWERKZEUG (oberstes Symbol in der Werkzeugleiste links) können Sie grafische Elemente auf Ihrer Arbeitsfläche auswählen. Dann können Sie die Eigenschaften des ausgewählten Objekts verändern. Für diesen Zweck gibt es das Bedienfeld EIGENSCHAFTEN. Um es zu öffnen, klicken Sie auf den Reiter der Registerkarte EIGENSCHAFTEN.

Farbfelder	Eigenschaften	Farbe		*=
	Dokument			
FL	Unbenannt-1			
	ENTLICHEN			-
	CHAFTEN			
Bp	5:(24,00			
Größ	e: 550 x 400 px		Bearbeiten	
Bühn	e: 📃			

Abb. 1.9: Das Bedienfeld EIGENSCHAFTEN

Wenn Sie auf der Arbeitsfläche nichts ausgewählt haben, bezieht sich das Bedienfeld EIGEN-SCHAFTEN auf das gesamte Flash-Dokument. Hier können Sie z.B. die Größe des Films und die Bildrate einstellen. Stellen Sie sicher, dass 24 Bilder pro Sekunde (BpS) eingestellt sind. Dann sind Ihre Animationen flüssig wie ein Kinofilm.

1.3 Am Anfang war die Linie

In den ersten Projekten geht es um das LINIENWERKZEUG. Es ist wahrscheinlich das wichtigste Zeichenwerkzeug. In diesem Abschnitt lernen Sie,

- wie Sie Flash-Dokumente speichern
- wie Sie gerade Linien zeichnen

- Endpunkte von geraden Linien verändern
- die Eigenschaften von Linien (Farbe, Dicke, Stil, Abschluss ...) verändern
- Linien kopieren, duplizieren und spiegeln
- Verschnitt von Linien verhindern

1.3.1 Die Müller-Lyer-Illusion

Welche der beiden waagerechten Linien ist länger? Die obere Linie erscheint deutlich länger als die untere – und dennoch: Beide Linien haben exakt die gleiche Ausdehnung. Die Winkel an den Enden irritieren unsere Wahrnehmung. Dies ist vermutlich die bekannteste optische Täuschung. Sie wurde Ende des 19. Jahrhunderts von dem deutschen Psychiater und Soziologen Franz Müller-Lyer entdeckt und ist nach ihm benannt.

Abb. 1.10: Die Müller-Lyer-Illusion. Winkel können die Wahrnehmung verändern.

Die Figur besteht aus geraden Liniensegmenten. Im ersten Projekt werden wir sie zunächst als statisches Bild konstruieren und später in Kapitel 2 dann sogar noch animieren.

Ein neues Dokument erstellen und speichern

Erstellen Sie ein neues Flash-Dokument. Klicken Sie im Hauptmenü auf Datei|Neu. Es öffnet sich ein Fenster mit dem Titel Neues Dokument. Wählen Sie auf der Registerkarte All-GEMEIN als Typ ActionScript 3.0 und klicken Sie unten auf den OK-Knopf.

Allgemein	Vorlagen	
Typ:		
FI AC	ionScript 3.0	
Ac	tionScript 2.0	
Ad	obe AIR 2	
iPh	one OS	
1001	1.1.1.4	

Abb. 1.11: Das Fenster NEUES DOKUMENT

Speichern Sie das neue Dokument zunächst unter einem sinnvollen Datennamen ab – auch wenn es jetzt noch völlig leer ist. Klicken Sie dazu im Hauptmenü auf den Befehl DATEI|SPEICHERN UNTER. Es öffnet sich das übliche Fenster zum Abspeichern. Schreiben Sie in das zweitunterste Eingabefeld den Dateinamen, z.B. *illusion* und lassen Sie (im untersten

Feld) als Dateityp FLASH CS5-DOKUMENT stehen. Ihr Dokument wird nun unter dem Dateinamen illusion.fla abgespeichert.

Dateiname:	illusion	•	Speichem
Dateityp:	Flash CS5-Dokument (*.fla)	•	Abbrechen

Abb. 1.12: Eine Flash-Quelldatei speichern

Wie zeichnet man eine exakt waagerechte Linie?

Wählen Sie in der Werkzeugleiste das LINIENWERKZEUG. Das Symbol sieht aus wie eine kurze diagonale Linie. Nachdem Sie es angeklickt haben, ändert der Mauszeiger seine Form und wird zu einem Kreuz. Anstatt das Symbol anzuklicken, können Sie auch auf der Tastatur die Taste N drücken. Das nennt man ein *Tastaturkürzel* oder *Shortcut* für das LINIENWERK-ZEUG.

Tipp

Wenn Sie den Mauszeiger für ein paar Augenblicke auf einem Symbol der Werkzeugleiste ruhen lassen, ohne zu klicken, erscheint eine Infobox mit einer Erklärung des Symbols und (falls vorhanden) dem zugehörigen Tastaturkürzel.

Klicken Sie irgendwo auf die Arbeitsfläche, halten Sie die linke Maustaste gedrückt, bewegen Sie die Maus und versuchen Sie, eine waagerechte Linie zu zeichnen. Gar nicht so einfach. Eigentlich sogar praktisch unmöglich, wenn Sie nicht bestimmte Vorkehrungen treffen. Unten auf der Werkzeugleiste sehen Sie einen kleinen Magneten. Wenn Sie auf diese Schaltfläche klicken, können Sie den Modus AN OBJEKTEN AUSRICHTEN ein- und ausschalten. Ist der Knopf heruntergedrückt wie im unteren Bild von Abbildung 1.13, wird der Mauszeiger von bestimmten Punkten wie von einem Magneten angezogen. Wenn die Linie, die Sie gerade zeichnen wollen, nur ungefähr waagerecht ist, springt der Mauszeiger in eine Position, die die Linie exakt horizontal werden lässt. Gleichzeitig erscheint am Kreuz des Mauszeigers ein kleiner Kreis (siehe Abbildung 1.13 unten). So verhält sich das System im Modus AN OBJEKTEN AUSRICHTEN.

Die Eigenschaften einer Linie verändern

Sorgen Sie dafür, dass die Registerkarte EIGENSCHAFTEN sichtbar ist. Klicken Sie mit dem AUSWAHLWERKZEUG (Tastaturkürzel V) auf Ihre waagerechte Linie. Im Bedienfeld werden

die aktuellen Eigenschaften der Linie angezeigt, unter anderem die Farbe, der Stil und die Strichdicke. Verschieben Sie den Regler für die Strichdicke und beobachten Sie die Veränderungen. In dem rechts daneben liegenden Textfeld wird die Strichdicke in Pixeln (px) angegeben. Stellen Sie eine Strichdicke von 6 px ein.

	_
25 30 35 40 45 50	Eigenschaften Farbfelder Farbe *=
	♥ POSITION UND GRÖSSE
5 0.0s 🖣 🕨 🕨	X: <u>224,00</u> Y: <u>112,00</u>
唐	∞ B: <u>168,00</u> H: <u>1,00</u>
	V FÜLLUNG UND STRICH
	୬ 🔳 🔅 🖂
	Strich: 6,00
40000000000000000000000000000000000000	Stil: Durchgehend 🔍 🌶
	Skalieren: Normal 🔍 🗆 Hinweise
	Abschluss: ⊖ ▼ Verbinden: ⊗ I ▼ Winkel: <u>3,00</u>

Abb. 1.14: Eigenschaften einer Linie

Linien nachbearbeiten

Die eingestellten Linieneigenschaften bleiben erhalten, wenn Sie jetzt mit dem LINIENWERK-ZEUG (Tastaturkürzel N) weiterarbeiten. Zeichnen Sie weitere Linien. Wenn der Modus AN OBJEKTEN AUSRICHTEN (Magnet) eingeschaltet ist, fällt es leicht, ein neues Liniensegment exakt an den Endpunkt eines anderen Liniensegments zu setzen. Der Mauszeiger rastet an Linienendpunkten ein, wobei wieder ein kleiner Kreis erscheint und die Verbindung der beiden Elemente signalisiert.

Wahrscheinlich ist die erste Zeichnung nicht exakt. Sie können aber jedes Liniensegment nachbearbeiten. Wählen Sie das AUSWAHLWERKZEUG (Tastaturkürzel V) und nähern Sie sich mit dem Mauszeiger dem Endpunkt einer Linie. Sie beobachten, dass irgendwann unter dem Pfeil ein rechter Winkel erscheint (Abbildung 1.15). Drücken Sie jetzt die linke Maustaste und verschieben Sie den Endpunkt der Linie.

Abb. 1.15: Den Endpunkt einer Linie verschieben

Auf diese Weise können Sie Ihre Figur nachbearbeiten und verbessern. Dennoch: Wahrscheinlich haben Sie schon gemerkt, dass es auf diese Weise kaum möglich ist, eine Figur zu zeichnen, die wirklich exakt symmetrisch ist. Wie kann man sicherstellen, dass die Linien der beiden Winkel alle exakt gleich lang sind?

Zunächst einmal löschen Sie die kürzeren Linien wieder. Das geht so: Klicken Sie mit dem AUSWAHLWERKZEUG (V) auf ein Liniensegment und markieren Sie es. Das ausgewählte Liniensegment ist mit kleinen Pünktchen übersät. Drücken Sie dann die Taste Entf. Schon ist es gelöscht.

Abb. 1.16: Liniensegmente löschen

Duplizieren, spiegeln und verschieben

Eine der diagonalen Linien lassen Sie stehen. Machen Sie von dieser Linie eine Kopie. Das geht so: Klicken Sie die Linie mit dem AUSWAHLWERKZEUG (V) an. Drücken Sie dann die Tastenkombination <u>Strg</u>+D. Der Buchstabe D steht für Duplizieren. Von der ausgewählten Linie wird eine Kopie gemacht und schräg rechts unter dem Original platziert. Sie können die Kopie nun verschieben. Wenn Sie mit dem Mauszeiger in die Nähe der ausgewählten Linie kommen, ist neben dem Pfeil ein kleines Kreuz aus Doppelpfeilen zu sehen. Das ist für Sie ein sicheres Zeichen, dass nun die Linie verschoben und nicht verformt wird. Klicken Sie die zu verschiebende Linie oben rechts an, also an dem Ende, das an die waagerechte Linie ein und es entsteht eine lückenlose Verbindung. Dabei ist wieder der kleine Kreis zu sehen. Voraussetzung ist natürlich, dass der Magnet eingeschaltet ist, der den Modus AN OBJEKTEN AUSRICHTEN anzeigt.

Abb. 1.17: Linien duplizieren und versetzen

Von dem verschobenen Liniensegment machen Sie erneut mit <u>Strg</u>+D eine Kopie. Spiegeln Sie die Kopie mit dem Befehl MODIFIZIEREN/TRANSFORMIEREN/HORIZONTAL SPIEGELN. Machen Sie von der gespiegelten Linie noch eine Kopie und vervollständigen Sie die Figur.

Abb. 1.18: Linien spiegeln

Tipp

Eine Linie muss mit dem AUSWAHLWERKZEUG (V) zuerst einmal angeklickt und auf diese Weise markiert werden, bevor sie verschoben werden kann.

Mehrere Linien auswählen und duplizieren

Als Nächstes machen Sie von Ihrer gesamten Zeichnung eine Kopie. Dazu müssen Sie zuerst die komplette Figur mit dem AUSWAHLWERKZEUG (V) markieren. Klicken Sie mit der Maus links oberhalb der Figur, lassen Sie die Maustaste gedrückt und ziehen Sie sie an eine Position rechts unterhalb. Es entsteht um die Figur herum ein Kasten. Wenn Sie die Maustaste dann loslassen, sind alle Linien durch Pünktchen markiert.

Abb. 1.19: Mehrere Linien markieren

Jetzt drücken Sie die Tastenkombination <u>Strg</u>+D und duplizieren auf diese Weise die Figur. Alle Linien des Duplikats sind nun durch Pünktchen markiert. Achten Sie darauf, dass diese Markierung erhalten bleibt. Schieben Sie das Duplikat sofort so nach unten, dass sich keine Linien überschneiden. Wenn Sie versehentlich vor dem Verschieben auf eine andere Stelle klicken, geht die Markierung verloren. Die neuen Linien werden mit den alten Linien verschnitten und das Duplikat kann nicht mehr vom Original getrennt werden. Auf dieses Problem komme ich später noch zurück. Durch Verschieben von Linien konstruieren Sie die zweite Figur der Müller-Lyer-Illusion.

Abb. 1.20: Linien verschieben

1.3.2 Eine perspektivische Illusion

Welches der beiden Rechtecke in Abbildung 1.21 ist größer? Sie ahnen es schon. Sie sind beide exakt gleich groß. Aber der Hintergrund aus strahlenförmig auseinandergehenden Linien lässt das linke Rechteck größer erscheinen. Unbewusst interpretieren wir die Strahlen als perspektivische Darstellung paralleler Linien. Das linke Rechteck liegt dann in unserer Vorstellung weiter im Hintergrund und ist größer. Der italienische Psychologe Mario Ponzo hat zum ersten Mal diesen Typ einer optischen Täuschung beschrieben.

Abb. 1.21: Welches Rechteck ist größer?