image

Tamara Fahry-Seelig / Ulrike Mattig / Hans-Jürgen Weyer (Hrsg.)

Geowissenschaftler im Beruf

 

 

 

 

 

 

 

 

 

 

 

 

 

Image

Impressum

 

 

 

 

 

 

ISBN 978-3-534-22844-7

Elektronisch sind folgende Ausgaben erhältlich:
eBook (PDF): 978-3-534-73249-4
eBook (epub): 978-3-534-73250-0

Menü

Inhalt

1. Einsatzbereiche von Geowissenschaftlern

1.1 Beruf Geowissenschaftler – Definition und Abgrenzung der verschiedenen Berufsgruppen

1.2 Berufsfelder in den Geowissenschaften

1.2.1 Einsatzbereich „Energierohstoffe“

1.2.2 Erze und mineralische Rohstoffe

1.2.3 Wasserversorgung

1.2.4 Geotechnik und Baugrund

1.2.5 Umweltschutz

1.2.6 Geowissenschaftler in der Raumordnung und Landesplanung

1.2.7 Berufsfelder in Hochschulen und Forschungseinrichtungen

1.2.8 Information und Kommunikation

1.2.9 Geotourismus

1.2.10 Geophysik

1.2.11 Mineralogie – die materialbezogene Geowissenschaft

1.2.12 Geothermie

1.3 Einsatzbereiche

1.3.1 Geobüros und Freiberufler

1.3.2 Industrie und Wirtschaft

1.3.3 Geowissenschaftler/innen in Ämtern und Behörden

1.3.4 Einsatzbereiche in Hochschulen und Forschungseinrichtungen

1.4 Ausland

2. Arbeitsmarkt für Geowissenschaftler

2.1 Zahlen und Fakten im Überblick

2.2 Angebot und Nachfrage

2.3 Bessere Chancen durch Zusatzqualifikationen, Netzwerke und Mentoring

2.3.1 Zusatzqualifikationen und Praktika

2.3.2 Netzwerke

2.3.3 Absolventenförderung: das Mentoring Programm

3. Aktuelle Probleme – Herausforderungen und Chancen

4. Information zum BDG und wichtige Adressen, Links

Vorwort

Geologisches Wissen begleitete von Anbeginn die Entwicklung des modernen Menschen. Ursprünglich fußend auf der Suche nach Metallen, natürlichen Rohstoffen und Energieträgern entwickelten sich die heutigen Geowissenschaften zu einer bunten Vielfalt von Berufsfeldern. Sie bilden eine der tragenden Säulen für die Daseinsvorsorge. Eine moderne Industriegesellschaft mit ihrem Hunger nach Energie, Rohstoffen und Nutzflächen ist ohne geowissenschaftliche Kenntnisse undenkbar.

Die Geowissenschaften nutzen in der Forschung und in der Praxis die volle Breite naturwissenschaftlicher Methoden: Mathematik, Physik, Chemie, Biologie. Im Bereich der Grundlagenforschung erkunden die Geowissenschaftlerinnen und Geowissenschaftler die Entstehung und Entwicklung unseres Planeten. Sie befassen sich mit Art und Wechselwirkung der Kräfte und Prozesse, die zur Entstehung von Kontinenten und Ozeanen, Gebirgen und Tiefebenen, Vulkanen und Gletschern führen. Das Verständnis des Systems Erde definiert die Randbedingungen für die zukünftige Entwicklung der Menschheit.

Geowissenschaftler in angewandt orientierten Berufen lösen Probleme der Energieversorgung, der Trinkwasserversorgung, der Rohstoffsicherung, der Entsorgung von Abfällen und tragen zu Erkenntnissen über den Klimawandel bei. Jedes größere Bauwerk und jeder Verkehrsweg benötigen Geowissenschaftler bei der Planung und Errichtung.

Dieses Buch soll helfen, einen Überblick über die zahlreichen Disziplinen und Berufsfelder zu schaffen, den Studienanfängern und Studierenden umfassende Informationen über das Studium und die „Zeit danach“ zu vermitteln, aber auch interessierten Dritten einen Überblick über mögliche Einsatzfelder zu geben.

Ulrike Mattig, Wiesbaden im Frühjahr 2012

1 Einsatzbereiche von Geowissenschaftlern

1.1 Beruf Geowissenschaftler – Definition und Abgrenzung der verschiedenen Berufsgruppen

(Hans-Jürgen Weyer, Bonn)

Im Jahre 1998 hat die EU in Bologna beschlossen, in ihrem Einzugsbereich die Studiengänge zu vereinheitlichen und so zum gemeinsamen europäischen Bildungs- und Forschungsraum beizutragen. Damit wurde auch in Deutschland der sogenannte Bologna-Prozess eingeläutet. Dies führte zum Auslaufen der bisherigen Diplom-Studiengänge in Geologie, Geophysik und Mineralogie, die nach und nach durch eine Vielzahl von Bachelor- und Master-Studiengängen ersetzt wurden. Diese neu konzipierten Studiengänge führen Inhalte der bisher getrennten Diplom-Studiengänge zusammen, so dass es an den deutschen Universitäten die klassische Dreiteilung in „Geologie“, „Geophysik“ und „Mineralogie“ nicht mehr gibt. In der Wissenschaft ist diese Neuausrichtung berechtigt, da immer mehr das „System Erde“ ins Zentrum der Forschung rückt. Dies macht einen transdisziplinären Ansatz notwendig.

Die Neuausrichtung in Wissenschaft, Forschung und Lehre in den Geowissenschaften hat auch Auswirkungen auf den Beruf. Die früheren Hochschulabschlüsse „Diplom-Geologe“, „Diplom-Geophysiker“ und „Diplom-Mineraloge“ hatten einen anerkannten berufsbezeichnenden Charakter. Man verband mit dem akademischen Abschluss das Berufsbild. Mittlerweile ist allgemein anerkannt, dass unter „Geowissenschaften“ sowohl in den Studien- und Forschungsdisziplinen als auch im beruflichen Alltag die Bereiche der genannten drei früheren Abschlüsse verstanden werden, die man auch als geologische Wissenschaften bezeichnen kann.

„Geo“wissenschaften

Dabei sind die Abgrenzungen nicht immer sehr scharf. Um zu verdeutlichen, dass „Geowissenschaften“ andere Bereiche, wie zum Beispiel die Geographie, ausklammern, wird häufig hinter „Geowissenschaften“ noch der Zusatz „der festen Erde“ aufgeführt. Damit soll verdeutlicht werden, dass die Berufsbezeichnung „Geowissenschaftler“ auch im beruflichen Alltag an die Stelle der oben genannten Fachrichtungen getreten ist.

In den neuen Studiengängen sind im wesentlichen Elemente der Geologie und Mineralogie zusammengeführt worden. Die Geophysik ist als Studienfach in vielen (nicht in allen) Fällen eigenständig geblieben. Auch andere wichtige Teildisziplinen brauchen nach wie vor aufgrund der speziellen beruflichen Anforderungen spezielle Schwerpunkte innerhalb des Studiums. So erfordert beispielsweise der Beruf des Technischen Mineralogen oder des Paläontologen eine Studienausrichtung, die von der allgemeinen Geowissenschaft nicht zu erreichen ist. Auf diese speziellen Tätigkeiten innerhalb der geowissenschaftlichen Berufe wird in den folgenden Ausführungen gesondert eingegangen.

Geologie beschäftigt sich als Wissenschaft mit der Entstehung und Entwicklung der Erde, ihrem Aufbau, ihren Eigenschaften und Strukturen. Die Paläontologie beschäftigt sich als Teildisziplin mit der Erforschung der Entstehung und der Entwicklung des Lebens. Die Mineralogie ist die materialbezogene Geowissenschaft, während die Geophysik die Erforschung des Aufbaus und der Eigenschaften der Erdkruste und des Erdinneren mit physikalischen Mess- und Untersuchungsmethoden betreibt.

1.2 Berufsfelder in den Geowissenschaften

(Hans-Jürgen Weyer, Bonn)

Die Berufsfelder für Geowissenschaften können in vier große Bereiche aufgeteilt werden:

Innerhalb dieser vier Bereiche findet sich nahezu das komplette Tätigkeitsspektrum der geowissenschaftlichen Disziplinen. So finden sowohl die mineralogisch, als auch die geophysikalisch und geologisch ausgebildeten Geowissenschaftler in allen vier genannten Bereichen Beschäftigung.

In diesen vier Haupteinsatzbereichen finden Geowissenschaftler in den sogenannten klassischen wie in den modernen Berufsfeldern Anstellung. Unter den klassischen versteht man die Einsatzbereiche, die es seit Jahrzehnten in mehr oder weniger unveränderter Form gibt, zum Beispiel Kartierungen in der geologischen Landesaufnahme oder der Exploration. Unter den modernen Einsatzbereichen werden diejenigen Tätigkeitsfelder verstanden, die in jüngerer Zeit im Zuge neuer Frage- und Aufgabenstellungen entstanden sind, wie die Umweltgeologie. Auch neue gesetzliche Ansprüche erweitern das Tätigkeitsspektrum. Das Bundesbodenschutzgesetz ist eines davon.

Einsatzbereiche in Industrie und Wirtschaft

Während die internationale Industrie Geowissenschaftler hauptsächlich in der Rohstoffbranche und im Bergbau einsetzt, hat innerhalb Deutschlands gerade dieser Zweig nur wenig Beschäftigte. Es gibt nur wenige deutsche Unternehmen, die auf diesen Gebieten in Deutschland oder in anderen Ländern tätig sind. Insgesamt gesehen kommen Geowissenschaftler verstärkt in diversen Industrie- und Wirtschaftsbereichen zum Einsatz:

Einsatzbereiche im Consulting und in Ingenieurbüros

Consulting und Ingenieurbüros sind planend tätig, die Ausführung übernehmen andere Unternehmen. Im Wesentlichen konzentriert sich ihre Tätigkeit auf die Erstellung von Gutachten, dem Herbeiführen von Unterlagen und deren Auswertung sowie die Durchführung von hierfür notwendigen Untersuchungen. Die gutachterliche Tätigkeit in den Ingenieurbüros konzentriert sich dabei im Wesentlichen auf folgende Bereiche:

Einsatzbereiche in Ämtern und Behörden

In vielen Ämtern kommen Geowissenschaftler zum Einsatz. Dort halten sie ihr Fachwissen vor, beraten andere Einrichtungen und den Gesetzgeber, sind bei Planungen und im Vollzug einbezogen:

Eine Besonderheit sind die staatlichen Geologischen Dienste der Länder. Ihre Kernaufgaben können als Beispiel der Einsatzbereiche von Geowissenschaftlern insgesamt dienen. Hier werden geologische Fachdaten erhoben, gesammelt, aufbereitet, ausgewertet und zur Verfügung gestellt. Hierzu arbeiten die geologischen Dienste mit anderen Behörden, Hochschulen, Ingenieurbüros etc. zusammen. Der Umgang dieser Fachdaten kommt im Wesentlichen in folgenden Bereichen zum Einsatz:

Einsatzbereiche in Hochschulen und Forschungseinrichtungen

Die Universitäten sind Lehr- und Forschungseinrichtungen. Geowissenschaften kann man nur an Universitäten und Technischen Hochschulen studieren. Zurzeit bieten in Deutschland 28 Universitäten geowissenschaftliche Studiengänge an. Das Spektrum der geowissenschaftlichen Forschung umfasst alle Disziplinen und Teilbereiche von Geologie, Paläontologie, Mineralogie, Kristallographie und Geophysik einschließlich benachbarter Disziplinen wie Ozeanographie, Bodenkunde, Meteorologie, Vermessungswesen, Bergbau, Klimatologie und viele mehr.

Die Forschungseinrichtungen decken ebenfalls das gesamte Spektrum geowissenschaftlicher Forschung ab. Ihre Aufzählung ist daher nicht vollständig: Geo-Forschungs-Zentrum GFZ Potsdam, Alfred-Wegener Institut, Geomar Kiel, Einrichtungen von Max-Planck-Instituten, Senckenberg, Umwelt-Forschungs-Zentrum UFZ Leipzig/Halle.

Geowissenschaftler erforschen den Aufbau und die Entwicklung der Erde und des Lebens (Paläontologie mit starken Verbindungen zur Biologie). Verstärkt rücken dabei globale Prozesse und deren Interaktion in den Mittelpunkt der Forschung. Arbeitsfeld ist der den Beobachtungen zugängliche äußere Teil der Erde, die Erdkruste. Geologische Vorgänge werden erfasst, rekonstruiert und zu Modellen aufbereitet.

Die Allgemeine Geologie beinhaltet u.a. aktuogeologische Prozesse, Gesteinsentstehung, die Strukturen der Erdkruste und ihre Bildungsprozesse. Die Historische Geologie beschäftigt sich mit der Entwicklung der Erde und des Lebens. Die Regionale Geologie befasst sich mit dem Ergebnis dieser Entwicklung, u.a. dem heutigen Bau der Ozeane und Kontinente. Die Angewandte Geologie nutzt all diese Erkenntnisse wirtschaftlich: in der Lagerstättenkunde, der Ingenieur- und Hydrogeologie etc.

Die Mineralogie befasst sich als materialbezogene Geowissenschaft mit der Entstehung und den Eigenschaften von Mineralen sowie den Möglichkeiten, diese zu nutzen und zu formen. Der Zusammenhang zwischen der atomaren Struktur der Materie und deren physikalischen wie chemischen Eigenschaften beschäftigen Mineralogie und Kristallographie. Dabei kann es sich um Gesteins- und Materialproben aus der Natur handeln oder um synthetische Materialien aus dem Labor, wie z.B. High-Tech-Werkstoffe.

Die Geophysik untersucht den Erdkörper mit physikalischen Messmethoden. Diese werden entwickelt und in ihren Einsatzbereichen und Interpretationsmöglichkeiten weiterentwickelt.

Sonstige Bereiche

Aufgrund ihrer breiten naturwissenschaftlichen Ausbildung finden Geowissenschaftler verstärkt Aufgaben in fachfernen Bereichen. Wie in anderen Berufen stehen ihnen viele Einsatzbereiche auch außerhalb ihrer eigentlichen Disziplinen offen. Die folgende Aufzählung ist daher beispielhaft:

1.2.1 Einsatzbereich „Energierohstoffe“

(Dieter Kaufmann, Kassel)

Bedeutung der Energierohstoffe

Der globale Energiebedarf wird in den nächsten Jahren weiterhin steigen. Laut Vorhersage der International Energy Agency (IEA) steigt der Verbrauch von 2007 bis 2030 um ca. 40 %; dies entspricht einem durchschnittlichen Zuwachs von 1,5 % pro Jahr. Dieser Anstieg im Verbrauch betrifft zu 90 % nicht OECD-Länder, und mit Abstand liegen hier China, Indien und der Nahe Osten vorn. Ungeachtet der aktuellen Diskussion um hohe CO2-Emissionen durch den Verbrauch fossiler Energien und der staatlichen Förderung erneuerbarer Energien beträgt der Anteil fossiler Energierohstoffe im Energiemix der nächsten 20 Jahre 80 %. Zwar verzeichnen die erneuerbaren Energien in diesem Zeitraum das größte Wachstum (7,3 % p.a., gefolgt von Kohle mit 1,9 % p.a.), doch steigt ihr relativer Anteil am Energiemix nur von 10,4 % im Jahr 2007 auf 11,8 % im Jahr 2030.

Fossile Rohstoffe sind und bleiben damit auf absehbare Zeit die fundamentale Grundlage der Weltwirtschaft. Von allen fossilen Energieträgern sind Kohlenwasserstoffe (KW) aufgrund ihrer Energiedichte am effizientesten. Aufgrund ihrer chemischen Bindungsfähigkeiten sind sie darüber hinaus Grundlage für die Mehrzahl industrieller Produkte. So ist ihr Wert auch über die heute dominierende Rolle als Energieträger hinaus gesichert.

Rolle der Geowissenschaftler in der Erdöl- und Erdgasversorgung

Kohlenwasserstoffsystem

Die Aktivitäten der Geowissenschaftler im Bereich der Erdölexploration sind eng verwoben mit einer Kette von Vorgängen, die zur Erzeugung von Erdöl- und Erdgas-Lagerstätten führen. An ihrem Anfang steht die Entwicklung eines Sedimentbeckens, welches das Potenzial für ein funktionierendes Kohlenwasserstoff-System beinhaltet. Es besteht aus vier Bausteinen:

Darüber hinaus ist ein effektiver Mechanismus notwendig, der den KWs die Wanderung (Migration) vom Muttergestein zur Fangstruktur ermöglicht. Neben den einzelnen Bausteinen spielt die zeitliche Abfolge der Ereignisse eine Schlüsselrolle. Eine Struktur wird sich zum Beispiel als nichtfündig herausstellen, wenn die KWs zwar vor zu einem bestimmten Zeitpunkt generiert wurden, aber die tektonischen Ereignisse, die zur Strukturbildung führten, erst nach Abschluss der Migration stattgefunden haben. Es ist daher eine grundlegende Aufgabe der Geologen und Geophysiker, Informationen über den Untergrund in Bezug auf das KW-System und dessen zeitlicher Entwicklung zu beschaffen und zu analysieren.

Aufgaben

Geowissenschaftler spielen eine Schlüsselrolle in der Kohlenwasserstoffindustrie. Die Tätigkeit von Geologen und Geophysiker überspannt einen großen Teil der Abläufe entlang der gesamten Prozesskette von der Erkundung relativ unbekannter Sedimentbecken, über die Identifikation von Prospekten, der Ausarbeitung von Bohrvorschlägen, der Auswertung der Bohrergebnisse und Wirtschaftlichkeit bis hin zur Feldesentwicklung und Produktion. Der Aufgabenbereich von Geowissenschaftlern in Erdöl- und Erdgasversorgung lässt sich am besten anhand dieser Aktivitäten beschreiben.

Regionalstudien

Am Anfang der Exploration steht oft ein sogenanntes „Frontier“-Gebiet; dabei handelt es sich meist um ein Sedimentbecken von mehren tausend oder zehntausend Quadratkilometern, über das im Normalfall relativ wenig Informationen zur Verfügung stehen.

Maximum an Informationen

Als erstes müssen Geowissenschaftler abschätzen, mit welchen Methoden sie ein Maximum an Information erhalten, um abhängig von den Ergebnissen anschließend weitere Investitionen rechtfertigen zu können. In dieser ersten Phase wird der Geowissenschaftler zuerst die Chancen für die Existenz der verschiedenen Bausteine eines möglichen KW-Systems abschätzen. Die üblichen Methoden, die ihm in dieser frühen Phase der Exploration zur Verfügung stehen, sind Feldaufnahmen, Satellitenbilder, Luftaufnahmen, Aero-Gravimetrie, Magnetik und seismische Regionalprofile sowie die Nutzung globaler Datenbanken. Satellitenbilder dienen der regionaltektonischen Interpretation und der großräumigen Kartierung von Ausbissen. Während der geologischen Exkursion im Feld werden Gesteinsproben gesammelt und beschrieben. Entlang von Beckenrändern, Inversionen oder Aufschiebungen bietet sich die Möglichkeit, potenzielle Reservoire, Mutter- und abdichtende Gesteine an der Oberfläche oder über Flachbohrungen zu beproben. Im Labor werden diese Proben auf Alter, Fazies, Porosität, Mineralogie, Anteil organischen Materials, Vitrinitreflexion etc. untersucht. Die Daten der Satellitenaufnahmen werden mit den Feldesbeobachtungen kalibriert, und die ersten geologischen Karten können erstellt werden. Aufschluss über die Mächtigkeit der Sedimentfüllung geben Schwere- und Magnetfeldmessungen. Für erstere macht man sich den Dichtekontrast von Sedimentgestein und dem Grundgebirge zunutze, die zweite deren unterschiedliche Suszeptibilität. Da weder die genaue Dichte noch die Suszeptibilität des Gesteins im Untergrund bekannt ist, kann die Struktur des Untergrundes nur semi-quantitativ abgeleitet werden. Dennoch sind diese Daten äußerst hilfreich und erlauben ungefähre Aussage über die Sedimentmächtigkeit und somit Rückschlüsse über die Voraussetzungen der Genese von KWs. Wenn die gesammelten Daten positiv bewertet wurden, ist die Akquisition von regionalen seismischen Profilen der nächste sinnvolle Schritt. Geophysiker müssen bei der Planung die Gegebenheiten der Erdoberfläche wie Wasser, Wüste, Steppe, Wald, Sumpf, Gebirge und die voraussichtliche Geologie des Untergrundes berücksichtigen. Von der richtigen Auswahl der Aufnahmeparameter, der Lokation und Richtung der Profile und von der anschließenden Verarbeitung der Daten hängt der Erfolg der Kampagne ab. Seismische Profile ermöglichen einen genaueren Einblick in den Untergrund. Auf ihnen basiert eine genauere Abschätzung der Sedimentationszyklen und Sedimentmächtigkeiten, der Beckenentwicklung und Strukturbildung. Mit dieser Information kann ein erstes Beckenmodell erstellt werden. Hierbei wird, entweder anhand von 2D-Profilen oder im 3D-Modell die Entwicklung des Beckens modelliert. Das Wissen über Alter, Sedimentation, Versenkung, Eigenschaften des Muttergesteines und Strukturbildung werden in einem Modell integriert, um das Potenzial und den Zeitablauf der Genese und Migration von KWs abzuschätzen. Mit diesen Ergebnissen können die Geowissenschaftler die prospektiveren Teile eines Beckens identifizieren.

In den seltensten Fällen haben Firmen Zugang zu einem ganzen Sedimentbecken, ihre Rechte beschränken sich üblicherweise auf einzelne Konzessionen, die von den jeweiligen Regierungen vergeben wurden. Somit haben Geowissenschaftler meistens Zugang zu einem unvollständigen Datensatz. Dies erschwert ihre Arbeit.

Als notwendig erweist sich daher in vielen Fällen ein Vergleich des zu untersuchenden Beckens mit einzelnen Analogbecken und/oder mit Sammlungen in Datenbanken. Dieses Vorgehen ermöglicht weitere Schlussfolgerungen in Bezug auf Prospektgröße, Reservoireigenschaften und Explorationsrisiken, die nicht unmittelbar aus den zur Verfügung stehenden Daten hervorgehen. Endprodukt einer Regionalstudie sollten sogenannte „Play Maps“ sein. Dies sind Karten die die einzelnen Elemente eines KW-Systems überlagernd darstellen und so auf einem Blick erkennen lassen, welche Teile des Beckens für eine erfolgreiche Exploration die besten Voraussetzungen haben.

Prospektbewertung

Nachdem der regionale Kontext bewertet und bestimmte Teile der bearbeiteten Fläche für prospektiv befunden wurde, beginnt die Identifikation von Prospekten, die Abschätzung des KW-Volumens und die Ermittlung des geologischen Risikos. Der Datensatz, der für eine Beckenbewertung zur Verfügung stand, ist grobmaschig und für eine Prospektkartierung ungeeignet. Als nächstes planen Geologen und Geophysiker entweder eine engmaschigere 2D-Seismik oder eine 3D-Seismik, mit der sie potenzielle Fallen im Untergrund kartieren können. Bei der Prospektbewertung kommen mehrere geowissenschaftliche Disziplinen ins Spiel.

Geophysik

Neben der Planung von seismischen Untersuchungen steht die Aufbereitung der Daten zu einem seismischen Bild im Zentrum der Aufgaben des Geophysikers. Die verschiedenen Schritte der Bearbeitung der seismischen Daten müssen so optimiert werden, dass Multiple (seismische Reflektions-Echos) und Rauschen, die das seismische Erscheinungsbild nachhaltig stören können, so weit wie möglich unterdrückt werden. Des Weiteren wird mit Hilfe der Migration eine getreue Darstellung der Schichten gewährleistet, so dass letztendlich eine quantitative Reservoirbeschreibung möglich ist. Schichtgrenzen und Störungen werden in der Seismik interpretiert. Seismische Attribute, die das Frequenzverhalten oder die Form der seismischen Wellen beschreiben, werden berechnet. Gesteinseigenschaften werden aus der Seismik berechnet (Inversion). Mit Hilfe ermittelter Geschwindigkeiten aus Bohrungen oder Seismik müssen die seismischen Daten, welche als Laufzeiten vorliegen, einer Teufenwandlung unterzogen werden.

Petrophysik

Aus der Interpretation physikalischer Bohrlochmessungen werden Gesteinszusammensetzung, Porositäten, Mächtigkeiten, Permeabilität, Sättigung des Porenraumes, Höhe der KW Säule, Gas-, Öl- und Wasserkontakte ermittelt, die für die Charakterisierung des Reservoirs benötigt werden. Bildgebende Methoden erlauben eine vollständige Darstellung der Bohrlochwand.

Stratigraphie

Die richtige Korrelation zwischen Bohrungen ist oft nur mit Hilfe einer genaueren Altersdatierung möglich. Ihre Basis bildet die Biostratigraphie, die überwiegend auf Mikrofossilien beruht. Sie wird ergänzt durch hochauflösende radiometrische Methoden, Magneto- und auch Chemostratigraphie. In der E- & P-Industrie hat sich zudem mit der seismischen Stratigraphie eine besondere Methode basierend auf der Interpretation von seismischen Mustern herausgebildet.

Sedimentologie

Anhand punktueller Informationen aus Bohrungen und Ausbissen entwickelt der Sedimentologe Ablagerungsmodelle, die Vorhersagen über die Verteilung und grundsätzliche Beschaffenheit der Sedimentgesteine ermöglicht: Mächtigkeit, Sand-Ton Verhältnis und initiale Porosität.

Petrographie

Petrographische Untersuchungen tragen zum besseren Verständnis des Porenraums des Reservoirs bei. Insbesondere, wenn sich seine primären Eigenschaften durch Diagenese, Zementation oder Auslaugungen verändert haben. Unterstützt durch die sedimentologische und geophysikalische Interpretation ist es möglich, die Reservoirqualität im gesamten Bereich des Prospektes vorherzusagen.

Strukturgeologie

Die Analyse der Struktur im Untergrund gibt Aufschluss über das tektonische Regime, wie und wann Fallen entstanden sind, welchen tektonischen Verformungen sie nach ihrer Entstehung unterlagen. Durch diese Verformungen kann die Durchlässigkeit von Reservoir und Abdichtung modifiziert werden. Entstandene Störungen können eher abdichtend oder durchlässig sein.

Geochemie und Beckenmodellierung

Beide Disziplinen arbeiten eng zusammen und geben Auskunft darüber, ob und wieviel KWs im Becken unter bestimmten Bedingungen generiert werden konnten, ob das Muttergestein eher Gas oder Öl generiert hat, in welchen Zeiträumen es sich im Öl- bzw. Gasfenster befunden hat, wann die Migration stattfand und ob der Prospekt auf dem Migrationsweg lag.

Risiko und Volumen

Ausschlaggebend für die Entscheidung, einen Prospekt zu bohren oder nicht, ist das gewinnbare Volumen und das geologische Risiko. Sie dienen als Grundlage für die Feststellung der Wirtschaftlichkeit. Daher konzentriert sich die weitere Auswertung auf diese beiden Größen. Eine interdisziplinäre Zusammenarbeit ist bei diesem Schritt der Prospektbewertung unerlässlich. Oft werden bereits in diesem Stadium Reservoiringenieure hinzugezogen, die sich damit befassen, wie das Reservoir entwickelt werden sollte und mit welchem Gewinnungsfaktor zu rechnen ist. Für die Ermittlung des Volumens müssen die Geowissenschaftler das Gesteinsvolumen und die Geometrie der Falle, die letzte schließende Höhenlinie, die Bruttomächtigkeit des Reservoirs, das Verhältnis von Sand-Ton im Reservoir, Porosität, KW-Sättigung und Lage des Gas-Öl-Wasserkontakts erfassen. Auch bei größter Datendichte können die Werte aller Parameter über das gesamte Gebiet des Prospektes nicht genau bekannt sein. Das KW-Volumen wird daher statistisch ermittelt, indem für jeden Parameter eine mögliche Bandbreite angegeben wird, mit der über eine Monte Carlo Simulation die P10, P50 und P90 Volumina berechnet werden (P10: das Volumen das 10 % aller möglichen Fälle überschreiten, analog P50 und P90).

Eine weitere Möglichkeit der Ermittlung von Volumina eines Prospektes ist die geologische Modellierung. Durch sie wird die seismisch kartierte Struktur in ein detailliertes 3D-Modell umgesetzt. Auch in diesem Fall muss der Geologe die Unsicherheiten durch eine Vielzahl von Realisationen verschiedener Modelle abbilden.

Das geologische Risiko wird durch einfache Multiplikation der Risiken für Reservoir (Existenz und Qualität), Struktur (Existenz, Unsicherheiten der Kartierung, Abdichtung begrenzender Störungen), Abdichtung durch Deckgebirge und „KW charge“ (Genese von KW, Migration) ermittelt.

Wirtschaftlichkeitsrechnung

Mit diesen Daten haben die Geowissenschaftler ihren Teil der Informationen für die Berechnung der Wirtschaftlichkeit beigesteuert. Zusammen mit einem Förderprofil (von Reservoiringenieuren ermittelt), den für die Zukunft geschätzten Öl- und Gaspreisen und dem Steuerregime des entsprechenden Landes können die Ökonomen die Wirtschaftlichkeit des Prospektes berechnen. Als Projektleiter muss der Geowissenschaftler die Wirtschaftlichkeitsrechnungen auf Plausibilität prüfen. Er sollte daher nicht nur mit den Preisszenarien vertraut sein, sondern auch wissen, welche Feldesgröße in der jeweiligen Region bisher erfolgreich entwickelt wurde, was die typischen Entwicklungskosten pro Barrel sind und ob das Produktionsprofil realistisch ist. Ein umfassendes Bild bekommt er, wenn er nicht nur die Wirtschaftlichkeit des P50-Falles, sondern mit dem Minimalfall (P90) und Maximalfall (P10) die ganze Bandbreite der Wirtschaftlichkeit untersucht.

Abhängig von der Wirtschaftlichkeit des Prospektes, des gesamten Prospektportfolios und übergeordneter strategischer Überlegungen, wird er seinem Vorstand eine Bohrung vorschlagen.

Bohrvorschlag

Der von den Geowissenschaftlern ausgearbeitete Bohrvorschlag beinhaltet zusätzlich zu den oben genannten Ausarbeitungen weitere wichtige Informationen. Ziel einer Bohrung ist es, KWs nachzuweisen und das Wissen über das Reservoir zu maximieren, um eine fundierte Entscheidung zur Wirtschaftlichkeit und somit zur Weiterführung des Projektes treffen zu können. Wesentlich ist auch die Minimierung des technischen Risikos der Bohrung.

Als erstes ist innerhalb des Prospektes der genaue Bohrpunkt zu ermitteln. Hierfür kann der Geowissenschaftler verschiedene Strategien verfolgen. So kann man sich für eine strukturhohe Lokation entscheiden, mit der die KWs relativ einfach nachgewiesen werden können. Allerdings limitiert diese Option die Aussagen möglicherweise nur auf ein relativ kleines „up-dip“ Volumen. Alternativ kann man die Struktur niedriger bohren. Dort kann zwar mehr Volumen nachgewiesen und somit der Nachweis der Wirtschaftlichkeit leichter erbracht werden. Dies ist ein Risiko, denn strukturhöhere KWs werden unberücksichtigt gelassen. Ein weiterer Aspekt bei der Bohrplanung ist eine mögliche Aufteilung der Lagerstätte durch Störungen. Wo bohrt man also am besten, damit die Bohrung nicht nur eine kleine, sondern eine größere Fläche erschließt?

Entlang des geplanten Bohrpfades muss die Seismik nach Bohrrisiken untersucht werden. Dazu gehören zum Beispiel Gasvorkommen in höheren Schichten, Überdrucke, Karste, komplexe Tektonik. Sind Risiken erkannt, müssen Bohringenieure entweder geeignete Maßnahmen treffen, oder eine bessere Lokation muss gesucht werden. Geowissenschaftler bestimmen, wo die verschiedenen Rohrtouren abgesetzt werden, bis zu welcher Endtiefe gebohrt werden soll, welche Logs gefahren werden, wie oft das Bohrklein beprobt werden soll, wo Kerne gezogen werden, welche Strecken perforiert und getestet werden sollen und ob am Ende die Bohrung erfolgreich oder nicht erfolgreich war.

Ihre Aufmerksamkeit bei der Bohrplanung gilt nicht nur dem Untergrund, sondern auch der Bohrlokation selbst. Bei einer Bohrung muss sichergestellt sein, dass der Untergrund die nötige Standfestigkeit aufweist, um die Bohrplattform oder den Bohrturm zu tragen. Eine Beeinträchtigung des Naturraumes durch Bohraktivitäten oder andere Untersuchungen ist auszuschließen oder weitestgehend zu minimieren. Daher sind insbesondere in geschützten Gebieten Umweltgutachten einzuholen, die zum Beispiel bei Vorkommen geschützter Arten zu einer Verschiebung der Bohrlokation führen können. Bei einer „onshore“ Bohrung sind Auflagen wie Lärmschutz und Prüfung der Umweltverträglichkeit nachzuweisen.

Bohrung

Kurz vor Beginn kommt der „Operations Geologist“ zum Einsatz, er beteiligt sich meist schon am Bohrvorschlag und ist für die operativen Aspekte zuständig: