Raspberry Pi für Funkamateure

ektor books

Mit RPi-basierten Tools und Messgeräten Amateurfunkstationen bauen und programmieren

Dogan Ibrahim, G7SCU

Raspberry Pi für Funkamateure

Mit RPi-basierten Tools und Messgeräten Amateurfunkstationen bauen und programmieren

Dogan Ibrahim, G7SCU

© 2022: Elektor Verlag GmbH, Aachen.

- 1. Auflage 2022
- Alle Rechte vorbehalten.

Die in diesem Buch veröffentlichten Beiträge, insbesondere alle Aufsätze und Artikel sowie alle Entwürfe, Pläne, Zeichnungen und Illustrationen sind urheberrechtlich geschützt. Ihre auch auszugsweise Vervielfältigung und Verbreitung ist grundsätzlich nur mit vorheriger schriftlicher Zustimmung des Herausgebers gestattet.

Die Informationen im vorliegenden Buch werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht. Die in diesem Buch erwähnten Soft- und Hardwarebezeichnungen können auch dann eingetragene Warenzeichen sein, wenn darauf nicht besonders hingewiesen wird. Sie gehören dem jeweiligen Warenzeicheninhaber und unterliegen gesetzlichen Bestimmungen.

Bei der Zusammenstellung von Texten und Abbildungen wurde mit größter Sorgfalt vorgegangen. Trotzdem können Fehler nicht vollständig ausgeschlossen werden. Verlag, Herausgeber und Autor können für fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine Haftung übernehmen.

Für die Mitteilung eventueller Fehler sind Verlag und Autor dankbar.

Erklärung

Autor, Übersetzer und Verlag haben sich nach besten Kräften bemüht, die Richtigkeit der in diesem Buch enthaltenen Informationen zu gewährleisten. Sie übernehmen keine Haftung für Verluste oder Schäden, die durch Fehler oder Auslassungen in diesem Buch verursacht werden, unabhängig davon, ob diese Fehler oder Auslassungen auf Fahrlässigkeit, Versehen oder eine andere Ursache zurückzuführen sind, und lehnen jegliche Haftung hiermit ab.

Umschlaggestaltung: Elektor, Aachen

Ubersetzung: Andreas Riedenauer Satz und Aufmachung: D-Vision, Julian van den Berg | Oss (NL) Druck: Ipskamp Printing, Enschede, Niederlande

ISBN 978-3-89576-484-4 Ebook 978-3-89576-485-1

Elektor-Verlag GmbH, Aachen www.elektor.de

Elektor ist Teil der Unternehmensgruppe Elektor International Media (EIM), der weltweit wichtigsten Quelle für technische Informationen und Elektronik-Produkte für Ingenieure und Elektronik-Entwickler und für Firmen, die diese Fachleute beschäftigen. Das internationale Team von Elektor entwickelt Tag für Tag hochwertige Inhalte für Entwickler und DIY-Elektroniker, die über verschiedene Medien (Magazine, Videos, digitale Medien sowie Social Media) in zahlreichen Sprachen verbreitet werden. **www.elektor.de**

Vo	prwort
Ka	pitel 1 • Raspberry Pi-Modelle
	1.1 Überblick
	1.2 Raspberry Pi 1 Modell A
	1.3 Raspberry Pi 1 Modell A+
	1.4 Raspberry Pi 1 Modell B
	1.5 Raspberry Pi 1 Modell B+
	1.6 Raspberry Pi 2 Modell B
	1.7 Raspberry Pi Zero
	1.8 Raspberry Pi 3 Modell B
	1.9 Raspberry Pi Zero W
	1.10 Raspberry Pi 3 Modell B+19
	1.11 Raspberry Pi 4 Modell B
	1.11.1 Kauf- und Einrichtungsoptionen für den Raspberry Pi 4
	1.12 Zusammenfassung
Ka	pitel 2 $ullet$ Installation des Betriebssystems auf dem Raspberry Pi $\dots \dots 31$
	2.1 Überblick
	2.2 Schritte zur Installation von Raspbian Buster auf dem Raspberry Pi 4 $\ldots 31$
	2.3 Verwendung einer Netzwerkverbindung
	2.4 Fernzugriff
	2.5 Verwendung von Putty
	2.5.1 Konfigurieren von Putty
	2.6 Fernzugriff auf den Desktop40
	2.7 Statische IP-Adresse
	2.8 Zusammenfassung
Ka	apitel 3 • Verwendung der Kommandozeile
	3.1 Überblick
	3.2 Die Eingabeaufforderung
	3.3 Nützliche Linux-Befehle
	3.3.1 System- und Benutzerinformationen
	3.3.2 Die Verzeichnisstruktur des Raspberry Pi47
	3.3.3 Ressourcenüberwachung auf dem Raspberry Pi

	3.3.4 Herunterfahren	62
	3.4 Zusammenfassung	62
Ka	pitel 4 • Ein kurzer Blick auf den Desktop	53
	4.1 Überblick	63
	4.2 Die Arbeitsoberfläche	63
	4.3 Libre Office Writer	65
	4.4 Libre Office Calc	66
	4.5 VLC media player	66
	4.6 Taschenrechner	67
	4.7 Dateimanager	67
	4.8 SD-Karten-Kopierer	68
	4.9 Aufgabenverwaltung	69
	4.10 Terminal	69
	4.11 Hilfe	69
	4.12 Software hinzufügen/entfernen	70
	4.13 Maus- und Tastatureinstellungen	70
	4.14 Raspberry Pi Konfiguration	71
	4.15 Herunterfahren	71
	4.16 Wi-Fi konfigurieren	71
	4.17 Bluetooth konfigurieren	72
	4.18 Zusammenfassung	72
Ka	pitel 5 • Raspberry Pi Programmentwicklung	73
	5.1 Überblick	73
	5.2 Der Texteditor ,nano'	73
	5.3 Erstellen und Ausführen eines Python-Programms	76
	5.4 Zusammenfassung	79
Ka	pitel 6 • Der GPIO	30
	6.1 Überblick	80
	6.2 Der Raspberry Pi 4 GPIO-Anschluss	80
	6.3 Anschluss an den GPIO	81
	6.3.1 Lasten, die kleine Ströme benötigen	81
	6.3.2 Lasten, die höhere Ströme benötigen	83

6.3.3 Verwendung von Relais
6.4 Die GPIO-Bibliothek
6.4.1 Pin-Nummerierung
6.4.2 Konfiguration der Kanäle (I/O-Ports)
6.5 Der Entwicklungszyklus eines Raspberry Pi-Projekts
6.5.1 Die Hardware
6.5.2 Die Software
6.6 Projekt - Abwechselnd blinkende rote und grüne LEDs
6.7 Automatisches Ausführen eines Programms beim Starten
6.8 Ein Programm zu einem bestimmten Zeitpunkt ausführen lassen
6.9 Zusammenfassung
Kapitel 7 • Ein/Aus-Steuerung für die Funkstation
7.1 Projekt
Kapitel 8 • Bahnhofsuhr
8.1 Projekt
8.2 Echtzeituhr
Kapitel 9 • Warum Multitasking?116
Kapitel 10 • Die Station Temperatur und Luftfeuchtigkeit
10.1 Projekt
Kapitel 11 • Ein/Aus-Steuerung des Stationsnetzteils, Stationszeit und
Stationswetter
Kapitel 12 • Geografische Koordinaten der Station
Kapitel 13 • Signalerzeugung - mit Software138
13.1 Der MCP4921 DAC138
13.2 Erzeugen eines Rechtecksignals mit einer Spitzenspannung von 3,3 V 141
13.3 Erzeugen eines Rechtecksignals mit beliebiger Spitzenspannung 144
13.4 Erzeugung eines Sägezahn-Signals148
13.5 Erzeugung eines Dreieckssignals
13.6 Erzeugung eines Arbiträrsignals
13.7 Erzeugung eines Sinussignals
Kapitel 14 • Signalformerzeugung - Verwendung von Hardware
14.1 Projekt: Festfrequenz-Signalformgenerator

14.2	Projekt: Frequenzeingabe-Tastatur, LCD-Anzeige, Signalgenerator	166
Kapitel	15 • Entwurf einer 1-Transistor Verstärkerschaltung	L77
15.1	Projekt	177
Kapitel	16 • Entwurf eines aktiven Tiefpassfilters	182
16.1	Projekt	182
Kapitel	17 • Morsecode-Übungsgerät1	188
17.1	Projekt: MCE mit Benutzer-Eingabe der Zeichen	188
17.2	Projekt: MCE sendet zufällig generierte Zeichen	193
17.3	Projekt: MCE mit WPM-Einstellung über Drehgeber und LCD-Anzeige	197
Kapitel	18 • Voltmeter - Amperemeter - Ohmmeter - Kapazitätsmessgerät 2	204
18.1	Projekt: Spannungsmesser	204
18.2	Projekt: Strommessgerät	208
18.3	Projekt: Ohmmeter	209
18.4	Projekt: Kapazitätsmessgerät	211
Kapitel	19 • Frequenzzähler	215
19.1	Projekt: Frequenzzähler	215
Kapitel	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil	221
Kapitel 20.1	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 22 Raspberry Pi Audioausgänge 22	221 221
Kapitel 20.1 20.1	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 2 Raspberry Pi Audioausgänge 2 .1 Test. 2	221 221 222
Kapitel 20.1 20.1 20.2	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 2 Raspberry Pi Audioausgänge 2 .1 Test 2 Verwendung eines externen USB-Geräts mit Audio-Ein-/Ausgang 2	221 221 222 223
Kapitel 20.1 20.1 20.2 20.2	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 22 Raspberry Pi Audioausgänge 22 .1 Test 22 Verwendung eines externen USB-Geräts mit Audio-Ein-/Ausgang 22 .1 Test (1-2-3) 23	221 221 222 223 224
Kapitel 20.1 20.1 20.2 20.2 20.3	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 22 Raspberry Pi Audioausgänge 22 .1 Test. 23 Verwendung eines externen USB-Geräts mit Audio-Ein-/Ausgang 23 .1 Test (1-2-3) 23 Versorgung des Raspberry Pi 4 24	221 222 222 223 224 225
Kapitel 20.1 20.2 20.2 20.3 Kapitel	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 22 Raspberry Pi Audioausgänge 22 .1 Test. 22 Verwendung eines externen USB-Geräts mit Audio-Ein-/Ausgang 22 .1 Test (1-2-3) 22 Versorgung des Raspberry Pi 4 22 21 • Raspberry Pi FM-Transmitter 22	 221 222 223 224 225 228
Kapitel 20.1 20.2 20.2 20.3 Kapitel 21.1	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 22 Raspberry Pi Audioausgänge 22 .1 Test 23 Verwendung eines externen USB-Geräts mit Audio-Ein-/Ausgang 23 .1 Test (1-2-3) 24 Versorgung des Raspberry Pi 4 24 Projekt: Raspberry Pi 4 VHF FM-Sender 25	 221 222 223 224 225 228 228
Kapitel 20.1 20.2 20.2 20.3 Kapitel 21.1 21.2	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 22 Raspberry Pi Audioausgänge 22 .1 Test. 23 Verwendung eines externen USB-Geräts mit Audio-Ein-/Ausgang 23 .1 Test (1-2-3) 23 Versorgung des Raspberry Pi 4 24 Projekt: Raspberry Pi 4 VHF FM-Sender 25 Projekt: RadioStation Click 27	 221 221 222 223 224 225 228 228 229
Kapitel 20.1 20.2 20.2 20.3 Kapitel 21.1 21.2 Kapitel	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 22 Raspberry Pi Audioausgänge 22 .1 Test. 21 Verwendung eines Raspberry Pi 4 22 Projekt: Raspberry Pi 4 VHF FM-Sender 22 Projekt: RadioStation Click 22 22 • RF-Leistungsmesser	 221 221 222 223 224 225 228 228 229 240
Kapitel 20.1 20.2 20.2 20.3 Kapitel 21.1 21.2 Kapitel 22.1	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 22 Raspberry Pi Audioausgänge 22 Audioausgänge 22 Raspberry Pi Audioausgänge 22 Raspberry Pi 4 22 Projekt: RF-Leistungsmesser 22 Projekt: RF-Leistungsmesser 22 Projekt: RF-Leistungsmesser 22	 221 221 222 223 224 225 228 228 229 240 240
Kapitel 20.1 20.2 20.2 20.3 Kapitel 21.1 21.2 Kapitel 22.1 22.2	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 22 Raspberry Pi Audioausgänge 22 .1 Test. 23 Verwendung eines externen USB-Geräts mit Audio-Ein-/Ausgang 23 .1 Test (1-2-3) 23 Versorgung des Raspberry Pi 4 24 Projekt: Raspberry Pi FM-Transmitter 25 Projekt: RadioStation Click 22 Projekt: RF-Leistungsmesser 27 Projekt: RF-Leistungsmesser 27 RF Dämpfungsglied 27	 221 221 222 223 224 225 228 228 229 240 246
Kapitel 20.1 20.2 20.2 20.3 Kapitel 21.1 21.2 Kapitel 22.1 22.2 22.3	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 22 Raspberry Pi Audioausgänge 22 .1 Test. 21 Verwendung eines externen USB-Geräts mit Audio-Ein-/Ausgang 22 .1 Test (1-2-3) 21 Versorgung des Raspberry Pi 4 22 Projekt: Raspberry Pi FM-Transmitter 22 Projekt: RadioStation Click 22 Projekt: RF-Leistungsmesser 22 Projekt: RF-Leistungsmesser 24 MB, dBm und Watt? 24	 221 221 222 223 224 225 228 229 240 240 246 247
Kapitel 20.1 20.2 20.2 20.3 Kapitel 21.1 21.2 Kapitel 22.1 22.3 Kapitel	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 22 Raspberry Pi Audioausgänge 22 .1 Test. 23 .1 Test. 21 Raspberry Pi FM-Transmitter 22 Projekt: Raspberry Pi 4 VHF FM-Sender 22 Projekt: RadioStation Click 22 Projekt: RF-Leistungsmesser 22 Projekt: RF-Leistungsmesser 23 Projekt: Pi - Smartphone-Projekte 23	 221 221 222 223 224 225 228 229 240 240 246 247 250
Kapitel 20.1 20.2 20.2 20.3 Kapitel 21.1 21.2 Kapitel 22.1 22.3 Kapitel 23.1	20 • Raspberry Pi 4 Audio-Eingang & tragbares Netzteil 2 Raspberry Pi Audioausgänge 2 .1 Test. 2 Verwendung eines externen USB-Geräts mit Audio-Ein-/Ausgang 2 .1 Test (1-2-3) 2 Versorgung des Raspberry Pi 4 2 Projekt: Raspberry Pi FM-Transmitter 2 Projekt: RadioStation Click 2 Projekt: RF-Leistungsmesser 2 Projekt: Raspberry Pi - Smartphone-Projekte 2 <	 221 221 222 223 224 225 228 228 229 240 240 240 246 247 250 250

	23.3 Projekt: Webserver zur Steuerung mehrerer Relais	253
Кар	pitel 24 • RTL-SDR und Raspberry Pi	262
	24.1 Überblick	262
	24.2 Installation der RTL-SDR-Software auf dem Raspberry Pi 4	264
	24.3 Der GQRX	268
	24.4 Der CubicSDR	275
	24.5 RTL-SDR-Server	277
	24.6 SimpleFM	278
	24.7 ShinySDR	280
	24.8 Sonstige SDR-RTL-Software	283
	24.9 Der SDR - Der große Bruder des RTL-SDR?	283
	24.9.1 Der HackRF One	284
	24.9.2 Das NooElec NESDR Smart HF-Bündel	285
	24.9.3 Der AirSpy HF+	285
	24.9.4 Der Quisk	286
	24.10 Empfang von Wetterfaxen (WEFAX)	287
Кар	pitel 25 • Einige populäre Funkanwendungen nutzen	291
	25.1 TWCLOCK	291
	25.2 Klog	294
	25.3 Gpredict	295
	25.4 FLDIGI	297
	25.5 Schattenwolf	299
	25.6 xcwcp	302
	25.7 QSSTV	303
	25.8 LinPsK	306
	25.9 Ham Clock	308
	25.9 CHIRP	310
	25.10 Xastir	312
	25.11 CQRLOG	314
	25.12 Was nun?	315
Stic	chwortverzeichnis	317

Vorwort

In den letzten Jahren haben sich die Funkgeräte, die von Funkamateuren rund um den Globus (und im Orbit!) verwendet werden, stark verändert. Obwohl klassische KW- und VHF/ UHF-Funkgeräte immer noch von vielen Funkamateuren verwendet werden, werden Computer und digitale Techniken auch bei ihnen immer beliebter. In den Anfängen der digitalen Kommunikation wurden von den Amateuren PCs für die Kommunikation untereinander verwendet. PCs sind aber ziemlich teuer und unhandlich. Heute kann jeder für ca. 40 € einen Raspberry Pi kaufen und fast die gesamte Amateurfunk-Software auf diesem Computer ausführen, der nur wenig größer als eine Kreditkarte ist.

Mehrere Autoren haben Bücher geschrieben und Projekte für die Verwendung des Arduino in Amateurfunkprojekten veröffentlicht. Obwohl der Arduino für Hardware-Projekte verwendet werden kann, ist er recht eingeschränkt, da ihm ein Betriebssystem fehlt. Der Raspberry Pi ist eine Alternative, die über ein weit verbreitetes Betriebssystem, einen großen Speicher und eine umfangreiche Unterstützung für Peripherie wie USB, Bluetooth, Wi-Fi, Kamera-Schnittstelle usw. verfügt. Daher eignet sich der Raspberry Pi gut als Computer für den Amateurfunk, und die meisten Softwarepakete für Amateurfunker, die auf PCs verfügbar waren, laufen nun auch auf dem Raspberry Pi.

Die RTL-SDR-Geräte sind bei den Amateuren sehr beliebt, da sie mit ca. 15 € sehr preiswert sind und viele Funktionen bieten. Ein Basissystem kann aus einem USB-basierten RTL-SDR-Gerät (Dongle) mit einer geeigneten Antenne, einem Raspberry Pi-Computer, einem USBbasierten externen Audioadapter und einer auf dem Raspberry Pi-Computer installierten Software bestehen. Mit einer solch einfachen Einrichtung ist es möglich, Signale von etwa 24 MHz bis über 1,7 GHz zu empfangen. Mit einem kostengünstigen Konverter kann ein RTL-SDR einfach und effektiv die HF-Bänder empfangen.

Dieses Buch verfolgt vier Ziele: Erstens soll es Anfängern die grundlegenden Funktionsprinzipien und Funktionen des Raspberry Pi vermitteln. Zweitens werden hardwarebasierte Projekte vorgestellt, die den Raspberry Pi zusammen mit der Programmiersprache Python verwenden. Obwohl allgemein gehalten, wurden diese Projekte so ausgewählt, dass sie für Funkamateure nützlich sind. Drittens wird detailliert erklärt, wie man RTL-SDR-Geräte zusammen mit einem Raspberry Pi und der RTL-SDR-Software verwendet, um Signale auf zahlreichen Frequenzbändern zu empfangen. Schließlich lernt man, einige der beliebtesten Amateurfunk-Softwarepakete auf dem RasPi zu installieren und anzuwenden.

Ich wünsche Ihnen viel Spaß beim Lesen des Buches!

Prof. Dogan Ibrahim, G7SCU

Kapitel 1 • Raspberry Pi-Modelle

1.1 Überblick

Der Raspberry Pi ist ein preiswerter, leistungsfähiger Einplatinencomputer, auf dem ein komplettes Betriebssystem läuft und mit dem man alles tun kann, was auch mit einem Laptop oder einem Desktop-Computer möglich ist, z. B. Dokumente erstellen und bearbeiten, ins Internet gehen, Mails empfangen und versenden, Spiele spielen, Programme zur Überwachung und Steuerung der Umgebung über elektronische Sensoren und Aktoren entwickeln und vieles mehr.

Derzeit gibt es viele verschiedene Modelle des Raspberry Pi, die sich alle in ihren Funktionen leicht unterscheiden. Die Hauptmerkmale aller Raspberry-Pi-Computer sind sehr ähnlich: Alle verwenden Arm-Prozessoren, alle haben das Betriebssystem auf einer SD-Karte installiert, alle haben einen integrierten Speicher sowie Ein- und Ausgabeschnittstellen. Einige Modelle, wie der Raspberry Pi 4, der Raspberry Pi 3 und der Raspberry Pi Zero W verfügen über integrierte Wi-Fi- und Bluetooth-Fähigkeiten, die es einfach machen, online zu gehen und mit ähnlichen Geräten zu kommunizieren, die eine Wi-Fi- oder Bluetooth-Verbindung haben.

Wir konzentrieren uns auf den Raspberry Pi 4, das fortschrittlichste Modell zum Zeitpunkt der Erstellung dieses Buches. Alle hiervorgestellten Projekte laufen auf diesem Modell sowie praktisch allen Vorgängermodellen. Einige der Projekte laufen möglicherweise nicht auf den kleineren Modellen wie dem Raspberry Pi Zero W, aber die notwendigen Informationen werden zu Beginn jeden Projekts angegeben.

In diesem Kapitel werfen wir einen kurzen Blick auf die Eigenschaften der verschiedenen Modelle des Raspberry Pi Computers. Interessierte Leser können weitere Informationen auf der folgenden Website erhalten:

https://en.wikipedia.org/wiki/Raspberry_Pi

1.2 Raspberry Pi 1 Modell A

Dieses in Abbildung 1.1 dargestellte Modell wurde 2013 auf den Markt gebracht und verfügt über folgende Merkmale:

SOC:	Broadcom BCM2835
Prozessor:	ARM1176JZF-S
Anzahl der Kerne:	1
CPU-Taktfrequenz:	700 MHz
Arbeitsspeicher:	256 MB
Kamera-Schnittstelle	
USB-Anschlüsse:	1
HDMI-Anschlüsse:	1
Composite-Video	
SD/MMC:	SD-Karte
GPIO:	26

Stromaufnahme:	200 mA
Kosten:	\$20

Abbildung 1.1: Raspberry Pi 1 Modell A

1.3 Raspberry Pi 1 Modell A+

Dieses in Abbildung 1.2 dargestellte Modell wurde 2014 veröffentlicht und verfügt über folgende grundlegende Funktionen:

SOC:	Broadcom BCM2835
Prozessor:	ARM1176JZF-S
Anzahl der Kerne:	1
CPU-Taktfrequenz:	700 MHz
ARBEITSSPEICHER:	256 MB
Kamera-Schnittstelle	
USB-Anschlüsse:	1
HDMI-Anschlüsse:	1
Composite-Video	
SD/MMC:	microSD-Karte
GPIO:	40
Stromaufnahme:	200 mA
Kosten:	\$20

Abbildung 1.2: Raspberry Pi 1 Modell A+

1.4 Raspberry Pi 1 Modell B

Dieses in Abbildung 1.3 dargestellte Modell wurde 2012 auf den Markt gebracht und verfügt über folgende Merkmale:

SOC:	Broadcom BCM2835
Prozessor:	ARM1176JZF-S
Anzahl der Kerne:	1
CPU-Taktfrequenz:	700 MHz
Arbeitsspeicher:	512 MB
USB-Anschlüsse:	2
HDMI-Anschlüsse:	1
Ethernet-Anschlüsse:	1
Kamera-Schnittstelle	
Composite-Video	
SD/MMC:	SD-Karte
GPIO:	26
Stromaufnahme:	700 mA
Kosten:	\$25

Abbildung 1.3: Raspberry Pi 1 Modell B

1.5 Raspberry Pi 1 Modell B+

Dieses in Abbildung 1.4 dargestellte Modell wurde 2014 auf den Markt gebracht und verfügt über folgende Merkmale:

SOC:	Broadcom BCM2835
Prozessor:	ARM1176JZF-S
Anzahl der Kerne:	1
CPU-Taktfrequenz:	700 MHz
Arbeitsspeicher:	512 MB
USB-Anschlüsse:	4
HDMI-Anschlüsse:	1
Kamera-Schnittstelle	
Composite-Video	
Ethernet-Anschlüsse:	1
SD/MMC:	microSD-Karte
GPIO:	40
Stromaufnahme:	700 mA
Kosten:	\$25

Abbildung 1.4: Raspberry Pi 1 Modell B+

1.6 Raspberry Pi 2 Modell B

Dieses in Abbildung 1.5 dargestellte Modell wurde 2015 veröffentlicht und verfügt über einen größeren Speicher, mehr USB-Anschlüsse und einen schnelleren Prozessor:

SOC:	Broadcom BCM2836
Prozessor:	Cortex-A7
Anzahl der Kerne:	4
CPU-Taktfrequenz:	900 MHz
Arbeitsspeicher:	1 GB
USB-Anschlüsse:	4
Ethernet-Anschlüsse:	1
HDMI-Anschlüsse:	1
Kamera-Schnittstelle	
Composite-Video	
SD/MMC:	microSD-Karte
GPIO:	40
Stromaufnahme:	800 mA
Kosten:	\$35

Abbildung 1.5: Raspberry Pi 2 Modell B

1.7 Raspberry Pi Zero

Dieses in Abbildung 1.6 dargestellte Modell wurde 2015 auf den Markt gebracht. Es ist kleiner als die anderen, hat aber einen schnellen Prozessor. Seine Hauptmerkmale sind:

SOC:	Broadcom BCM2835
Prozessor:	ARM1176JZF-S
Anzahl der Kerne:	1
CPU-Taktfrequenz:	1 GHz
Arbeitsspeicher:	512 MB
USB-Anschlüsse:	1 (Mikro)
Kamera-Schnittstelle	
HDMI-Anschlüsse:	1 (mini)
SD/MMC:	microSD-Karte
GPIO:	40
Stromaufnahme:	160 mA
Kosten:	\$5

Abbildung 1.6: Raspberry Pi Zero

1.8 Raspberry Pi 3 Modell B

Dieses in Abbildung 1.7 dargestellte Modell wurde 2016 auf den Markt gebracht und weist folgende Hauptmerkmale auf:

SOC:	Broadcom BCM2837
Prozessor:	Cortex A-53
Anzahl der Kerne:	4
CPU-Taktfrequenz:	1,2 GHz
Arbeitsspeicher:	1 GB
USB 2.0-Anschlüsse:	4
Ethernet-Anschlüsse:	1 (10/100 Mbit/s)
HDMI-Anschlüsse:	1
Kamera-Schnittstelle	
Composite-Video	
Wi-Fi:	b/g/n
Bluetooth:	4.1
SD/MMC:	microSD-Karte
GPIO:	40 Pins
Stromaufnahme:	1,34 A
Kosten:	\$35

Abbildung 1.7: Raspberry Pi 3 Modell B

1.9 Raspberry Pi Zero W

Der in Abbildung 1.8 dargestellte Raspberry Pi Zero W wurde 2017 auf den Markt gebracht und ist ein kleines Board (halb so groß wie das Model A+) mit geringem Stromverbrauch, aber überraschend viel Leistung. Seine Hauptvorteile sind die integrierte Wi-Fi- und Bluetooth-Konnektivität. Die Hauptmerkmale dieses Modells sind:

SOC:	Broadcom BCM2835
Prozessor:	ARM1176JZF-S
Anzahl der Kerne:	1
CPU-Taktfrequenz:	1 GHz
Arbeitsspeicher:	512 MB
USB-Anschlüsse:	2 (Mikro)
Kamera-Schnittstelle	
HDMI-Anschlüsse:	1 (mini)
Wi-Fi	
Bluetooth	
SD/MMC:	microSD-Karte
GPIO:	40
Stromaufnahme:	1,13 A
Kosten:	\$35

Abbildung 1.8: Raspberry Pi Zero W.

1.10 Raspberry Pi 3 Modell B+

Dieses in Abbildung 1.9 dargestellte Modell wurde 2018 heraus gebracht und hat die zweitschnellste Prozessorgeschwindigkeit aller aktuellen Modelle. Seine Hauptmerkmale sind:

SOC:	Broadcom BCM2837B0
Prozessor:	Cortex A-53
Anzahl der Kerne:	4
CPU-Taktfrequenz:	1,4 GHz
Arbeitsspeicher:	1 GB
USB 2.0-Anschlüsse:	4
Ethernet-Anschlüsse:	1 (10/100/1000 Mbit/s)
HDMI-Anschlüsse:	1
Kamera-Schnittstelle	
Composite-Video	
Wi-Fi:	b/g/n/ac
Bluetooth:	4.2
SD/MMC:	microSD-Karte
GPIO:	40 Pins

Stromaufnahme: 1,13 A Kosten: \$35

Abbildung 1.9: Raspberry Pi 3 Modell B+

1.11 Raspberry Pi 4 Modell B

Dies ist der neueste und schnellste Raspberry Pi (Abbildung 1.10), der zum Zeitpunkt der Erstellung dieses Buches verfügbar war. Die wichtigsten Merkmale dieses Computers sind:

SOC:	Broadcom BCM2711
Prozessor:	Cortex A-72
Anzahl der Kerne:	4
CPU-Taktfrequenz:	1,5 GHz
Arbeitsspeicher:	1, 2, 4 oder 8 GB
USB 2.0-Anschlüsse:	2
USB 3.0-Anschlüsse:	2
USB-C: 1 (Stromversorgung)	
Ethernet-Anschlüsse:	1 (10/100/1000 Mbit/s)
HDMI-Anschlüsse:	2
Kamera-Schnittstelle	
Composite-Video	
Wi-Fi:	b/g/n/ac
Bluetooth:	5.0
SD/MMC:	microSD-Karte
GPIO:	40 Pins
Stromaufnahme:	1,25 A
Kosten:	\$35 - \$75

Abbildung 1.10: Raspberry Pi 4 Modell B

Da wir das Raspberry Pi 4 Modell B in unseren Projekten verwenden werden, lohnt es sich, die Details dieses Modells genauer zu betrachten. Im weiteren Verlauf dieses Buches wird der Name Modell B weggelassen und das Board nur noch als "Raspberry Pi 4" bezeichnet.

Der neue BCM2711 SoC ist ein sehr leistungsstarker Prozessor. Ein Problem mit diesem Prozessor ist, dass er sehr heiß werden kann. Am Ende eines 10-minütigen Tests wurde die Temperatur des Prozessors mit 74,5 °C gemessen (zum Vergleich: die Temperatur eines Raspberry Pi Model B+ erreichte im gleichen Zeitraum 62,6 °C). Zur Kühlung des Prozessorchips stehen mehrere kleine Lüfter in verschiedenen Formen und Größen zur Auswahl, und es wird empfohlen, davon Gebrauch zu machen. Die Lüfter, von denen die Abbildungen 1.11 und 1.12 einige zeigen, werden über den Anschluss auf der Platine mit Strom versorgt. Obwohl große Lüfter effizienter sind, wird vom Autor empfohlen, keine zu großen Lüfter zu verwenden, da sie den Zugang zum GPIO-Header oder den Anschluss einer Steckkarte (z. B. eines HAT-Shields) an den Header-Anschluss erschweren können. Aufgrund des höheren Stromverbrauchs wird ein externes 3 A-Netzteil für den Raspberry Pi 4 empfohlen. Das Netzteil wird an den USB-C-Anschluss des Raspberry Pi 4 angeschlossen (Abbildung 1.13).

Abbildung 1.11: Großer Raspberry Pi 4 Lüfter

Abbildung 1.12: Kleiner Raspberry Pi-Lüfter

Abbildung 1.13: Raspberry Pi 4 USB-C-Netzteil

Obwohl die Taktfrequenz des Raspberry Pi 4 nur 100 MHz höher ist als die des Raspberry Pi 3 Model B+, ist seine Leistung wesentlich besser, da er den äußerst effizienten Hochgeschwindigkeits-Prozessor Cortex-A72 verwendet. Abbildung 1.14 zeigt den Linpack-Benchmark-Geschwindigkeitsvergleich verschiedener Modelle (siehe: https://medium.com/@ghalfacree/benchmarking-the-raspberry-pi-4-73e5afbcd54b). Die hohe Leistung des Raspberry Pi 4 wird in dieser Abbildung sehr deutlich.

Abbildung 1.14: Linpack-Benchmark

Die Bildverarbeitungszeit ist ein weiterer Benchmark, der normalerweise zum Vergleich verschiedener Prozessoren verwendet wird. Abbildung 1.15 zeigt den GIMP-Bildbearbeitungs-Benchmark für verschiedene Modelle. Auch in dieser Abbildung wird die Überlegenheit des Raspberry Pi 4 deutlich. Im Vergleich zum Raspberry Pi Zero W ist der Pi 4 etwa 8-mal schneller bei der Verarbeitung eines Bildes.

Abbildung 1.15: GIMP Bildbearbeitungsbenchmark

Abbildung 1.16 zeigt die Anordnung der Komponenten auf dem Raspberry Pi 4 (Quelle: https://www.seeedstudio.com).

Abbildung 1.16: Raspberry Pi 4 Komponentenanordnung

Eine kurze Beschreibung der verschiedenen Komponenten auf der Platine finden Sie im Folgenden.

Prozessor: Der Prozessor ist von einer Metallkappe umgeben und basiert auf dem Broadcom BCM2711B0, der aus einem Cortex A-72-Kern besteht und mit 1,5 GHz arbeitet.

RAM: Es gibt drei Versionen des Raspberry Pi 4, abhängig von der benötigten Menge an DDR4-RAM: 1 GB, 2 GB und 4 GB.

USB-Anschlüsse: Der Raspberry Pi 4 verfügt über 2 × USB3.0-, 2 × USB2.0und 1 × USBC-Anschlüsse. Die Datenübertragungsrate von USB 3.0 beträgt 4.800 Mbit/s (Megabit pro Sekunde), während USB 2.0 mit bis zu 480 Mbit/s übertragen kann, also zehnmal langsamer als USB 2.0. Über den USB-C-Anschluss kann das Board an eine geeignete Stromquelle angeschlossen werden.

Ethernet: Über den Ethernet-Port kann die Karte direkt mit einem Ethernet-Port eines Routers verbunden werden. Der Anschluss unterstützt Gigabit-Verbindungen (125 Mbps).

HDMI: Es sind zwei Micro-HDMI-Anschlüsse vorhanden, die bis zu 4 K Bildschirmauflösung unterstützen. HDMI-Adapter können verwendet werden, um das Board mit HDMI-Geräten in Standardgröße zu verbinden.

GPIO: Eine 40-polige Stiftleiste ist mit den GPIO-Pins (General Purpose Input Output) verbunden. Sie ist mit den früheren GPIO-Anschlüssen kompatibel. **Audio- und Video-Anschluss**: Eine 3,5-mm-Klinkenbuchse ist für den Anschluss von Stereo-Audio und Composite-Video vorgesehen. An diesen Port können Kopfhörer angeschlossen werden. Für den Anschluss von Lautsprechern sind externe Verstärker erforderlich. Dieser Anschluss unterstützt auch Composite-Video, so dass TV-Geräte, Projektoren und andere Composite-Video-kompatible Anzeigegeräte hier angeschlossen werden können.

CSI-Port: Dies ist der Kamera-Port (Camera Serial Interface), über den eine kompatible Kamera an den Raspberry Pi angeschlossen werden kann.

DSI-Port: Dies ist der Display-Port (Display Serial Interface), über den ein kompatibles Display (z.B. ein 7-Zoll-Raspberry Pi-Display) an den Raspberry Pi angeschlossen werden kann.

PoE-Port: Dies ist eine 4-polige Stiftleiste zur Stromversorgung des Raspberry Pi über eine Netzwerkverbindung.

Micro-SD-Karte: Diese Karte wird in den Kartenhalter an der Unterseite des Boards gesteckt und enthält die Betriebssystemsoftware sowie das Betriebssystem und die Anwenderdaten.

1.11.1 Kauf- und Einrichtungsoptionen für den Raspberry Pi 4

Der Anwender hat zwei Möglichkeiten:

- Kauf des Raspberry Pi 4 als Bausatz (siehe Abbildung 1.17) mit Prozessorplatine, Netzteil, Micro-SD-Karte mit bereits geladenem Betriebssystem, Lüfter, Kabel usw.
- Kauf der Prozessorplatine, des Netzteils und einer leeren Micro-SD-Karte und anschließende Installation des Betriebssystems auf der SD-Karte (das Thema des nächsten Kapitels)

Die Entscheidung, ob man einen Bausatz oder die einzelnen Komponenten kauft, hängt ganz von den Finanzen und Wünschen des Anwenders ab.

Abbildung 1.17: Raspberry Pi als Bausatz

Wie in Abbildung 1.18 dargestellt, kann der Raspberry Pi auf zwei Arten eingerichtet werden: durch direkten Anschluss oder durch Anschluss an ein Netzwerk.

Abbildung 1.18: Einrichtung des Raspberry Pi

Direkte Verbindung

Dies ist vermutlich die teuerste Art, den Raspberry Pi 4 einzurichten und zu verwenden. Bei dieser Konfiguration werden ein Monitor und eine Tastatur an den Raspberry Pi 4 angeschlossen. Die minimal erforderlichen Komponenten sind:

- Stromanschluss
- Micro-SD-Karte
- Software für das Betriebssystem
- USB-Tastatur und -Maus

- Micro-HDMI-Kabel für den Empfang von Ton- und Videosignalen
- HDMI-kompatibler Bildschirm oder Fernseher (möglicherweise benötigen Sie auch Micro-HDMI-zu-DVI-D- oder VGA-Adapter. Ein 3,5-mm-TRRS-Kabel und -Stecker wird benötigt, wenn Sie ein altes Fernsehgerät mit Composite-Video verwenden)

Stromversorgung: Wie bereits erwähnt, ist ein 5-V-3-A-Netzteil mit einem USB-C-Anschluss erforderlich.

Micro-SD-Karte: Es wird eine Micro-SD-Karte mit einer Kapazität von mindestens 8 GB empfohlen, wobei eine höhere Kapazität (z. B. 16 GB oder 32 GB) besser ist, da es in Zukunft noch Erweiterungen geben wird. Die Karte sollte mindestens der Klasse 10 entsprechen.

Betriebssystem: Sie können das Betriebssystem auf einer Micro-SD-Karte vorinstalliert kaufen, die eine Mindestkonfiguration erfordert, bevor sie voll funktionsfähig ist. Alternativ können Sie auch eine leere Micro-SD-Karte kaufen und das Betriebssystem auf diese Karte laden. Die Schritte zur Vorbereitung einer neuen Micro-SD-Karte mit dem Betriebssystem werden im nächsten Kapitel beschrieben.

USB-Tastatur und -Maus: Sie können entweder ein kabelloses oder ein kabelgebundenes Tastatur-Maus-Paar verwenden. Wenn Sie ein kabelgebundenes Paar verwenden, schließen Sie Tastatur und Maus an je einen USB-Anschluss an. Wenn Sie eine kabellose Tastatur und Maus verwenden, müssen Sie den Funk-Dongle an einen der USB-Anschlüsse anschließen.

Bildschirm: Sie können einen standardmäßigen HDMI-kompatiblen Monitor mit einem Micro-HDMI-auf-Standard-HDMI-Adapter verwenden. Alternativ kann auch ein VGA-Monitor mit einem Micro-HDMI-auf-VGA-Adapter oder einem DVI-D-Adapter verwendet werden. Wenn Sie ein altes Fernsehgerät mit Composite-Video-Schnittstelle (CVBS) besitzen, können Sie über einen TRRS-Anschluss mit dem 3,5-mm-Anschluss des Raspberry Pi verbinden.

Sie können auch den Kauf zusätzlicher Teile in Erwägung ziehen, z. B. eines Gehäuses, eines CPU-Lüfters und so weiter. Ein Gehäuse ist sehr nützlich, da es die Elektronik Ihres Raspberry Pi schützt.

Abbildung 1.19 zeigt eine mögliche Direktverbindung. Je nach Art des Monitors können wir hier einen HDMI-Monitor, einen VGA-Monitor, einen DVI-D-Monitor oder einen Fernseher verwenden. Beachten Sie, dass Sie je nach den verwendeten externen USB-Geräten entweder den USB 2.0- oder den USB 3.0-Anschluss verwenden können.

Abbildung 1.19: Einrichtung des Raspberry Pi 4 - Option 1

Abbildung 1.20 zeigt eine weitere Möglichkeit des direkten Anschlusses an den Raspberry Pi. Bei dieser Option wird ein stromversorgter Hub verwendet, um die USB-Geräte anzuschließen.

Abbildung 1.20: Einrichtung des Raspberry Pi 4 - Option 2

Verbinden über ein Netzwerk

Die Verbindung über ein Netzwerk wird vom Autor empfohlen, da sie billiger ist, weniger Komponenten erfordert und einfacher zu verwalten ist. Es gibt zwei Möglichkeiten, den Raspberry Pi über ein Netzwerk einzurichten und zu verwenden: Verbindung über Ethernet: Diese Option ist nur verfügbar, wenn der Raspberry Pi mit einem Ethernet-Anschluss ausgestattet ist, wie z. B. der Raspberry Pi 2/3/4. Wie in Abbildung 1.21 dargestellt, wird bei dieser Konfiguration der Ethernet-Anschluss direkt mit dem Wi-Fi-Router verbunden (z. B. über einen Hub) und ein PC wird verwendet, um über das Netzwerk auf den Raspberry Pi zuzugreifen. Der Nachteil dieser Methode ist, dass sich der Raspberry Pi in der Nähe des Wi-Fi-Routers befinden muss, was nicht immer möglich oder erwünscht ist.

Abbildung 1.21: Verbindung über Ethernet

Wi-Fi-Verbindung: Dies ist vermutlich die billigste und einfachste Art, den Raspberry Pi zu verwenden. Hier wird der Raspberry Pi über sein integriertes Wi-Fi-Modul mit der Außenwelt verbunden. Die meisten Raspberry Pi-Modelle (z. B. Zero W, Pi 2/3/4 usw.) sind mit Wi-Fi-Modulen ausgestattet. Wie in Abbildung 1.22 dargestellt, wird auf den Raspberry Pi über das Wi-Fi mit einem PC zugegriffen. Der Vorteil dieser Methode ist, dass sie billig, einfach und sehr flexibel ist, da der Raspberry Pi überall innerhalb der Reichweite des Wi-Fi-Routers platziert werden kann.

Abbildung 1.22: Wi-Fi-Verbindung

1.12 Zusammenfassung

In diesem Kapitel haben wir uns die grundlegenden Funktionen der verschiedenen Raspberry Pi Modelle angesehen. Es wird empfohlen, das kleine und kostengünstige neueste Modell Raspberry Pi Zero W für Wi-Fi- oder Bluetooth-basierte Anwendungen zu verwenden, bei denen 512 MB RAM und 1 GHz Taktfrequenz ausreichend sind. Für höhere Geschwindigkeiten und größere Speicheranforderungen werden die etwas teureren Raspberry Pi 3 oder Pi 4 empfohlen. Der Raspberry Pi 4 wird in allen Projekten in diesem Buch verwendet.

Im nächsten Kapitel werden wir sehen, wie man das Betriebssystem auf den Raspberry Pi lädt und wie man ihn über ein Netzwerk anschließt.

Kapitel 2 • Installation des Betriebssystems auf dem Raspberry Pi

2.1 Überblick

In diesem Kapitel werden wir lernen, wie man das neueste Betriebssystem (**Raspbian Buster**) auf dem Raspberry Pi 4 installiert und die verschiedenen Möglichkeiten der Programmiersprache Python kennenlernt. Beachten Sie, dass der unten beschriebene Installationsprozess für alle Raspberry Pi-Modelle gilt, sofern nicht anders angegeben.

2.2 Schritte zur Installation von Raspbian Buster auf dem Raspberry Pi 4

Raspbian Buster ist das neueste Betriebssystem für den Raspberry Pi. In diesem Abschnitt werden die Schritte zur Installation dieses Betriebssystems auf einer neuen, leeren SD-Karte beschrieben, die Sie mit Ihrem Raspberry Pi 4 verwenden können. Sie benötigen eine Micro-SD-Karte mit einer Kapazität von mindestens 8 GB (besser noch 16 GB), bevor Sie das neue Betriebssystem darauf installieren können.

Die Schritte zur Installation von Raspbian Buster sind wie folgt:

• Laden Sie das Buster-Image in einen Ordner auf Ihrem PC herunter (z. B. C:\ RPIBuster), indem Sie unter dem Abschnitt Raspbian Buster with desktop and recommended software (siehe Abbildung 2.1) auf Download ZIP klicken. Zum Zeitpunkt des Schreibens hieß die Datei:

2020-02-13-raspbian-buster-full.img.

Möglicherweise müssen Sie die Windows 7Zip-Software verwenden, um den Download zu entpacken, da einige der Funktionen von älterer Unzip-Software nicht unterstützt werden.

https://www.raspberrypi.org/downloads/raspbian/