Die Nase vorn

Bill Hansson

Die Nase vorn

Eine Reise in die Welt des Geruchssinns

Aus dem Englischen
von Sebastian Vogel

FISCHER E-Books

Inhalt

Über Bill Hansson

Der 1959 in Schweden geborene Neuroethologe Bill Hansson ist Direktor des Max-Planck-Instituts für chemische Ökologie in Jena, Honorarprofessor an der Friedrich-Schiller-Universität und ehemaliger Vizepräsident der Max-Planck-Gesellschaft. Im Mittelpunkt seiner Forschung steht die Frage, wie Pflanzen und Insekten mittels Duftstoffen kommunizieren.

 

Weitere Informationen finden Sie auf www.fischerverlage.de

Über dieses Buch

Der Direktor des Max-Planck-Instituts für chemische Ökologie Bill Hansson erzählt Geschichten aus der Welt der Gerüche: von feinen Hundenasen, die beim Spaziergang die Nachrichten des letzten Tages erschnüffeln, über Pflanzen, die Alarmnoten aussenden, wenn sie von Schädlingen befallen werden, bis hin zum Duft von Neugeborenen, der unterschiedliche Reaktionen bei Männern und Frauen hervorruft.

 

Eine Reise zu den der buntesten Nasen aus Tier-, Pflanzen- und Menschenwelt und eine Einladung in die verblüffende Welt der Geruchsforschung.

Impressum

Deutsche Erstausgabe

Erschienen bei FISCHER E-Books

 

© 2021 S. Fischer Verlag GmbH, Hedderichstr. 114, D-60596 Frankfurt am Main

 

Covergestaltung: Andreas Heilmann und Gundula Hissmann, Hamburg

Coverabbildung: Bridgeman, Mauritius Images

 

Abhängig vom eingesetzten Lesegerät kann es zu unterschiedlichen Darstellungen des vom Verlag freigegebenen Textes kommen.

Dieses E-Book ist urheberrechtlich geschützt.

ISBN 978-3-10-491347-6

Endnoten

Crutzen, P.J. & Stoermer, E.F. (2000). The »Anthropocene«. Global Change Newsletter, 41, 17.

Lindsey, R. (2020). Climate Change: Atmospheric Carbon Dioxide. Climate.gov.; https://www.climate.gov/news-fea tures/understanding-climate/climate-change-atmospheric-carbon-dioxide

Drake, B.G., Gonzalez-Meler, M.A. & Long, S.P. (1997). MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2? Annual review of plant physiology and plant molecular biology, 48, 609639. https://doi.org/10.1146/annurev.arplant.48.1.609

Goyret, J., Markwell, P. & Raguso, R. (2008). Context- and scale-dependent effects of floral CO2 on nectar foraging by Manduca sexta. Proceedings of the National Academy of Sciences of the United States of America, 105, 45654570. 10.1073/pnas.0708629105.

Majeed, S., Hill, S. & Ignell, R. (2013). Impact of elevated CO2 background levels on the host-seeking behaviour of Aedes aegypti. The Journal of experimental biology. 217.10.1242/jeb.092718.

Tang, C., Davis, K.E., Delmer, C., Yang, D. & Wills, M.A. (2018). Elevated atmospheric CO2 promoted speciation in mosquitoes (Diptera, Culicidae). Communications biology, 1, 182. https://doi.org/10.1038/s4200301801917

Haugan P.M. & Drange, H. (1996). Effects of CO2 on the ocean environment. Energy Conversion and Management, 37,10191022. https://doi.org/10.1016/01968904(95) 002928

Porteus, C., Hubbard, P., Uren Webster, T., van Aerle, R., Canario, A., Santos, E. & Wilson, R. (2018). Near-future CO2 levels impair the olfactory system of a marine fish. Nature Climate Change. 8.10.1038/s4155801802248.

Yeung, L.Y., Murray, L.T., Martinerie, P., Witrant, E., Hu, H., Banerjee, A., Orsi, A. & Chappellaz, J. (2019). Isotopic constraint on the twentieth-century increase in tropospheric ozone. Nature, 570(7760), 224227. https://doi.org/ 10.1038/s4158601912771

Seibold, S., Gossner, M.M., Simons, N.K. et al. (2019). Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature. 574. 671674. 10.1038/s4158601916843.

Cook, B., Haverkamp, A., Hansson, B.S. et al. (2020). Pollination in the Anthropocene: a Moth Can Learn Ozone-Altered Floral Blends. Journal of Chemical Ecology. 110. 10.1007/s10886020012114.

Girling, R., Lusebrink, I., Farthing, E. et al. (2013). Diesel exhaust rapidly degrades floral odours used by honeybees. Scientific Reports, 3, 2779. https://doi.org/10.1038/srep 02779

Kessler, S., Tiedeken, E.J., Simcock, K.L., Derveau, S., Mitchell, J., Softley, S., Stout, J.C. & Wright, G.A. (2015). Bees prefer foods containing neonicotinoid pesticides. Nature, 521(7550), 7476. https://doi.org/10.1038/nature14414

K., Lippi, C.A., Johnson, L.R., Neira, M., Rohr, J.R., Ryan, S.J., Savage, V., Shocket, M.S., Sippy, R., Stewart Ibarra, A.M., Thomas, M.B. & Villena, O. (2019). Thermal biology of mosquito-borne disease. Ecology letters, 22(10), 16901708. https://doi.org/10.1111/ele.13335

www.ngice.mpg.de

Savoca, M., Wohlfeil, M., Ebeler, S. & Nevitt, G. (2016). Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Science Advances. 2. e1600395–e1600395.10.1126/sciadv.1600395.

Our environment is drowning in plastic, unenvironment.org; https://www.unenvironment.org/interactive/beat-plastic-pollution/

Wilcox, C., Puckridge, M., Schuyler, Q., Townsend, K. & Hardesty, B. (2018). A quantitative analysis linking sea turtle mortality and plastic debris ingestion. Scientific Reports. 8.10.1038/s4159801830038-z.

Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports. 2018.10.1038/s4159801822939-w.

Lindeque, P., Cole, M., Coppock, R., Lewis, C., Miller, R., Watts, A., Wilson-McNeal, A., Wright, S. & Galloway, T. (2020). Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environmental Pollution. 265. 114721.10.1016/j.envpol.2020.114721.

Beyers, D. & Farmer, M. (2001). Effects of copper on olfaction of Colorado pikeminnow. Environmental toxicology and chemistry / SETAC, 20, 90712.10.1002/etc.5620 200427.

Tierney, K., Sampson, J., Ross, P., Sekela, M. & Kennedy, C. (2008). Salmon Olfaction Is Impaired by an Environmentally Realistic Pesticide Mixture. Environmental science & technology, 42, 49965001.10.1021/es800240u.

Ward, A.J., Duff, A.J., Horsfall, J.S. & Currie, S. (2008). Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish. Proceedings. Biological sciences, 275(1630), 101105. https://doi.org/10.1098/rspb.2007.1283

Ajmani, G.S., Suh, H.H. & Pinto, J.M. (2016). Effects of Ambient Air Pollution Exposure on Olfaction: A Review. Environmental health perspectives, 124(11), 16831693. https://doi.org/10.1289/EHP136

Calderón-Garcidueñas, L., González-Maciel, A., Reynoso-Robles, A., Hammond, J., Kulesza, R., Lachmann, I., Torres-Jardón, R., Mukherjee, P.S. & Maher, B.A. (2020). Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles (and engineered Ti-rich nanorods). The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract a key brainstem portal. Environmental Research, 191, 110–139, ISSN 00139351, https://doi.org/10.1016/ j.envres.2020.110139.

Butowt, R. & von Bartheld, C.S. (2020). Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry, 1073858420956905. Advance online publication. https://doi.org/10.1177/1073858420956905

https://www.iff.com/

Update to Coronavirus symptoms www.gov.scot ; https://www.gov.scot/news/update-to-coronavirus-symptoms/

Stopsack, K.H., Mucci, L.A., Antonarakis, E.S., Nelson, P.S. & Kantoff, P.W. (2020). TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer discovery, 10(6), 779782. https://doi.org/10.1158/21598290.CD-200451

Baig, A.M., Khaleeq, A., Ali, U. & Syeda, H. (2020). Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chemical Neuroscience, 11(7), 995998. DOI: 10.1021/acschemneuro.0c00122.

https://www.mako.co.il/health-news/local/Article-39a265ef1146571026.htm

Gilbert, A. (2015). What the Nose Knows: The Science of Scent in Everyday Life, CreateSpace Independent Publishing Platform

Bushdid, C., Magnasco, M., Vosshall, L. & Keller, A. (2014). Humans Can Discriminate More than 1 Trillion Olfactory Stimuli. Science, 343(6177), new series, 13701372. www.jstor.org/stable/24743486

Gerkin, R.C. & Castro, J.B. (2015). The number of olfactory stimuli that humans can discriminate is still unknown. eLife, 4, e08127. https://doi.org/10.7554/eLife.08127

Meredith, M. (2001). Human vomeronasal organ function: a critical review of best and worst cases. Chemical senses, 26(4), 433445. https://doi.org/10.1093/chemse/ 26.4.433

Monti-Bloch, L. & Grosser, B.I. (1991). Effect of putative pheromones on the electrical activity of the human vomeronasal organ and olfactory epithelium. The Journal of steroid biochemistry and molecular biology, 39(4B), 573582. https://doi.org/10.1016/09600760(91)902554

Savic, I., Berglund, H., Gulyas, B. & Roland, P. (2001). Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans. Neuron, 31(4), 661668. https://doi.org/10.1016/s08966273(01) 003907

Savic, I., Berglund, H. & Lindström, P. (2005). Brain response to putative pheromones in homosexual men. Proceedings of the National Academy of Sciences of the United States of America, 102(20), 73567361. https://doi.org/ 10.1073/pnas.0407998102

Berglund, H., Lindström, P. & Savic, I. (2006). Brain response to putative pheromones in lesbian women. Proceedings of the National Academy of Sciences of the United States of America. 103. 82698274. 10.1073/pnas.0600331103.

Wyatt, T.D. (2015). The search for human pheromones: the lost decades and the necessity of returning to first principles. Proceedings. Biological sciences, 282(1804), 20142994. https://doi.org/10.1098/rspb.2014.2994

Vaglio, S. (2009). Chemical communication and mother-infant recognition. Communicative & integrative biology, 2(3), 279281. https://doi.org/10.4161/cib.2.3.8227

Lundström, J.N., Mathe, A., Schaal, B., Frasnelli, J., Nitzsche, K., Gerber, J. & Hummel, T. (2013). Maternal status regulates cortical responses to the body odor of newborns. Frontiers in psychology, 4, 597. https://doi.org/10.3389/fpsyg.2013. 00597

Uebi, T., Hariyama, T., Suzuki, K., Kanayama, N., Nagata, Y., Ayabe-Kanamura, S., Yanase, S., Ohtsubo, Y. & Ozaki, M. (2019). Sampling, identification and sensory evaluation of odors of a newborn baby’s head and amniotic fluid. Scientific reports, 9(1), 12759. https://doi.org/10.1038/s41598019491376

Schaal, B., Marlier, L. & Soussignan, R. (2000). Human foetuses learn odours from their pregnant mother’s diet. Chemical senses, 25(6), 729737. https://doi.org/10.1093/chemse/ 25.6.729

Schicker, I. (2001). For Fathers and Newborns, Natural Law and Odor; https://www.washingtonpost.com/archive/politics/2001/02/26/for-fathers-and-newborns-natural-law-and-odor/ccc5982c-acdd-4d0a-8b0620d2a2bc419a/

Chen, D., Katdare, A. & Lucas, N. (2006). Chemosignals of fear enhance cognitive performance in humans. Chemical senses, 31(5), 415423. https://doi.org/10.1093/chemse/bjj046

Gelstein, S., Yeshurun, Y., Rozenkrantz, L., Shushan, S., Frumin, I., Roth, Y. & Sobel, N. (2011). Human tears contain a chemosignal. Science (New York, N.Y.), 331(6014), 226230. https://doi.org/10.1126/science.1198331

Oh, T.J., Kim, M.Y., Park, K.S. & Cho, Y.M. (2012). Effects of chemosignals from sad tears and postprandial plasma on appetite and food intake in humans. PloS one, 7(8), e42352. https://doi.org/10.1371/journal.pone.0042352

Ferrero, D.M., Moeller, L.M., Osakada, T., Horio, N., Li, Q., Roy, D.S., Cichy, A., Spehr, M., Touhara, K. & Liberles, S.D. (2013). A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature, 502(7471), 368371. https://doi.org/10.1038/nature12579

Keller, A., Zhuang, H., Chi, Q., Vosshall, L. & Matsunami, H. (2007). Genetic Variation in a Human Odorant Receptor Alters Odour Perception. Nature. 449. 468472. 10.1038/ nature06162.

Wedekind, C., Seebeck, T., Bettens, F. & Paepke, A.J. (1995). MHC-dependent mate preferences in humans. Proceedings. Biological sciences, 260(1359), 245249. https://doi.org/ 10.1098/rspb.1995.0087

Milinski, M., Croy, I., Hummel, T. & Boehm, T. (2013). Major histocompatibility complex peptide ligands as olfactory cues in human body odour assessment. Proceedings of the Royal Society B: Biological Sciences, 280(1757), 20130381. https://doi.org/10.1098/rspb.2013.0381

McClintock, M. (1971). Menstrual Synchrony and Suppression. Nature 229, 244245. https://doi.org/10.1038/ 229244a0

Russell, M.J., Switz, G.M. & Thompson, K. (1980). Olfactory influences on the human menstrual cycle. Pharmacology, biochemistry, and behavior, 13(5), 737738. https://doi.org/10.1016/00913057(80)900209

Stern, K. & McClintock, M.K. (1998). Regulation of ovulation by human pheromones. Nature, 392(6672), 177179. https://doi.org/10.1038/32408

Ziomkiewicz, A. (2006). Menstrual synchrony: Fact or artifact? Human nature (Hawthorne, N.Y.), 17(4), 419432. https://doi.org/10.1007/s1211000610040

Åhs, F., Miller, S., Gordon, A. & Lundström, J. (2013). Aversive learning increases sensory detection sensitivity. Biological Psychology, 92, 135141.

Sinding, C., Valadier, F., Al-Hassani, V., Feron, G., Tromelin, A., Kontaris, I. & Hummel, T. (2017). New determinants of olfactory habituation. Scientific Reports, 7.

Khan, R.M., Luk, C.H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R. & Sobel, N. (2007). Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(37), 1001510023. https://doi.org/10.1523/JNEUROSCI.115807.2007

Ravia, A., Snitz, K., Honigstein, D., Finkel, M., Zirler, R., Perl, O., Secundo, L., Laudamiel, C., Harel, D. & Sobel, N. (2020). A measure of smell enables the creation of olfactory metamers. Nature, 10.1038/s4158602028917. Advance online publication. https://doi.org/10.1038/s4158602028917

Olofsson, J.K., Hurley, R.S., Bowman, N.E., Bao, X., Mesulam, M.M. & Gottfried, J.A. (2014). A designated odor-language integration system in the human brain. The Journal of neuroscience: the official journal of the Society for Neuroscience, 34(45), 1486414873. https://doi.org/10.1523/JNEUROSCI.224714.2014

Majid, A., Burenhult, N., Stensmyr, M., de Valk, J. & Hansson, B.S. (2018). Olfactory language and abstraction across cultures. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 373(1752), 20170139. https://doi.org/10.1098/rstb.2017.0139

Walker, D., Walker, J., Cavnar, P., Taylor, J., Pickel, D., Hall, S. & Suarez, J. (2006). Naturalistic quantification of canine olfactory sensitivity. Applied animal behaviour science, 97, 241254. doi: 10.1016/j.applanim.2005.07.009

Kester, D. & Settles, G. (1998). The External Aerodynamics of Canine Olfaction. doi: 10.1007/9783709160251_23.

Jenkins, E.K., DeChant, M.T. & Perry, E.B. (2018). When the Nose Doesn’t Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota. Frontiers in veterinary science, 5, 56. https://doi.org/10.3389/fvets.2018.00056

Glausiusz, J. (2008). The Hidden Power of SCENT. Scientific American Mind, 19(4), 3845; Zugriff 14. November 2020; http://www.jstor.org/stable/24939934

Horowitz, A. (2015). Reading Dogs Reading Us. Proceedings of the American Philosophical Society, 159(2), 141155; Zugriff 14. November 2020; http://www.jstor.org/stable/ 24640211

Botigué, L., Song, S., Scheu, A. et al. (2017). Ancient European dog genomes reveal continuity since the Early Neolithic. Nature Communications 8, 16082. doi:10.1038/ncomms 16082

Gadbois, S. & Reeve, C. (2014). Chapter 1 Canine Olfaction: Scent, Sign, and Situation.

Nagasawa, M., Mitsui, S., En, S., Ohtani, N., Ohta, M., Sakuma, Y., Onaka, T., Mogi, K. & Kikusui, T. (2015). Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science, 348, 333336.

Wells, D. & Hepper, P. (2003). Directional tracking in the domestic dog, Canis familiaris. Applied Animal Behaviour Science, 84, 297305.

Hepper, P. & Wells, D. (2005). How many footsteps do dogs need to determine the direction of an odour trail? Chemical Senses, 30(4)(4), 291298. https://doi.org/10.1093/chemse/bji023

Akpan, N. & Ehrichs, M. (2016). Inside the extraordinary nose of a search-and-rescue dog. PBS News Hour; https://www.pbs.org/newshour/science/inside-nose-rescue-dog

Krulwich, R. (2014). What Not To Serve Buzzards For Lunch, A Glorious Science Experiment. NPR.org; https://www.npr.org/sections/krulwich/2014/06/26/325648459/what-not-to-serve-buzzards-for-lunch-a-glorious-science-experiment

Houston, D.C. (1986). Scavenging Efficiency of Turkey Vultures in Tropical Forest. The Condor, 88(3), 1 August 1986, 318323, https://doi.org/10.2307/1368878

Grigg, N.P., Krilow, J.M., Gutiérrez-Ibáñez, C., Wylie, D.R., Graves, G. & Iwaniuk, A. (2017). Anatomical evidence for scent guided foraging in the turkey vulture. Scientific Reports, 7.

Averett, N. (2014). Birds Can Smell, and One Scientist is Leading the Charge to Prove It. Audubon.org; https://www.audubon.org/magazine/january-february-2014/birds-can-smell-and-one-scientist

Bonadonna, F., Bajzak, C., Benhamou, S., Igloi, K., Jouventin, P., Lipp, H.P. & Dell’Omo, G. (2005). Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance. Proceedings. Biological sciences, 272(1562), 489495. https://doi.org/ 10.1098/rspb.2004.2984

Gagliardo, A., Bried, J., Lambardi, P., Luschi, P., Wikelski, M. & Bonadonna, F. (2013). Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. The Journal of experimental biology, 216(Pt 15), 27982805. https://doi.org/10.1242/jeb.085738

Reynolds, A., Cecere, J.G., Paiva, V., Ramos, J. & Focardi, S. (2015). Pelagic seabird flight patterns are consistent with a reliance on olfactory maps for oceanic navigation. Proceedings of the Royal Society B: Biological Sciences, 282.

Mardon, J., Nesterova, A.P., Traugott, J., Saunders, S.M. & Bonadonna, F. (2010). Insight of scent: experimental evidence of olfactory capabilities in the wandering albatross (Diomedea exulans). The Journal of experimental biology, 213(4), 558563. https://doi.org/10.1242/jeb.032979

Pepys, S. (1666). The Diary of Samuel Pepys, Sunday 2 September 1666; https://www.pepysdiary.com/diary/1666/ 09/02/

Reuters (2008). Chronology: Reuters, from pigeons to multimedia merger; https://www.reuters.com/article/us-reu ters-thomson-chronology/chronology-reuters-from-pige ons-to-multimedia-merger-idUSL1849100620080219

Corera, G. (2018). Operation Columba: The Secret Pigeon Service: The Untold Story of World War II Resistance in Europe, William Morrow, New York.

Wallraff, H.G. (2005). Avian Navigation: Pigeon Homing as a Paradigm, Springer, Berlin.

Caro, S.P. & Balthazart, J. (2010). Pheromones in birds: myth or reality? Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 196(10), 751766. https://doi.org/10.1007/s0035901005344

Gagliardo, A., Pollonara, E. & Wikelski, M. (2016). Pigeon navigation: exposure to environmental odours prior to release is sufficient for homeward orientation, but not for homing. The Journal of experimental biology, 219(Pt 16), 24752480. https://doi.org/10.1242/jeb.140889

Lengagne, T., Jouventin, P. & Aubin, T. (1999). Finding One’s Mate in a King Penguin Colony: Efficiency of Acoustic Communication. Behaviour, 136(7), 833846; Zugriff 14. November 2020; http://www.jstor.org/stable/4535644

Birds’ Sense of Smell. (2011). The Science Teacher, 78(8), 2427; Zugriff 14. November 2020; http://www.jstor.org/stable/24148500

Krause, E.T., Krüger, O., Kohlmeier, P. & Caspers, B.A. (2012). Olfactory kin recognition in a songbird. Biology letters, 8(3), 327329. https://doi.org/10.1098/rsbl.2011. 1093

Caspers, B.A., Hagelin, J.C., Paul, M., Bock, S., Willeke, S. & Krause, E.T. (2017). Zebra Finch chicks recognise parental scent, and retain chemosensory knowledge of their genetic mother, even after egg cross-fostering. Scientific reports, 7(1), 12859. https://doi.org/10.1038/s4159801713110-y

Whittaker, D.J., Slowinski, S.P., Greenberg, J.M., Alian, O., Winters, A.D., Ahmad, M.M., Burrell, M., Soini, H.A., Novotny, M.V., Ketterson, E.D. & Theis, K.R. (2019). Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. The Journal of experimental biology, 222(Pt 20), jeb202978. https://doi.org/10.1242/jeb. 202978

Caro, S.P. & Balthazart, J. (2010). Pheromones in birds: myth or reality? Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 196(10), 751766. https://doi.org/10.1007/s0035901005344

Steiger, S.S., Fidler, A.E., Valcu, M. & Kempenaers, B. (2008). Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds? Proceedings. Biological sciences, 275(1649), 23092317. https://doi.org/ 10.1098/rspb.2008.0607

Meteyer, C.U., Rideout, B.A., Gilbert, M., Shivaprasad, H.L. & Oaks, J.L. (2005). Pathology and proposed pathophysiology of diclofenac poisoning in free-living and experimentally exposed oriental white-backed vultures (Gyps bengalensis). Journal of wildlife diseases, 41(4), 707716. https://doi.org/10.7589/0090355841.4.707

Savoca, M.S., Wohlfeil, M.E., Ebeler, S.E. & Nevitt, G.A. (2016). Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Science advances, 2(11), e1600395. https://doi.org/10.1126/sciadv.1600395

Catania, K.C. (2006). Olfaction: underwater ›sniffing‹ by semi-aquatic mammals. Nature, 444(7122), 10241025. https://doi.org/10.1038/4441024a

Reiten, I., Uslu, F.E., Fore, S., Pelgrims, R., Ringers, C., Verdugoa, C.D., Hoffmann, M., Lal, P., Kawakami, K., Pekkan, K., et al. (2017). Motile-cilia-mediated flow improves sensitivity and temporal resolution of olfactory computations. Current biology: CB, 27, 166174. https://www.cell.com/current-biology/fulltext/S09609822(16)313896

Neuhauss, S.C. (2017). Olfaction: How Fish Catch a Whiff. Current biology: CB, 27(2), R57–R58. https://doi.org/ 10.1016/j.cub.2016.12.007

Hamdani, E. & Døving, K.B. (2007). The functional organization of the fish olfactory system. Progress in neurobiology, 82(2), 8086. https://doi.org/10.1016/j.pneurobio.2007.02.007

Stacey, N. & Sorensen, P. (2002). Hormonal Pheromones in Fish. 10.1016/B9780080887838.000188.

Jumper, G. & Baird, R. (1991). Location by Olfaction: A Model and Application to the Mating Problem in the Deep-Sea Hatchetfish Argyropelecus hemigymnus. The American Naturalist, 138(6), 14311458; Zugriff 27. Oktober 2020; http://www.jstor.org/stable/2462555

Vieira, S., Biscoito, M., Encarnação, H., Delgado, J. & Pietsch, T. (2013). Sexual Parasitism in the Deep-sea Ceratioid Anglerfish Centrophryne spinulosa Regan and Trewavas (Lophiiformes: Centrophrynidae). Copeia, 2013(4), 666669; Zugriff September 21, 2020; http://www.jstor.org/stable/ 24637159

Pietsch, T. (2009). Oceanic Anglerfishes: Extraordinary Diversity in the Deep Sea. University of California Press; Zugriff 14. November 2020; http://www.jstor.org/stable/ 10.1525/j.ctt1ppb32 pp. 4345 e

NOAA. (2019) What is a sea lamprey?; https://oceanservice.noaa.gov/facts/sea-lamprey.html

Johnson, N., Yun, S., Thompson, H., Brant, C., Li, W. & Meinwald, J. (2009). A Synthesized Pheromone Induces Upstream Movement in Female Sea Lamprey and Summons Them into Traps. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 10211026. www.jstor.org/stable/40254676

Li, W., Scott, A.P., Siefkes, M.J., Yan, H., Liu, Q., Yun, S.S. & Gage, D.A. (2002). Bile Acid secreted by male sea lamprey that acts as a sex pheromone. Science (New York, N.Y.), 296(5565), 138141. https://doi.org/10.1126/science.1067797

Bandoh, H., Kida, I. & Ueda, H. (2011). Olfactory responses to natal stream water in sockeye salmon by BOLD fMRI. PloS one, 6(1), e16051. https://doi.org/10.1371/journal.pone. 0016051

Roberts, L. & Garcia de Leaniz, C. (2011). Something smells fishy: Predator-naïve salmon use diet cues, not kairomones, to recognize a sympatric mammalian predator. Animal Behaviour, 82, 619625.10.1016/j.anbehav.2011.06.019.

Brooker, R.M., Munday, P.L., Chivers, D.P. & Jones, G.P. (2015). You are what you eat: diet-induced chemical crypsis in a coral-feeding reef fish. Proceedings. Biological sciences, 282(1799), 20141887. https://doi.org/10.1098/rspb. 2014.1887

Gardiner, J.M., Whitney, N.M. & Hueter, R.E. (2015). Smells Like Home: The Role of Olfactory Cues in the Homing Behavior of Blacktip Sharks, Carcharhinus limbatus. Integrative and comparative biology, 55(3), 495506. https://doi.org/ 10.1093/icb/icv087

Marks, R. In-depth: Shark Senses. PBS.org/; https://www.pbs.org/kqed/oceanadventures/episodes/sharks/indepth-senses.html

Gardiner, J.M. & Atema, J. (2010). The function of bilateral odor arrival time differences in olfactory orientation of sharks. Current biology: CB, 20(13), 11871191. https://doi.org/10.1016/j.cub.2010.04.053

Enjin, A. & Suh, G.S. (2013). Neural mechanisms of alarm pheromone signaling. Molecules and cells, 35(3), 177181. https://doi.org/10.1007/s1005901300563

Mathuru, A.S., Kibat, C., Cheong, W.F., Shui, G., Wenk, M.R., Friedrich, R.W. & Jesuthasan, S. (2012). Chondroitin fragments are odorants that trigger fear behavior in fish. Current biology: CB, 22(6), 538544. https://doi.org/ 10.1016/j.cub.2012.01.061

Walker, M. (2010). Whale ›sense of smell‹ revealed, BBC Earth News; http://news.bbc.co.uk/earth/hi/earth_news/newsid_8844000/8844443.stm

George, J.C. & Thewissen, H. Bowhead. Whale Sensory Research / Olfaction in Bowhead Whales, North-Slope.org ; http://www.north-slope.org/departments/wildlife-management/studies-and-research-projects/bowhead-whales/bowhead-whale-anatomy-and-physiology-studies/bowhead-whale-sensory-research#OlfactionBH

Pitcher, B.J., Harcourt, R., Schaal, B, & Charrier, I. (2010). Social olfaction in marine mammals: wild female Australian sea lions can identify their pup’s scent. Biology Letters, 7, 6062.

Stoffel, M., Caspers, B.A., Forcada, J., Giannakara, A., Baier, M., Eberhart-Phillips, L., Müller, C. & Hoffman, J.I. (2015). Chemical fingerprints encode mother–offspring similarity, colony membership, relatedness, and genetic quality in fur seals. Proceedings of the National Academy of Sciences, 112, E5005–E5012.

Schröder, H., Moser, N. & Huggenberger, S. (2020). Neuroanatomy of the Mouse: An introduction, 319331: The Mouse Olfactory System, Springer International Publishing

https://www.springer.com/gp/book/9783030198978

Zhang, X. & Firestein, S. (2002). The olfactory receptor gene superfamily of the mouse. Nature neuroscience, 5(2), 124133. https://doi.org/10.1038/nn800

Mombaerts, P. (1996). Targeting olfaction. Current Opinion in Neurobiology, 6, (4,1996), 481486, ISSN 09594388, https://doi.org/10.1016/S09594388(96)800535. (http://www.sciencedirect.com/sci ence/article/pii/S0959438896800535).

Mombaerts, P. (2006). Axonal wiring in the mouse olfactory system. Annual review of cell and developmental biology, 22, 71337

Zancanaro, C. (2014). Vomeronasal Organ: A Short History of Discovery and an Account of Development and Morphology in the Mouse. In: Mucignat-Caretta C (Hg.). Neurobiology of Chemical Communication CRC Press/Taylor & Francis Boca Raton, FL. Kapitel 9; https://www.ncbi.nlm.nih.gov/books/NBK200982/

Pérez-Gómez, A., Stein, B., Leinders-Zufall, T. & Chamero, P. (2014). Signaling mechanisms and behavioral function of the mouse basal vomeronasal neuroepithelium. Frontiers in neuroanatomy, 8, 135. https://doi.org/10.3389/fnana. 2014.00135

Fleischer, J. & Breer, H. (2010). The Grueneberg ganglion: a novel sensory system in the nose. Histology and histopathology, 25(7), 909915. https://doi.org/10.14670/HH-25.909

Brechbühl, J., Vallière, A., Wood, D., Nenniger Tosato, M. & Broillet, M. (2020). The Grueneberg ganglion controls odor-driven food choices in mice under threat. Communications Biology. 3.10.1038/s4200302001257-w.

Brechbühl, J., Klaey, M. & Broillet, M.C. (2008). Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science (New York, N.Y.), 321(5892), 10921095. https://doi.org/10.1126/science.1160770

Schmid, A., Pyrski, M., Biel, M., Leinders-Zufall, T. & Zufall, F. (2010). Grueneberg ganglion neurons are finely tuned cold sensors. The Journal of neuroscience: the official journal of the Society for Neuroscience, 30(22), 75637568. https://doi.org/10.1523/JNEUROSCI.060810.2010

Barrios, A.W., Núñez, G., Sánchez Quinteiro, P. & Salazar, I. (2014). Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice. Frontiers in neuroanatomy, 8, 63. https://doi.org/10.3389/fnana. 2014.00063

Ma, M., Grosmaitre, X., Iwema, C.L., Baker, H., Greer, C.A. & Shepherd, G.M. (2003). Olfactory signal transduction in the mouse septal organ. The Journal of neuroscience: the official journal of the Society for Neuroscience, 23(1), 317324. https://doi.org/10.1523/JNEUROSCI.230100317.2003

Tian, H. & Ma, M. (2004). Molecular Organization of the Olfactory Septal Organ. The Journal of neuroscience: the official journal of the Society for Neuroscience, 24. 838390.10.1523/JNEUROSCI.222204.2004.

Liberles, S.D. (2014). Mammalian pheromones. Annual review of physiology, 76, 151175. https://doi.org/10.1146/annurev-physiol-021113170334

Chamero, P., Marton, T.F., Logan, D.W., Flanagan, K., Cruz, J.R., Saghatelian, A., Cravatt, B.F. & Stowers, L. (2007). Identification of protein pheromones that promote aggressive behaviour. Nature, 450(7171), 899902. https://doi.org/ 10.1038/nature05997

Novotny, M., Harvey, S., Jemiolo, B. & Alberts, J. (1985). Synthetic pheromones that promote inter-male aggression in mice. Proceedings of the National Academy of Sciences of the United States of America, 82(7), 20592061. https://doi.org/10.1073/pnas.82.7.2059

Logan, D.W., Brunet, L.J., Webb, W.R., Cutforth, T., Ngai, J. & Stowers, L. (2012). Learned recognition of maternal signature odors mediates the first suckling episode in mice. Current biology: CB, 22(21), 19982007. https://doi.org/ 10.1016/j.cub.2012.08.041

Roberts, S.A., Simpson, D.M., Armstrong, S.D., Davidson, A.J., Robertson, D.H., McLean, L., Beynon, R.J. & Hurst, J.L. (2010). Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC biology, 8, 75. https://doi.org/10.1186/17417007875

Bruce, H.M. (1959). An exteroceptive block to pregnancy in the mouse. Nature, 184, 105. https://doi.org/10.1038/ 184105a0

Whitten, W.K. (1959). Occurrence of anoestrus in mice caged in groups. The Journal of endocrinology, 18(1), 102107. https://doi.org/10.1677/joe.0.0180102

Vandenbergh, J.G. (1969). Male odor accelerates female sexual maturation in mice. Endocrinology, 84(3), 658660. https://doi.org/10.1210/endo-843658

Ferrero, D., Lemon, J., Fluegge, D., Pashkovski, S., Korzan, W., Datta, S., Spehr, M., Fendt, M. & Liberles, S. (2011). Detection and avoidance of a carnivore odor by prey. Proceedings of the National Academy of Sciences of the United States of America. 108. 1123540.10.1073/pnas.1103317108.

Dewan, A., Pacifico, R., Zhan, R., Rinberg, D. & Bozza, T. (2013). Non-redundant coding of aversive odours in the main olfactory pathway. Nature, 497(7450), 486489. https://doi.org/10.1038/nature12114

Angioy, A.M., Desogus, A., Barbarossa, I.T., Anderson, P. & Hansson, B.S. (2003). Extreme sensitivity in an olfactory system. Chemical senses, 28(4), 279284. https://doi.org/ 10.1093/chemse/28.4.279

Kaissling, K.E. (2009). The Sensitivity of the Insect Nose: The Example of Bombyx Mori. In: Gutiérrez A., Marco S. (Hg.). Biologically Inspired Signal Processing for Chemical Sensing. Studies in Computational Intelligence, 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/9783642001765_3

Karlson, P. & Luscher, M. (1959). »Pheromones«: a new term for a class of biologically active substances. Nature, 183(4653), 5556. https://doi.org/10.1038/183055a0

Hansson, B.S. (1995). Olfaction in Lepidoptera. Experientia 51, 10031027. https://doi.org/10.1007/BF01946910

Missbach, C., Dweck, H.K., Vogel, H., Vilcinskas, A., Stensmyr, M.C., Hansson, B.S. & Grosse-Wilde, E. (2014). Evolution of insect olfactory receptors. eLife, 3, e02115. https://doi.org/10.7554/eLife.02115

Fatouros, N., Huigens, M., van Loon, J. et al. (2005). Butterfly anti-aphrodisiac lures parasitic wasps. Nature 433, 704. https://doi.org/10.1038/433704a

Jones, A.G. & Ratterman, N.L. (2009). Mate choice and sexual selection: what have we learned since Darwin? Proceedings of the National Academy of Sciences of the United States of America, 106 (Suppl 1), 1000110008. https://doi.org/10.1073/pnas.0901129106

Fisher, R.A. (1915). The evolution of sexual preference. The Eugenics review, 7(3), 184192.

Edwards, A.W. (2000). The genetical theory of natural selection. Genetics, 154(4), 14191426.

ter Hofstede, H.M., Goerlitz, H.R., Ratcliffe, J.M., Holderied, M.W. & Surlykke, A. (2013). The simple ears of noctuoid moths are tuned to the calls of their sympatric bat community. The Journal of experimental biology, 216(Pt 21), 395462. doi: 10.1242/jeb.093294. Epub 2013 Aug 2. PMID: 23913945.

Svensson, G.P., Löfstedt, C. & Skals, N. (2007). Listening in pheromone plumes: Disruption of olfactory-guided mate attraction in a moth by a bat-like ultrasound. Journal of Insect Science, 7, 59, available online:insectscience.org/7.59

Gemeno, C., Yeargan, K.V. & Haynes, K.F. (2000). Aggressive Chemical Mimicry by the Bolas Spider Mastophora hutchinsoni: Identification and Quantification of a Major Prey’s Sex Pheromone Components in the Spider’s Volatile Emissions. Journal of chemical ecology, 26, 12351243 (2000). https://doi.org/10.1023/A:1005488128468

Karlson, P. & Butenandt, A. (1959). Pheromones (Ectohormones). Insects Annual Review of Entomology, 4 (1), 3958 https://doi.org/10.1146/annurev.en.04.010159.000351

Butenandt, A. & Hecker, E. (1961). Synthese des Bombykols, des Sexuallockstoffes des Seidenspinners, und seiner geometrischen Isomeren. Angewandte Chemie, 73, 349. https://doi.org/10.1002/ange.19610731102

Allison, J. & Cardé, R. (Hg.) (2016). Pheromone Communication in Moths: Evolution, Behavior, and Application. Oakland, California: University of California Press; Zugriff 15. November 2020; http://www.jstor.org/stable/10.15 25/j.ctv1xxxzm

Baker, T.C. & Vickers, N.J. (1997). Pheromone-Mediated Flight in Moths. In: Cardé, R.T., Minks, A.K. (Hg.). Insect Pheromone Research. Springer, Boston, MA. https://doi.org/10.1007/9781461563716_23

Phelan, P.L. (1992). Evolution of sex pheromones and the role of asymmetric tracking. In: Insect chemical ecology: an evolutionary approach, hg. von Roitberg, B., Isman, M. Chapman and Hall, New York

Hansson, B.S., Tóth, M., Löfstedt, C., Szöcs, G., Subchev, M. & Löfqvist, J. (1990). Pheromone variation among eastern European and a western Asian population of the turnip moth Agrotis segetum. Journal of chemical ecology, 16(5), 16111622. https://doi.org/10.1007/BF01014094

Wunderer, H., Hansen, K., Bell, T.W., Schneider, D. & Meinwald, J. (1986). Sex pheromones of two Asian moths (Creatonotos transiens, C. gangis; Lepidoptera-Arctiidae): behavior, morphology, chemistry and electrophysiology. Experimental biology, 46(1), 1127.

Boppré, M. & Schneider, D. (1985). Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone biosynthesis in male Creatonotos moths (Lepidoptera: Arctiidae). Journal of comparative physiology, 157, 569577. https://doi.org/10.1007/BF01351351

Kessler, D., Gase, K. & Baldwin, I.T. (2008). Field experiments with transformed plants reveal the sense of floral scents. Science (New York, N.Y.), 321(5893), 12001202. https://doi.org/10.1126/science.1160072

Haverkamp, A., Yon, F., Keesey, I.W., Mißbach, C., Koenig, C., Hansson, B.S., Baldwin, I.T., Knaden, M. & Kessler, D. (2016). Hawkmoths evaluate scenting flowers with the tip of their proboscis. eLife, 5, e15039. https://doi.org/10.7554/eLife.15039

Hansson, B.S., Knaden, M., Sachse, S., Stensmyr, M.C. & Wicher, D. (2010). Towards plant-odor-related olfactory neuroethology in Drosophila. Chemoecology, 20(2), 5161. https://doi.org/10.1007/s0004900900337

Morgan, T.H. (1910). SEX LIMITED INHERITANCE IN DROSOPHILA. Science (New York, N.Y.), 32(812), 120122. https://doi.org/10.1126/science.32.812.120

Bellen, H., Tong, C. & Tsuda, H. (2010). 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nature Reviews Neuroscience 11, 514522 (2010). https://doi.org/10.1038/nrn2839

Hansson, B.S. & Stensmyr, M.C. (2011). Evolution of insect olfaction. Neuron, 72(5), 698711. https://doi.org/10. 1016/j.neuron.2011.11.003

Stocker, R.F. (2009). The olfactory pathway of adult and larval Drosophila: conservation or adaptation to stage-specific needs? Annals of the New York Academy of Sciences, 1170, 482486. https://doi.org/10.1111/j.17496632.2009. 03896.x

Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. & Axel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell, 96(5), 725736. https://doi.org/10.1016/s00928674(00)805826

Vosshall, L.B., Wong, A.M. & Axel, R. (2000). An olfactory sensory map in the fly brain. Cell, 102(2), 147159. https://doi.org/10.1016/s00928674(00)000210

Dweck, H.K., Ebrahim, S.A., Khallaf, M.A., Koenig, C., Farhan, A., Stieber, R., Weißflog, J., Svatoš, A., Grosse-Wilde, E., Knaden, M. & Hansson, B.S. (2016). Olfactory channels associated with the Drosophila maxillary palp mediate short- and long-range attraction. eLife, 5, e14925. https://doi.org/10.7554/eLife.14925

Wicher, D., Schäfer, R., Bauernfeind, R., Stensmyr, M., Heller, R., Heinemann, S. & Hansson, B. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 452. 10071011. 10.

Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L.B. & Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature, 452(7190), 10021006. https://doi.org/10.1038/nature06850

Getahun, M.N., Olsson, S.B., Lavista-Llanos, S., Hansson, B.S. & Wicher, D. (2013). Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors. PloS one, 8(3), e58889. https://doi.org/10.1371/journal.pone.0058889

Stensmyr, M.C., Dweck, H.K., Farhan, A., Ibba, I., Strutz, A., Mukunda, L., Linz, J., Grabe, V., Steck, K., Lavista-Llanos, S., Wicher, D., Sachse, S., Knaden, M., Becher, P.G., Seki, Y. & Hansson, B.S. (2012). A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell, 151(6), 13451357. https://doi.org/10.1016/j.cell.2012.09.046

Ebrahim, S.A., Dweck, H.K., Stökl, J., Hofferberth, J.E., Trona, F., Weniger, K., Rybak, J., Seki, Y., Stensmyr, M.C., Sachse, S., Hansson, B.S. & Knaden, M. (2015). Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit. PLoS biology, 13(12), e1002318. https://doi.org/10.1371/journal.pbio.1002318

Dweck, H.K., Ebrahim, S.A., Kromann, S., Bown, D., Hillbur, Y., Sachse, S., Hansson, B.S. & Stensmyr, M.C. (2013). Olfactory preference for egg laying on citrus substrates in Drosophila. Current biology: CB, 23(24), 24722480. https://doi.org/10.1016/j.cub.2013.10.047

Ejima, A. (2015). Pleiotropic actions of the male pheromone cis-vaccenyl acetate in Drosophila melanogaster. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 201(9), 927932. https://doi.org/10.1007/s0035901510209

Dekker, T., Ibba, I., Siju, K.P., Stensmyr, M.C. & Hansson, B.S. (2006). Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Current biology: CB, 16(1), 101109. https://doi.org/ 10.1016/j.cub.2005.11.075

Auer, T.O., Khallaf, M.A., Silbering, A.F., Zappia, G., Ellis, K., Álvarez-Ocaña, R., Arguello, J.R., Hansson, B.S., Jefferis, G., Caron, S., Knaden, M. & Benton, R. (2020). Olfactory receptor and circuit evolution promote host specialization. Nature, 579(7799), 402408. https://doi.org/10.1038/s4158602020737

Lavista-Llanos, S., Svatoš, A., Kai, M., Riemensperger, T., Birman, S., Stensmyr, M.C. & Hansson, B.S. (2014). Dopamine drives Drosophila sechellia adaptation to its toxic host. eLife, 3, e03785. https://doi.org/10.7554/eLife.03785

Keesey, I.W., Knaden, M. & Hansson, B.S. (2015). Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. Journal of chemical ecology, 41(2), 121128. https://doi.org/10.1007/s1088601505443

Cloonan, K.R., Abraham, J., Angeli, S., Syed, Z. & Rodriguez-Saona, C. (2018). Advances in the Chemical Ecology of the Spotted Wing Drosophila (Drosophila suzukii) and its Applications. Journal of chemical ecology, 44(10), 922939. https://doi.org/10.1007/s108860181000-y

Green, J.E., Cavey, M., Caturegli, E., Gompel, N., Prud’homme, B. (2019). Evolution of ovipositor length in Drosophila suzukii is driven by enhanced cell size expansion and anisotropic tissue reorganization. Current Biology: CB, 29, 20752082. https://doi.org/10.1016/j.cub.2019.05.020

Malaria (2020). World Health Organization (veröffentlicht 14. Januar 2020, Zugriff 16. November 2020); https://www.who.int/news-room/fact-sheets/detail/malaria

Malaria (2020). Wikipedia (Zugriff 16. November 2020) https://en.wikipedia.org/wiki/Malaria

Barredo, E. & DeGennaro, M. (2020). Not Just from Blood: Mosquito Nutrient Acquisition from Nectar Sources. Trends in parasitology, 36(5), 473484. https://doi.org/10.1016/ j.pt.2020.02.003

Nyasembe, V.O., Tchouassi, D.P., Pirk, C., Sole, C.L. & Torto, B. (2018). Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS neglected tropical diseases, 12(2), e0006185. https://doi.org/ 10.1371/journal.pntd.0006185

Hien, D.F., Dabiré, K.R., Roche, B., Diabaté, A., Yerbanga, R.S., Cohuet, A., Yameogo, B.K., Gouagna, L.C., Hopkins, R.J., Ouedraogo, G.A., Simard, F., Ouedraogo, J.B., Ignell, R. & Lefevre, T. (2016). Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria. PLoS pathogens, 12(8), e1005773. https://doi.org/10.1371/journal.ppat.1005773

Ignell, R. & Hill, S.R. (2020). Malaria mosquito chemical ecology. Current opinion in insect science, 40, 610. https://doi.org/10.1016/j.cois.2020.03.008

Knols, B.G. & De Jong, R. (1996). Limburger cheese as an attractant for the malaria mosquito Anopheles gambiae s.s. Parasitology today (Personal ed.), 12(4), 159161. https://doi.org/10.1016/01694758(96)100028

Danquah, I., Bedu-Addo, G. & Mockenhaupt, F.P. (2010). Type 2 diabetes mellitus and increased risk for malaria infection. Emerging infectious diseases, 16(10), 16011604. https://doi.org/10.3201/eid1610.100399

Fernández-Grandon, G.M., Gezan, S.A., Armour, J.A., Pickett, J.A. & Logan, J.G. (2015). Heritability of attractiveness to mosquitoes. PloS one, 10(4), e0122716. https://doi.org/10.1371/journal.pone.0122716

Ansell, J., Hamilton, K.A., Pinder, M., Walraven, G.E. & Lindsay, S.W. (2002). Short-range attractiveness of pregnant women to Anopheles gambiae mosquitoes. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96(2), 113116. https://doi.org/10.1016/s003592 03(02)902713

Debebe, Y., Hill, S.R., Birgersson, G., Tekie, H. & Ignell, R. (2020). Plasmodium falciparum gametocyte-induced volatiles enhance attraction of Anopheles mosquitoes in the field. Malaria Journal 19, 327 (2020). https://doi.org/10.1186/s12936020033783

Robinson, A., Busula, A.O., Voets, M.A., Beshir, K.B., Caulfield, J.C., Powers, S.J., Verhulst, N.O., Winskill, P., Muwanguzi, J., Birkett, M.A., Smallegange, R.C., Masiga, D.K., Mukabana, W.R., Sauerwein, R.W., Sutherland, C.J., Bousema, T., Pickett, J.A., Takken, W., Logan, J.G. & de Boer, J.G. (2018). Plasmodium-associated changes in human odor attract mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 115(18), E4209–E4218. https://doi.org/10.1073/pnas.1721610115

Emami, S.N., Lindberg, B.G., Hua, S., Hill, S.R., Mozuraitis, R., Lehmann, P., Birgersson, G., Borg-Karlson, A.K., Ignell, R. & Faye, I. (2017). A key malaria metabolite modulates vector blood seeking, feeding, and susceptibility to infection. Science (New York, N.Y.), 355(6329), 10761080. https://doi.org/10.1126/science.aah4563

Lefèvre, T., Gouagna, L.C., Dabiré, K.R., Elguero, E., Fontenille, D., Renaud, F., et al. (2010). Beer consumption increases human attractiveness to malaria mosquitoes. PloS one, 5(3), e9546. https://doi.org/10.1371/journal.pone.0009546

Won Jung, J., Baeck, S.J., Perumalsamy, H., Hansson, B.S., Ahn, Y. & Wook Kwon, H. (2015). A novel olfactory pathway is essential for fast and efficient blood-feeding in mosquitoes. Scientific Reports, 5, 13444 (2015). https://doi.org/10.1038/srep13444

Wondwosen, B., Birgersson, G., Tekie, H., Torto, B., Ignell, R. & Hill, S.R. (2018). Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malar J 17, 90 (2018). https://doi.org/10.1186/s1293601822451

Bentz, B.J., Régnière, J., Fettig, C.J., Hansen, E.M., Hayes, J.L., Hicke, J.A., Kelsey, R.G., Negrón, J.F. & Seybold, S.J. (2010). Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects, BioScience, 60(8), 602613, https://doi.org/10.1525/bio.2010.60.8.6

Santini, A. & Faccoli, M. (2015). Dutch elm disease and elm bark beetles: a century of association. iForest, 8, 126134. – doi: 10.3832/ifor1231008

Holzkurier (translated by Eva Guzely) The dimensions of damage in Europe’s forests. timber-online.net. Zugriff 16. November 2020); https://www.timber-online.net/blog/the-dimensions-of-damage-in-europe-s-forests.html

Bark and Wood Boring Beetles of the World (Zugriff 16. November 2020) www.barkbeetles.org

200512839