Bill Hansson
Die Nase vorn
Eine Reise in die Welt des Geruchssinns
Aus dem Englischen
von Sebastian Vogel
FISCHER E-Books
Der 1959 in Schweden geborene Neuroethologe Bill Hansson ist Direktor des Max-Planck-Instituts für chemische Ökologie in Jena, Honorarprofessor an der Friedrich-Schiller-Universität und ehemaliger Vizepräsident der Max-Planck-Gesellschaft. Im Mittelpunkt seiner Forschung steht die Frage, wie Pflanzen und Insekten mittels Duftstoffen kommunizieren.
Weitere Informationen finden Sie auf www.fischerverlage.de
Der Direktor des Max-Planck-Instituts für chemische Ökologie Bill Hansson erzählt Geschichten aus der Welt der Gerüche: von feinen Hundenasen, die beim Spaziergang die Nachrichten des letzten Tages erschnüffeln, über Pflanzen, die Alarmnoten aussenden, wenn sie von Schädlingen befallen werden, bis hin zum Duft von Neugeborenen, der unterschiedliche Reaktionen bei Männern und Frauen hervorruft.
Eine Reise zu den der buntesten Nasen aus Tier-, Pflanzen- und Menschenwelt und eine Einladung in die verblüffende Welt der Geruchsforschung.
Deutsche Erstausgabe
Erschienen bei FISCHER E-Books
© 2021 S. Fischer Verlag GmbH, Hedderichstr. 114, D-60596 Frankfurt am Main
Covergestaltung: Andreas Heilmann und Gundula Hissmann, Hamburg
Coverabbildung: Bridgeman, Mauritius Images
Abhängig vom eingesetzten Lesegerät kann es zu unterschiedlichen Darstellungen des vom Verlag freigegebenen Textes kommen.
Dieses E-Book ist urheberrechtlich geschützt.
ISBN 978-3-10-491347-6
Crutzen, P.J. & Stoermer, E.F. (2000). The »Anthropocene«. Global Change Newsletter, 41, 17.
Lindsey, R. (2020). Climate Change: Atmospheric Carbon Dioxide. Climate.gov.; https://www.climate.gov/news-fea tures/understanding-climate/climate-change-atmospheric-carbon-dioxide
Drake, B.G., Gonzalez-Meler, M.A. & Long, S.P. (1997). MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2? Annual review of plant physiology and plant molecular biology, 48, 609–639. https://doi.org/10.1146/annurev.arplant.48.1.609
Goyret, J., Markwell, P. & Raguso, R. (2008). Context- and scale-dependent effects of floral CO2 on nectar foraging by Manduca sexta. Proceedings of the National Academy of Sciences of the United States of America, 105, 4565– 4570. 10.1073/pnas.0708629105.
Majeed, S., Hill, S. & Ignell, R. (2013). Impact of elevated CO2 background levels on the host-seeking behaviour of Aedes aegypti. The Journal of experimental biology. 217.10.1242/jeb.092718.
Tang, C., Davis, K.E., Delmer, C., Yang, D. & Wills, M.A. (2018). Elevated atmospheric CO2 promoted speciation in mosquitoes (Diptera, Culicidae). Communications biology, 1, 182. https://doi.org/10.1038/s42003–018–0191–7
Haugan P.M. & Drange, H. (1996). Effects of CO2 on the ocean environment. Energy Conversion and Management, 37,1019–1022. https://doi.org/10.1016/0196–8904(95) 00292–8
Porteus, C., Hubbard, P., Uren Webster, T., van Aerle, R., Canario, A., Santos, E. & Wilson, R. (2018). Near-future CO2 levels impair the olfactory system of a marine fish. Nature Climate Change. 8.10.1038/s41558–018–0224–8.
Yeung, L.Y., Murray, L.T., Martinerie, P., Witrant, E., Hu, H., Banerjee, A., Orsi, A. & Chappellaz, J. (2019). Isotopic constraint on the twentieth-century increase in tropospheric ozone. Nature, 570(7760), 224–227. https://doi.org/ 10.1038/s41586–019–1277–1
Seibold, S., Gossner, M.M., Simons, N.K. et al. (2019). Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature. 574. 671–674. 10.1038/s41586–019–1684–3.
Cook, B., Haverkamp, A., Hansson, B.S. et al. (2020). Pollination in the Anthropocene: a Moth Can Learn Ozone-Altered Floral Blends. Journal of Chemical Ecology. 1–10. 10.1007/s10886–020–01211–4.
Girling, R., Lusebrink, I., Farthing, E. et al. (2013). Diesel exhaust rapidly degrades floral odours used by honeybees. Scientific Reports, 3, 2779. https://doi.org/10.1038/srep 02779
Kessler, S., Tiedeken, E.J., Simcock, K.L., Derveau, S., Mitchell, J., Softley, S., Stout, J.C. & Wright, G.A. (2015). Bees prefer foods containing neonicotinoid pesticides. Nature, 521(7550), 74–76. https://doi.org/10.1038/nature14414
K., Lippi, C.A., Johnson, L.R., Neira, M., Rohr, J.R., Ryan, S.J., Savage, V., Shocket, M.S., Sippy, R., Stewart Ibarra, A.M., Thomas, M.B. & Villena, O. (2019). Thermal biology of mosquito-borne disease. Ecology letters, 22(10), 1690– 1708. https://doi.org/10.1111/ele.13335
www.ngice.mpg.de
Savoca, M., Wohlfeil, M., Ebeler, S. & Nevitt, G. (2016). Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Science Advances. 2. e1600395–e1600395.10.1126/sciadv.1600395.
Our environment is drowning in plastic, unenvironment.org; https://www.unenvironment.org/interactive/beat-plastic-pollution/
Wilcox, C., Puckridge, M., Schuyler, Q., Townsend, K. & Hardesty, B. (2018). A quantitative analysis linking sea turtle mortality and plastic debris ingestion. Scientific Reports. 8.10.1038/s41598–018–30038-z.
Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports. 2018.10.1038/s41598–018–22939-w.
Lindeque, P., Cole, M., Coppock, R., Lewis, C., Miller, R., Watts, A., Wilson-McNeal, A., Wright, S. & Galloway, T. (2020). Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environmental Pollution. 265. 114721.10.1016/j.envpol.2020.114721.
Beyers, D. & Farmer, M. (2001). Effects of copper on olfaction of Colorado pikeminnow. Environmental toxicology and chemistry / SETAC, 20, 907–12.10.1002/etc.5620 200427.
Tierney, K., Sampson, J., Ross, P., Sekela, M. & Kennedy, C. (2008). Salmon Olfaction Is Impaired by an Environmentally Realistic Pesticide Mixture. Environmental science & technology, 42, 4996–5001.10.1021/es800240u.
Ward, A.J., Duff, A.J., Horsfall, J.S. & Currie, S. (2008). Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish. Proceedings. Biological sciences, 275(1630), 101–105. https://doi.org/10.1098/rspb.2007.1283
Ajmani, G.S., Suh, H.H. & Pinto, J.M. (2016). Effects of Ambient Air Pollution Exposure on Olfaction: A Review. Environmental health perspectives, 124(11), 1683–1693. https://doi.org/10.1289/EHP136
Calderón-Garcidueñas, L., González-Maciel, A., Reynoso-Robles, A., Hammond, J., Kulesza, R., Lachmann, I., Torres-Jardón, R., Mukherjee, P.S. & Maher, B.A. (2020). Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles (and engineered Ti-rich nanorods). The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract a key brainstem portal. Environmental Research, 191, 110–139, ISSN 0013–9351, https://doi.org/10.1016/ j.envres.2020.110139.
Butowt, R. & von Bartheld, C.S. (2020). Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry, 1073858420956905. Advance online publication. https://doi.org/10.1177/1073858420956905
https://www.iff.com/
Update to Coronavirus symptoms www.gov.scot ; https://www.gov.scot/news/update-to-coronavirus-symptoms/
Stopsack, K.H., Mucci, L.A., Antonarakis, E.S., Nelson, P.S. & Kantoff, P.W. (2020). TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer discovery, 10(6), 779–782. https://doi.org/10.1158/2159–8290.CD-20–0451
Baig, A.M., Khaleeq, A., Ali, U. & Syeda, H. (2020). Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chemical Neuroscience, 11(7), 995–998. DOI: 10.1021/acschemneuro.0c00122.
https://www.mako.co.il/health-news/local/Article-39a265ef1146571026.htm
Gilbert, A. (2015). What the Nose Knows: The Science of Scent in Everyday Life, CreateSpace Independent Publishing Platform
Bushdid, C., Magnasco, M., Vosshall, L. & Keller, A. (2014). Humans Can Discriminate More than 1 Trillion Olfactory Stimuli. Science, 343(6177), new series, 1370–1372. www.jstor.org/stable/24743486
Gerkin, R.C. & Castro, J.B. (2015). The number of olfactory stimuli that humans can discriminate is still unknown. eLife, 4, e08127. https://doi.org/10.7554/eLife.08127
Meredith, M. (2001). Human vomeronasal organ function: a critical review of best and worst cases. Chemical senses, 26(4), 433–445. https://doi.org/10.1093/chemse/ 26.4.433
Monti-Bloch, L. & Grosser, B.I. (1991). Effect of putative pheromones on the electrical activity of the human vomeronasal organ and olfactory epithelium. The Journal of steroid biochemistry and molecular biology, 39(4B), 573–582. https://doi.org/10.1016/0960–0760(91)90255–4
Savic, I., Berglund, H., Gulyas, B. & Roland, P. (2001). Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans. Neuron, 31(4), 661–668. https://doi.org/10.1016/s0896–6273(01) 00390–7
Savic, I., Berglund, H. & Lindström, P. (2005). Brain response to putative pheromones in homosexual men. Proceedings of the National Academy of Sciences of the United States of America, 102(20), 7356–7361. https://doi.org/ 10.1073/pnas.0407998102
Berglund, H., Lindström, P. & Savic, I. (2006). Brain response to putative pheromones in lesbian women. Proceedings of the National Academy of Sciences of the United States of America. 103. 8269–8274. 10.1073/pnas.0600331103.
Wyatt, T.D. (2015). The search for human pheromones: the lost decades and the necessity of returning to first principles. Proceedings. Biological sciences, 282(1804), 20142994. https://doi.org/10.1098/rspb.2014.2994
Vaglio, S. (2009). Chemical communication and mother-infant recognition. Communicative & integrative biology, 2(3), 279–281. https://doi.org/10.4161/cib.2.3.8227
Lundström, J.N., Mathe, A., Schaal, B., Frasnelli, J., Nitzsche, K., Gerber, J. & Hummel, T. (2013). Maternal status regulates cortical responses to the body odor of newborns. Frontiers in psychology, 4, 597. https://doi.org/10.3389/fpsyg.2013. 00597
Uebi, T., Hariyama, T., Suzuki, K., Kanayama, N., Nagata, Y., Ayabe-Kanamura, S., Yanase, S., Ohtsubo, Y. & Ozaki, M. (2019). Sampling, identification and sensory evaluation of odors of a newborn baby’s head and amniotic fluid. Scientific reports, 9(1), 12759. https://doi.org/10.1038/s41598–019–49137–6
Schaal, B., Marlier, L. & Soussignan, R. (2000). Human foetuses learn odours from their pregnant mother’s diet. Chemical senses, 25(6), 729–737. https://doi.org/10.1093/chemse/ 25.6.729
Schicker, I. (2001). For Fathers and Newborns, Natural Law and Odor; https://www.washingtonpost.com/archive/politics/2001/02/26/for-fathers-and-newborns-natural-law-and-odor/ccc5982c-acdd-4d0a-8b06–20d2a2bc419a/
Chen, D., Katdare, A. & Lucas, N. (2006). Chemosignals of fear enhance cognitive performance in humans. Chemical senses, 31(5), 415–423. https://doi.org/10.1093/chemse/bjj046
Gelstein, S., Yeshurun, Y., Rozenkrantz, L., Shushan, S., Frumin, I., Roth, Y. & Sobel, N. (2011). Human tears contain a chemosignal. Science (New York, N.Y.), 331(6014), 226–230. https://doi.org/10.1126/science.1198331
Oh, T.J., Kim, M.Y., Park, K.S. & Cho, Y.M. (2012). Effects of chemosignals from sad tears and postprandial plasma on appetite and food intake in humans. PloS one, 7(8), e42352. https://doi.org/10.1371/journal.pone.0042352
Ferrero, D.M., Moeller, L.M., Osakada, T., Horio, N., Li, Q., Roy, D.S., Cichy, A., Spehr, M., Touhara, K. & Liberles, S.D. (2013). A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature, 502(7471), 368–371. https://doi.org/10.1038/nature12579
Keller, A., Zhuang, H., Chi, Q., Vosshall, L. & Matsunami, H. (2007). Genetic Variation in a Human Odorant Receptor Alters Odour Perception. Nature. 449. 468–472. 10.1038/ nature06162.
Wedekind, C., Seebeck, T., Bettens, F. & Paepke, A.J. (1995). MHC-dependent mate preferences in humans. Proceedings. Biological sciences, 260(1359), 245–249. https://doi.org/ 10.1098/rspb.1995.0087
Milinski, M., Croy, I., Hummel, T. & Boehm, T. (2013). Major histocompatibility complex peptide ligands as olfactory cues in human body odour assessment. Proceedings of the Royal Society B: Biological Sciences, 280(1757), 20130381. https://doi.org/10.1098/rspb.2013.0381
McClintock, M. (1971). Menstrual Synchrony and Suppression. Nature 229, 244–245. https://doi.org/10.1038/ 229244a0
Russell, M.J., Switz, G.M. & Thompson, K. (1980). Olfactory influences on the human menstrual cycle. Pharmacology, biochemistry, and behavior, 13(5), 737–738. https://doi.org/10.1016/0091–3057(80)90020–9
Stern, K. & McClintock, M.K. (1998). Regulation of ovulation by human pheromones. Nature, 392(6672), 177–179. https://doi.org/10.1038/32408
Ziomkiewicz, A. (2006). Menstrual synchrony: Fact or artifact? Human nature (Hawthorne, N.Y.), 17(4), 419–432. https://doi.org/10.1007/s12110–006–1004–0
Åhs, F., Miller, S., Gordon, A. & Lundström, J. (2013). Aversive learning increases sensory detection sensitivity. Biological Psychology, 92, 135–141.
Sinding, C., Valadier, F., Al-Hassani, V., Feron, G., Tromelin, A., Kontaris, I. & Hummel, T. (2017). New determinants of olfactory habituation. Scientific Reports, 7.
Khan, R.M., Luk, C.H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R. & Sobel, N. (2007). Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(37), 10015– 10023. https://doi.org/10.1523/JNEUROSCI.1158– 07.2007
Ravia, A., Snitz, K., Honigstein, D., Finkel, M., Zirler, R., Perl, O., Secundo, L., Laudamiel, C., Harel, D. & Sobel, N. (2020). A measure of smell enables the creation of olfactory metamers. Nature, 10.1038/s41586–020–2891–7. Advance online publication. https://doi.org/10.1038/s41586–020–2891–7
Olofsson, J.K., Hurley, R.S., Bowman, N.E., Bao, X., Mesulam, M.M. & Gottfried, J.A. (2014). A designated odor-language integration system in the human brain. The Journal of neuroscience: the official journal of the Society for Neuroscience, 34(45), 14864–14873. https://doi.org/10.1523/JNEUROSCI.2247–14.2014
Majid, A., Burenhult, N., Stensmyr, M., de Valk, J. & Hansson, B.S. (2018). Olfactory language and abstraction across cultures. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 373(1752), 20170139. https://doi.org/10.1098/rstb.2017.0139
Walker, D., Walker, J., Cavnar, P., Taylor, J., Pickel, D., Hall, S. & Suarez, J. (2006). Naturalistic quantification of canine olfactory sensitivity. Applied animal behaviour science, 97, 241–254. doi: 10.1016/j.applanim.2005.07.009
Kester, D. & Settles, G. (1998). The External Aerodynamics of Canine Olfaction. doi: 10.1007/978–3–7091–6025–1_23.
Jenkins, E.K., DeChant, M.T. & Perry, E.B. (2018). When the Nose Doesn’t Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota. Frontiers in veterinary science, 5, 56. https://doi.org/10.3389/fvets.2018.00056
Glausiusz, J. (2008). The Hidden Power of SCENT. Scientific American Mind, 19(4), 38–45; Zugriff 14. November 2020; http://www.jstor.org/stable/24939934
Horowitz, A. (2015). Reading Dogs Reading Us. Proceedings of the American Philosophical Society, 159(2), 141–155; Zugriff 14. November 2020; http://www.jstor.org/stable/ 24640211
Botigué, L., Song, S., Scheu, A. et al. (2017). Ancient European dog genomes reveal continuity since the Early Neolithic. Nature Communications 8, 16082. doi:10.1038/ncomms 16082
Gadbois, S. & Reeve, C. (2014). Chapter 1 Canine Olfaction: Scent, Sign, and Situation.
Nagasawa, M., Mitsui, S., En, S., Ohtani, N., Ohta, M., Sakuma, Y., Onaka, T., Mogi, K. & Kikusui, T. (2015). Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science, 348, 333–336.
Wells, D. & Hepper, P. (2003). Directional tracking in the domestic dog, Canis familiaris. Applied Animal Behaviour Science, 84, 297–305.
Hepper, P. & Wells, D. (2005). How many footsteps do dogs need to determine the direction of an odour trail? Chemical Senses, 30(4)(4), 291–298. https://doi.org/10.1093/chemse/bji023
Akpan, N. & Ehrichs, M. (2016). Inside the extraordinary nose of a search-and-rescue dog. PBS News Hour; https://www.pbs.org/newshour/science/inside-nose-rescue-dog
Krulwich, R. (2014). What Not To Serve Buzzards For Lunch, A Glorious Science Experiment. NPR.org; https://www.npr.org/sections/krulwich/2014/06/26/325648459/what-not-to-serve-buzzards-for-lunch-a-glorious-science-experiment
Houston, D.C. (1986). Scavenging Efficiency of Turkey Vultures in Tropical Forest. The Condor, 88(3), 1 August 1986, 318–323, https://doi.org/10.2307/1368878
Grigg, N.P., Krilow, J.M., Gutiérrez-Ibáñez, C., Wylie, D.R., Graves, G. & Iwaniuk, A. (2017). Anatomical evidence for scent guided foraging in the turkey vulture. Scientific Reports, 7.
Averett, N. (2014). Birds Can Smell, and One Scientist is Leading the Charge to Prove It. Audubon.org; https://www.audubon.org/magazine/january-february-2014/birds-can-smell-and-one-scientist
Bonadonna, F., Bajzak, C., Benhamou, S., Igloi, K., Jouventin, P., Lipp, H.P. & Dell’Omo, G. (2005). Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance. Proceedings. Biological sciences, 272(1562), 489–495. https://doi.org/ 10.1098/rspb.2004.2984
Gagliardo, A., Bried, J., Lambardi, P., Luschi, P., Wikelski, M. & Bonadonna, F. (2013). Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. The Journal of experimental biology, 216(Pt 15), 2798–2805. https://doi.org/10.1242/jeb.085738
Reynolds, A., Cecere, J.G., Paiva, V., Ramos, J. & Focardi, S. (2015). Pelagic seabird flight patterns are consistent with a reliance on olfactory maps for oceanic navigation. Proceedings of the Royal Society B: Biological Sciences, 282.
Mardon, J., Nesterova, A.P., Traugott, J., Saunders, S.M. & Bonadonna, F. (2010). Insight of scent: experimental evidence of olfactory capabilities in the wandering albatross (Diomedea exulans). The Journal of experimental biology, 213(4), 558–563. https://doi.org/10.1242/jeb.032979
Pepys, S. (1666). The Diary of Samuel Pepys, Sunday 2 September 1666; https://www.pepysdiary.com/diary/1666/ 09/02/
Reuters (2008). Chronology: Reuters, from pigeons to multimedia merger; https://www.reuters.com/article/us-reu ters-thomson-chronology/chronology-reuters-from-pige ons-to-multimedia-merger-idUSL1849100620080219
Corera, G. (2018). Operation Columba: The Secret Pigeon Service: The Untold Story of World War II Resistance in Europe, William Morrow, New York.
Wallraff, H.G. (2005). Avian Navigation: Pigeon Homing as a Paradigm, Springer, Berlin.
Caro, S.P. & Balthazart, J. (2010). Pheromones in birds: myth or reality? Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 196(10), 751–766. https://doi.org/10.1007/s00359–010–0534–4
Gagliardo, A., Pollonara, E. & Wikelski, M. (2016). Pigeon navigation: exposure to environmental odours prior to release is sufficient for homeward orientation, but not for homing. The Journal of experimental biology, 219(Pt 16), 2475–2480. https://doi.org/10.1242/jeb.140889
Lengagne, T., Jouventin, P. & Aubin, T. (1999). Finding One’s Mate in a King Penguin Colony: Efficiency of Acoustic Communication. Behaviour, 136(7), 833–846; Zugriff 14. November 2020; http://www.jstor.org/stable/4535644
Birds’ Sense of Smell. (2011). The Science Teacher, 78(8), 24–27; Zugriff 14. November 2020; http://www.jstor.org/stable/24148500
Krause, E.T., Krüger, O., Kohlmeier, P. & Caspers, B.A. (2012). Olfactory kin recognition in a songbird. Biology letters, 8(3), 327–329. https://doi.org/10.1098/rsbl.2011. 1093
Caspers, B.A., Hagelin, J.C., Paul, M., Bock, S., Willeke, S. & Krause, E.T. (2017). Zebra Finch chicks recognise parental scent, and retain chemosensory knowledge of their genetic mother, even after egg cross-fostering. Scientific reports, 7(1), 12859. https://doi.org/10.1038/s41598–017–13110-y
Whittaker, D.J., Slowinski, S.P., Greenberg, J.M., Alian, O., Winters, A.D., Ahmad, M.M., Burrell, M., Soini, H.A., Novotny, M.V., Ketterson, E.D. & Theis, K.R. (2019). Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. The Journal of experimental biology, 222(Pt 20), jeb202978. https://doi.org/10.1242/jeb. 202978
Caro, S.P. & Balthazart, J. (2010). Pheromones in birds: myth or reality? Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 196(10), 751–766. https://doi.org/10.1007/s00359–010–0534–4
Steiger, S.S., Fidler, A.E., Valcu, M. & Kempenaers, B. (2008). Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds? Proceedings. Biological sciences, 275(1649), 2309–2317. https://doi.org/ 10.1098/rspb.2008.0607
Meteyer, C.U., Rideout, B.A., Gilbert, M., Shivaprasad, H.L. & Oaks, J.L. (2005). Pathology and proposed pathophysiology of diclofenac poisoning in free-living and experimentally exposed oriental white-backed vultures (Gyps bengalensis). Journal of wildlife diseases, 41(4), 707–716. https://doi.org/10.7589/0090–3558–41.4.707
Savoca, M.S., Wohlfeil, M.E., Ebeler, S.E. & Nevitt, G.A. (2016). Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Science advances, 2(11), e1600395. https://doi.org/10.1126/sciadv.1600395
Catania, K.C. (2006). Olfaction: underwater ›sniffing‹ by semi-aquatic mammals. Nature, 444(7122), 1024–1025. https://doi.org/10.1038/4441024a
Reiten, I., Uslu, F.E., Fore, S., Pelgrims, R., Ringers, C., Verdugoa, C.D., Hoffmann, M., Lal, P., Kawakami, K., Pekkan, K., et al. (2017). Motile-cilia-mediated flow improves sensitivity and temporal resolution of olfactory computations. Current biology: CB, 27, 166–174. https://www.cell.com/current-biology/fulltext/S0960–9822(16)31389–6
Neuhauss, S.C. (2017). Olfaction: How Fish Catch a Whiff. Current biology: CB, 27(2), R57–R58. https://doi.org/ 10.1016/j.cub.2016.12.007
Hamdani, E. & Døving, K.B. (2007). The functional organization of the fish olfactory system. Progress in neurobiology, 82(2), 80–86. https://doi.org/10.1016/j.pneurobio.2007.02.007
Stacey, N. & Sorensen, P. (2002). Hormonal Pheromones in Fish. 10.1016/B978–008088783–8.00018–8.
Jumper, G. & Baird, R. (1991). Location by Olfaction: A Model and Application to the Mating Problem in the Deep-Sea Hatchetfish Argyropelecus hemigymnus. The American Naturalist, 138(6), 1431–1458; Zugriff 27. Oktober 2020; http://www.jstor.org/stable/2462555
Vieira, S., Biscoito, M., Encarnação, H., Delgado, J. & Pietsch, T. (2013). Sexual Parasitism in the Deep-sea Ceratioid Anglerfish Centrophryne spinulosa Regan and Trewavas (Lophiiformes: Centrophrynidae). Copeia, 2013(4), 666–669; Zugriff September 21, 2020; http://www.jstor.org/stable/ 24637159
Pietsch, T. (2009). Oceanic Anglerfishes: Extraordinary Diversity in the Deep Sea. University of California Press; Zugriff 14. November 2020; http://www.jstor.org/stable/ 10.1525/j.ctt1ppb32 pp. 43–45 e
NOAA. (2019) What is a sea lamprey?; https://oceanservice.noaa.gov/facts/sea-lamprey.html
Johnson, N., Yun, S., Thompson, H., Brant, C., Li, W. & Meinwald, J. (2009). A Synthesized Pheromone Induces Upstream Movement in Female Sea Lamprey and Summons Them into Traps. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1021–1026. www.jstor.org/stable/40254676
Li, W., Scott, A.P., Siefkes, M.J., Yan, H., Liu, Q., Yun, S.S. & Gage, D.A. (2002). Bile Acid secreted by male sea lamprey that acts as a sex pheromone. Science (New York, N.Y.), 296(5565), 138–141. https://doi.org/10.1126/science.1067797
Bandoh, H., Kida, I. & Ueda, H. (2011). Olfactory responses to natal stream water in sockeye salmon by BOLD fMRI. PloS one, 6(1), e16051. https://doi.org/10.1371/journal.pone. 0016051
Roberts, L. & Garcia de Leaniz, C. (2011). Something smells fishy: Predator-naïve salmon use diet cues, not kairomones, to recognize a sympatric mammalian predator. Animal Behaviour, 82, 619–625.10.1016/j.anbehav.2011.06.019.
Brooker, R.M., Munday, P.L., Chivers, D.P. & Jones, G.P. (2015). You are what you eat: diet-induced chemical crypsis in a coral-feeding reef fish. Proceedings. Biological sciences, 282(1799), 20141887. https://doi.org/10.1098/rspb. 2014.1887
Gardiner, J.M., Whitney, N.M. & Hueter, R.E. (2015). Smells Like Home: The Role of Olfactory Cues in the Homing Behavior of Blacktip Sharks, Carcharhinus limbatus. Integrative and comparative biology, 55(3), 495–506. https://doi.org/ 10.1093/icb/icv087
Marks, R. In-depth: Shark Senses. PBS.org/; https://www.pbs.org/kqed/oceanadventures/episodes/sharks/indepth-senses.html
Gardiner, J.M. & Atema, J. (2010). The function of bilateral odor arrival time differences in olfactory orientation of sharks. Current biology: CB, 20(13), 1187–1191. https://doi.org/10.1016/j.cub.2010.04.053
Enjin, A. & Suh, G.S. (2013). Neural mechanisms of alarm pheromone signaling. Molecules and cells, 35(3), 177–181. https://doi.org/10.1007/s10059–013–0056–3
Mathuru, A.S., Kibat, C., Cheong, W.F., Shui, G., Wenk, M.R., Friedrich, R.W. & Jesuthasan, S. (2012). Chondroitin fragments are odorants that trigger fear behavior in fish. Current biology: CB, 22(6), 538–544. https://doi.org/ 10.1016/j.cub.2012.01.061
Walker, M. (2010). Whale ›sense of smell‹ revealed, BBC Earth News; http://news.bbc.co.uk/earth/hi/earth_news/newsid_8844000/8844443.stm
George, J.C. & Thewissen, H. Bowhead. Whale Sensory Research / Olfaction in Bowhead Whales, North-Slope.org ; http://www.north-slope.org/departments/wildlife-management/studies-and-research-projects/bowhead-whales/bowhead-whale-anatomy-and-physiology-studies/bowhead-whale-sensory-research#OlfactionBH
Pitcher, B.J., Harcourt, R., Schaal, B, & Charrier, I. (2010). Social olfaction in marine mammals: wild female Australian sea lions can identify their pup’s scent. Biology Letters, 7, 60–62.
Stoffel, M., Caspers, B.A., Forcada, J., Giannakara, A., Baier, M., Eberhart-Phillips, L., Müller, C. & Hoffman, J.I. (2015). Chemical fingerprints encode mother–offspring similarity, colony membership, relatedness, and genetic quality in fur seals. Proceedings of the National Academy of Sciences, 112, E5005–E5012.
Schröder, H., Moser, N. & Huggenberger, S. (2020). Neuroanatomy of the Mouse: An introduction, 319–331: The Mouse Olfactory System, Springer International Publishing
https://www.springer.com/gp/book/9783030198978
Zhang, X. & Firestein, S. (2002). The olfactory receptor gene superfamily of the mouse. Nature neuroscience, 5(2), 124– 133. https://doi.org/10.1038/nn800
Mombaerts, P. (1996). Targeting olfaction. Current Opinion in Neurobiology, 6, (4,1996), 481–486, ISSN 0959–4388, https://doi.org/10.1016/S0959–4388(96)80053–5. (http://www.sciencedirect.com/sci ence/article/pii/S0959438896800535).
Mombaerts, P. (2006). Axonal wiring in the mouse olfactory system. Annual review of cell and developmental biology, 22, 713–37
Zancanaro, C. (2014). Vomeronasal Organ: A Short History of Discovery and an Account of Development and Morphology in the Mouse. In: Mucignat-Caretta C (Hg.). Neurobiology of Chemical Communication CRC Press/Taylor & Francis Boca Raton, FL. Kapitel 9; https://www.ncbi.nlm.nih.gov/books/NBK200982/
Pérez-Gómez, A., Stein, B., Leinders-Zufall, T. & Chamero, P. (2014). Signaling mechanisms and behavioral function of the mouse basal vomeronasal neuroepithelium. Frontiers in neuroanatomy, 8, 135. https://doi.org/10.3389/fnana. 2014.00135
Fleischer, J. & Breer, H. (2010). The Grueneberg ganglion: a novel sensory system in the nose. Histology and histopathology, 25(7), 909–915. https://doi.org/10.14670/HH-25.909
Brechbühl, J., Vallière, A., Wood, D., Nenniger Tosato, M. & Broillet, M. (2020). The Grueneberg ganglion controls odor-driven food choices in mice under threat. Communications Biology. 3.10.1038/s42003–020–01257-w.
Brechbühl, J., Klaey, M. & Broillet, M.C. (2008). Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science (New York, N.Y.), 321(5892), 1092–1095. https://doi.org/10.1126/science.1160770
Schmid, A., Pyrski, M., Biel, M., Leinders-Zufall, T. & Zufall, F. (2010). Grueneberg ganglion neurons are finely tuned cold sensors. The Journal of neuroscience: the official journal of the Society for Neuroscience, 30(22), 7563–7568. https://doi.org/10.1523/JNEUROSCI.0608–10.2010
Barrios, A.W., Núñez, G., Sánchez Quinteiro, P. & Salazar, I. (2014). Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice. Frontiers in neuroanatomy, 8, 63. https://doi.org/10.3389/fnana. 2014.00063
Ma, M., Grosmaitre, X., Iwema, C.L., Baker, H., Greer, C.A. & Shepherd, G.M. (2003). Olfactory signal transduction in the mouse septal organ. The Journal of neuroscience: the official journal of the Society for Neuroscience, 23(1), 317–324. https://doi.org/10.1523/JNEUROSCI.23–01–00317.2003
Tian, H. & Ma, M. (2004). Molecular Organization of the Olfactory Septal Organ. The Journal of neuroscience: the official journal of the Society for Neuroscience, 24. 8383–90.10.1523/JNEUROSCI.2222–04.2004.
Liberles, S.D. (2014). Mammalian pheromones. Annual review of physiology, 76, 151–175. https://doi.org/10.1146/annurev-physiol-021113–170334
Chamero, P., Marton, T.F., Logan, D.W., Flanagan, K., Cruz, J.R., Saghatelian, A., Cravatt, B.F. & Stowers, L. (2007). Identification of protein pheromones that promote aggressive behaviour. Nature, 450(7171), 899–902. https://doi.org/ 10.1038/nature05997
Novotny, M., Harvey, S., Jemiolo, B. & Alberts, J. (1985). Synthetic pheromones that promote inter-male aggression in mice. Proceedings of the National Academy of Sciences of the United States of America, 82(7), 2059–2061. https://doi.org/10.1073/pnas.82.7.2059
Logan, D.W., Brunet, L.J., Webb, W.R., Cutforth, T., Ngai, J. & Stowers, L. (2012). Learned recognition of maternal signature odors mediates the first suckling episode in mice. Current biology: CB, 22(21), 1998–2007. https://doi.org/ 10.1016/j.cub.2012.08.041
Roberts, S.A., Simpson, D.M., Armstrong, S.D., Davidson, A.J., Robertson, D.H., McLean, L., Beynon, R.J. & Hurst, J.L. (2010). Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC biology, 8, 75. https://doi.org/10.1186/1741–7007–8–75
Bruce, H.M. (1959). An exteroceptive block to pregnancy in the mouse. Nature, 184, 105. https://doi.org/10.1038/ 184105a0
Whitten, W.K. (1959). Occurrence of anoestrus in mice caged in groups. The Journal of endocrinology, 18(1), 102–107. https://doi.org/10.1677/joe.0.0180102
Vandenbergh, J.G. (1969). Male odor accelerates female sexual maturation in mice. Endocrinology, 84(3), 658–660. https://doi.org/10.1210/endo-84–3–658
Ferrero, D., Lemon, J., Fluegge, D., Pashkovski, S., Korzan, W., Datta, S., Spehr, M., Fendt, M. & Liberles, S. (2011). Detection and avoidance of a carnivore odor by prey. Proceedings of the National Academy of Sciences of the United States of America. 108. 11235–40.10.1073/pnas.1103317108.
Dewan, A., Pacifico, R., Zhan, R., Rinberg, D. & Bozza, T. (2013). Non-redundant coding of aversive odours in the main olfactory pathway. Nature, 497(7450), 486–489. https://doi.org/10.1038/nature12114
Angioy, A.M., Desogus, A., Barbarossa, I.T., Anderson, P. & Hansson, B.S. (2003). Extreme sensitivity in an olfactory system. Chemical senses, 28(4), 279–284. https://doi.org/ 10.1093/chemse/28.4.279
Kaissling, K.E. (2009). The Sensitivity of the Insect Nose: The Example of Bombyx Mori. In: Gutiérrez A., Marco S. (Hg.). Biologically Inspired Signal Processing for Chemical Sensing. Studies in Computational Intelligence, 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978–3–642–00176–5_3
Karlson, P. & Luscher, M. (1959). »Pheromones«: a new term for a class of biologically active substances. Nature, 183(4653), 55–56. https://doi.org/10.1038/183055a0
Hansson, B.S. (1995). Olfaction in Lepidoptera. Experientia 51, 1003–1027. https://doi.org/10.1007/BF01946910
Missbach, C., Dweck, H.K., Vogel, H., Vilcinskas, A., Stensmyr, M.C., Hansson, B.S. & Grosse-Wilde, E. (2014). Evolution of insect olfactory receptors. eLife, 3, e02115. https://doi.org/10.7554/eLife.02115
Fatouros, N., Huigens, M., van Loon, J. et al. (2005). Butterfly anti-aphrodisiac lures parasitic wasps. Nature 433, 704. https://doi.org/10.1038/433704a
Jones, A.G. & Ratterman, N.L. (2009). Mate choice and sexual selection: what have we learned since Darwin? Proceedings of the National Academy of Sciences of the United States of America, 106 (Suppl 1), 10001–10008. https://doi.org/10.1073/pnas.0901129106
Fisher, R.A. (1915). The evolution of sexual preference. The Eugenics review, 7(3), 184–192.
Edwards, A.W. (2000). The genetical theory of natural selection. Genetics, 154(4), 1419–1426.
ter Hofstede, H.M., Goerlitz, H.R., Ratcliffe, J.M., Holderied, M.W. & Surlykke, A. (2013). The simple ears of noctuoid moths are tuned to the calls of their sympatric bat community. The Journal of experimental biology, 216(Pt 21), 3954–62. doi: 10.1242/jeb.093294. Epub 2013 Aug 2. PMID: 23913945.
Svensson, G.P., Löfstedt, C. & Skals, N. (2007). Listening in pheromone plumes: Disruption of olfactory-guided mate attraction in a moth by a bat-like ultrasound. Journal of Insect Science, 7, 59, available online:insectscience.org/7.59
Gemeno, C., Yeargan, K.V. & Haynes, K.F. (2000). Aggressive Chemical Mimicry by the Bolas Spider Mastophora hutchinsoni: Identification and Quantification of a Major Prey’s Sex Pheromone Components in the Spider’s Volatile Emissions. Journal of chemical ecology, 26, 1235–1243 (2000). https://doi.org/10.1023/A:1005488128468
Karlson, P. & Butenandt, A. (1959). Pheromones (Ectohormones). Insects Annual Review of Entomology, 4 (1), 39–58 https://doi.org/10.1146/annurev.en.04.010159.000351
Butenandt, A. & Hecker, E. (1961). Synthese des Bombykols, des Sexuallockstoffes des Seidenspinners, und seiner geometrischen Isomeren. Angewandte Chemie, 73, 349. https://doi.org/10.1002/ange.19610731102
Allison, J. & Cardé, R. (Hg.) (2016). Pheromone Communication in Moths: Evolution, Behavior, and Application. Oakland, California: University of California Press; Zugriff 15. November 2020; http://www.jstor.org/stable/10.15 25/j.ctv1xxxzm
Baker, T.C. & Vickers, N.J. (1997). Pheromone-Mediated Flight in Moths. In: Cardé, R.T., Minks, A.K. (Hg.). Insect Pheromone Research. Springer, Boston, MA. https://doi.org/10.1007/978–1–4615–6371–6_23
Phelan, P.L. (1992). Evolution of sex pheromones and the role of asymmetric tracking. In: Insect chemical ecology: an evolutionary approach, hg. von Roitberg, B., Isman, M. Chapman and Hall, New York
Hansson, B.S., Tóth, M., Löfstedt, C., Szöcs, G., Subchev, M. & Löfqvist, J. (1990). Pheromone variation among eastern European and a western Asian population of the turnip moth Agrotis segetum. Journal of chemical ecology, 16(5), 1611–1622. https://doi.org/10.1007/BF01014094
Wunderer, H., Hansen, K., Bell, T.W., Schneider, D. & Meinwald, J. (1986). Sex pheromones of two Asian moths (Creatonotos transiens, C. gangis; Lepidoptera-Arctiidae): behavior, morphology, chemistry and electrophysiology. Experimental biology, 46(1), 11–27.
Boppré, M. & Schneider, D. (1985). Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone biosynthesis in male Creatonotos moths (Lepidoptera: Arctiidae). Journal of comparative physiology, 157, 569–577. https://doi.org/10.1007/BF01351351
Kessler, D., Gase, K. & Baldwin, I.T. (2008). Field experiments with transformed plants reveal the sense of floral scents. Science (New York, N.Y.), 321(5893), 1200–1202. https://doi.org/10.1126/science.1160072
Haverkamp, A., Yon, F., Keesey, I.W., Mißbach, C., Koenig, C., Hansson, B.S., Baldwin, I.T., Knaden, M. & Kessler, D. (2016). Hawkmoths evaluate scenting flowers with the tip of their proboscis. eLife, 5, e15039. https://doi.org/10.7554/eLife.15039
Hansson, B.S., Knaden, M., Sachse, S., Stensmyr, M.C. & Wicher, D. (2010). Towards plant-odor-related olfactory neuroethology in Drosophila. Chemoecology, 20(2), 51–61. https://doi.org/10.1007/s00049–009–0033–7
Morgan, T.H. (1910). SEX LIMITED INHERITANCE IN DROSOPHILA. Science (New York, N.Y.), 32(812), 120–122. https://doi.org/10.1126/science.32.812.120
Bellen, H., Tong, C. & Tsuda, H. (2010). 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nature Reviews Neuroscience 11, 514–522 (2010). https://doi.org/10.1038/nrn2839
Hansson, B.S. & Stensmyr, M.C. (2011). Evolution of insect olfaction. Neuron, 72(5), 698–711. https://doi.org/10. 1016/j.neuron.2011.11.003
Stocker, R.F. (2009). The olfactory pathway of adult and larval Drosophila: conservation or adaptation to stage-specific needs? Annals of the New York Academy of Sciences, 1170, 482–486. https://doi.org/10.1111/j.1749–6632.2009. 03896.x
Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. & Axel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell, 96(5), 725–736. https://doi.org/10.1016/s0092–8674(00)80582–6
Vosshall, L.B., Wong, A.M. & Axel, R. (2000). An olfactory sensory map in the fly brain. Cell, 102(2), 147–159. https://doi.org/10.1016/s0092–8674(00)00021–0
Dweck, H.K., Ebrahim, S.A., Khallaf, M.A., Koenig, C., Farhan, A., Stieber, R., Weißflog, J., Svatoš, A., Grosse-Wilde, E., Knaden, M. & Hansson, B.S. (2016). Olfactory channels associated with the Drosophila maxillary palp mediate short- and long-range attraction. eLife, 5, e14925. https://doi.org/10.7554/eLife.14925
Wicher, D., Schäfer, R., Bauernfeind, R., Stensmyr, M., Heller, R., Heinemann, S. & Hansson, B. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 452. 1007–1011. 10.
Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L.B. & Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature, 452(7190), 1002–1006. https://doi.org/10.1038/nature06850
Getahun, M.N., Olsson, S.B., Lavista-Llanos, S., Hansson, B.S. & Wicher, D. (2013). Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors. PloS one, 8(3), e58889. https://doi.org/10.1371/journal.pone.0058889
Stensmyr, M.C., Dweck, H.K., Farhan, A., Ibba, I., Strutz, A., Mukunda, L., Linz, J., Grabe, V., Steck, K., Lavista-Llanos, S., Wicher, D., Sachse, S., Knaden, M., Becher, P.G., Seki, Y. & Hansson, B.S. (2012). A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell, 151(6), 1345–1357. https://doi.org/10.1016/j.cell.2012.09.046
Ebrahim, S.A., Dweck, H.K., Stökl, J., Hofferberth, J.E., Trona, F., Weniger, K., Rybak, J., Seki, Y., Stensmyr, M.C., Sachse, S., Hansson, B.S. & Knaden, M. (2015). Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit. PLoS biology, 13(12), e1002318. https://doi.org/10.1371/journal.pbio.1002318
Dweck, H.K., Ebrahim, S.A., Kromann, S., Bown, D., Hillbur, Y., Sachse, S., Hansson, B.S. & Stensmyr, M.C. (2013). Olfactory preference for egg laying on citrus substrates in Drosophila. Current biology: CB, 23(24), 2472–2480. https://doi.org/10.1016/j.cub.2013.10.047
Ejima, A. (2015). Pleiotropic actions of the male pheromone cis-vaccenyl acetate in Drosophila melanogaster. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 201(9), 927–932. https://doi.org/10.1007/s00359–015–1020–9
Dekker, T., Ibba, I., Siju, K.P., Stensmyr, M.C. & Hansson, B.S. (2006). Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Current biology: CB, 16(1), 101–109. https://doi.org/ 10.1016/j.cub.2005.11.075
Auer, T.O., Khallaf, M.A., Silbering, A.F., Zappia, G., Ellis, K., Álvarez-Ocaña, R., Arguello, J.R., Hansson, B.S., Jefferis, G., Caron, S., Knaden, M. & Benton, R. (2020). Olfactory receptor and circuit evolution promote host specialization. Nature, 579(7799), 402–408. https://doi.org/10.1038/s41586–020–2073–7
Lavista-Llanos, S., Svatoš, A., Kai, M., Riemensperger, T., Birman, S., Stensmyr, M.C. & Hansson, B.S. (2014). Dopamine drives Drosophila sechellia adaptation to its toxic host. eLife, 3, e03785. https://doi.org/10.7554/eLife.03785
Keesey, I.W., Knaden, M. & Hansson, B.S. (2015). Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. Journal of chemical ecology, 41(2), 121–128. https://doi.org/10.1007/s10886–015–0544–3
Cloonan, K.R., Abraham, J., Angeli, S., Syed, Z. & Rodriguez-Saona, C. (2018). Advances in the Chemical Ecology of the Spotted Wing Drosophila (Drosophila suzukii) and its Applications. Journal of chemical ecology, 44(10), 922–939. https://doi.org/10.1007/s10886–018–1000-y
Green, J.E., Cavey, M., Caturegli, E., Gompel, N., Prud’homme, B. (2019). Evolution of ovipositor length in Drosophila suzukii is driven by enhanced cell size expansion and anisotropic tissue reorganization. Current Biology: CB, 29, 2075–2082. https://doi.org/10.1016/j.cub.2019.05.020
Malaria (2020). World Health Organization (veröffentlicht 14. Januar 2020, Zugriff 16. November 2020); https://www.who.int/news-room/fact-sheets/detail/malaria
Malaria (2020). Wikipedia (Zugriff 16. November 2020) https://en.wikipedia.org/wiki/Malaria
Barredo, E. & DeGennaro, M. (2020). Not Just from Blood: Mosquito Nutrient Acquisition from Nectar Sources. Trends in parasitology, 36(5), 473–484. https://doi.org/10.1016/ j.pt.2020.02.003
Nyasembe, V.O., Tchouassi, D.P., Pirk, C., Sole, C.L. & Torto, B. (2018). Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS neglected tropical diseases, 12(2), e0006185. https://doi.org/ 10.1371/journal.pntd.0006185
Hien, D.F., Dabiré, K.R., Roche, B., Diabaté, A., Yerbanga, R.S., Cohuet, A., Yameogo, B.K., Gouagna, L.C., Hopkins, R.J., Ouedraogo, G.A., Simard, F., Ouedraogo, J.B., Ignell, R. & Lefevre, T. (2016). Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria. PLoS pathogens, 12(8), e1005773. https://doi.org/10.1371/journal.ppat.1005773
Ignell, R. & Hill, S.R. (2020). Malaria mosquito chemical ecology. Current opinion in insect science, 40, 6–10. https://doi.org/10.1016/j.cois.2020.03.008
Knols, B.G. & De Jong, R. (1996). Limburger cheese as an attractant for the malaria mosquito Anopheles gambiae s.s. Parasitology today (Personal ed.), 12(4), 159–161. https://doi.org/10.1016/0169–4758(96)10002–8
Danquah, I., Bedu-Addo, G. & Mockenhaupt, F.P. (2010). Type 2 diabetes mellitus and increased risk for malaria infection. Emerging infectious diseases, 16(10), 1601–1604. https://doi.org/10.3201/eid1610.100399
Fernández-Grandon, G.M., Gezan, S.A., Armour, J.A., Pickett, J.A. & Logan, J.G. (2015). Heritability of attractiveness to mosquitoes. PloS one, 10(4), e0122716. https://doi.org/10.1371/journal.pone.0122716
Ansell, J., Hamilton, K.A., Pinder, M., Walraven, G.E. & Lindsay, S.W. (2002). Short-range attractiveness of pregnant women to Anopheles gambiae mosquitoes. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96(2), 113–116. https://doi.org/10.1016/s0035–92 03(02)90271–3
Debebe, Y., Hill, S.R., Birgersson, G., Tekie, H. & Ignell, R. (2020). Plasmodium falciparum gametocyte-induced volatiles enhance attraction of Anopheles mosquitoes in the field. Malaria Journal 19, 327 (2020). https://doi.org/10.1186/s12936–020–03378–3
Robinson, A., Busula, A.O., Voets, M.A., Beshir, K.B., Caulfield, J.C., Powers, S.J., Verhulst, N.O., Winskill, P., Muwanguzi, J., Birkett, M.A., Smallegange, R.C., Masiga, D.K., Mukabana, W.R., Sauerwein, R.W., Sutherland, C.J., Bousema, T., Pickett, J.A., Takken, W., Logan, J.G. & de Boer, J.G. (2018). Plasmodium-associated changes in human odor attract mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 115(18), E4209–E4218. https://doi.org/10.1073/pnas.1721610115
Emami, S.N., Lindberg, B.G., Hua, S., Hill, S.R., Mozuraitis, R., Lehmann, P., Birgersson, G., Borg-Karlson, A.K., Ignell, R. & Faye, I. (2017). A key malaria metabolite modulates vector blood seeking, feeding, and susceptibility to infection. Science (New York, N.Y.), 355(6329), 1076–1080. https://doi.org/10.1126/science.aah4563
Lefèvre, T., Gouagna, L.C., Dabiré, K.R., Elguero, E., Fontenille, D., Renaud, F., et al. (2010). Beer consumption increases human attractiveness to malaria mosquitoes. PloS one, 5(3), e9546. https://doi.org/10.1371/journal.pone.0009546
Won Jung, J., Baeck, S.J., Perumalsamy, H., Hansson, B.S., Ahn, Y. & Wook Kwon, H. (2015). A novel olfactory pathway is essential for fast and efficient blood-feeding in mosquitoes. Scientific Reports, 5, 13444 (2015). https://doi.org/10.1038/srep13444
Wondwosen, B., Birgersson, G., Tekie, H., Torto, B., Ignell, R. & Hill, S.R. (2018). Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malar J 17, 90 (2018). https://doi.org/10.1186/s12936–018–2245–1
Bentz, B.J., Régnière, J., Fettig, C.J., Hansen, E.M., Hayes, J.L., Hicke, J.A., Kelsey, R.G., Negrón, J.F. & Seybold, S.J. (2010). Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects, BioScience, 60(8), 602–613, https://doi.org/10.1525/bio.2010.60.8.6
Santini, A. & Faccoli, M. (2015). Dutch elm disease and elm bark beetles: a century of association. iForest, 8, 126–134. – doi: 10.3832/ifor1231–008
Holzkurier (translated by Eva Guzely) The dimensions of damage in Europe’s forests. timber-online.net. Zugriff 16. November 2020); https://www.timber-online.net/blog/the-dimensions-of-damage-in-europe-s-forests.html
Bark and Wood Boring Beetles of the World (Zugriff 16. November 2020) www.barkbeetles.org
200512839