PEQUEÑAS CENTRALES HIDROELÉCTRICAS

2a Edición

PEQUEÑAS CENTRALES HIDROELÉCTRICAS

2a Edición

Ramiro Ortiz Flórez

Ortiz Flórez, Ramiro

Pequeñas centrales hidroeléctricas/Ramiro Ortiz Flórez -- 2da.

Edición. Bogotá: Ediciones de la U, 2022.

550 p.; 24 cm.

ISBN 978-958-792-322-3 e-ISBN 978-958-792-323-0

1. Ingeniería hidráulica 2. Ingeniería civil 3. I. Tít.

627 ed.

Área: Ingeniería

Primera edición: Bogotá, Colombia, noviembre de 2011 Segunda edición: Bogotá, Colombia, enero de 2022

ISBN. 978-958-792-322-3 © Ramiro Ortiz Flórez

© Ediciones de la U - Carrera 27 # 27-43 - Tel. (+57-1) 3203510 - 3203499 www.edicionesdelau.com - E-mail: editor@edicionesdelau.com Bogotá, Colombia

Ediciones de la U es una empresa editorial que, con una visión moderna y estratégica de las tecnologías, desarrolla, promueve, distribuye y comercializa contenidos, herramientas de formación, libros técnicos y profesionales, e-books, e-learning o aprendizaje en línea, realizados por autores con amplia experiencia en las diferentes áreas profesionales e investigativas, para brindar a nuestros usuarios soluciones útiles y prácticas que contribuyan al dominio de sus campos de trabajo y a su mejor desempeño en un mundo global, cambiante y cada vez más competitivo.

Coordinación editorial: Adriana Gutiérrez M.

Carátula: Ediciones de la U Impresión: DGP Editores SAS

Calle 63 No. 70 D - 34, Pbx. (571) 7217756

Impreso y hecho en Colombia Printed and made in Colombia

No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma o por cualquier medio, ya sea electrónico, mecánico, por fotocopia, por registro y otros medios, sin el permiso previo y por escrito de los titulares del Copyright.

Contenido

Lista de símbolos principales	23
Introducción	25
Capítulo 1. Desarrollo de la energía eléctrica utilizando recursos hidroenergéticos en pequeña escala	27
1.1. Energía eléctrica rural	27
1.2. La importancia de las PCH en el desarrollo	
1.3. Estructura de una PCH	
1.4. Tipos de pequeñas centrales hidroeléctricas	
1.5. Potencia y energía de una PCH	
1.6. Flujograma y estudios para el desarrollo de proyectos de PCH	39
Capítulo 2. El recurso hidroenergético	43
2.1. El ciclo hidrológico	43
2.2. Producción y uso del agua dulce	45
2.3. La cuenca hidrográfica	
2.4. Diagrama simplificado de la cuenca hidrográfica	52
Capítulo 3. Demanda de energía eléctrica en comunidades aisladas	55
3.1. La comunidad no ha tenido servicio de energía eléctrica	
combustión interna3.3. La comunidad tiene servicio de energía eléctrica con un grupo de	64
combustión interna	65
Capítulo 4. Estudio topográfico y cartográfico	77
4.1. Información cartográfica	79
4.2. Reconocimiento de campo	83
4.3. Estudio topográfico	84

Capítulo 5. Estudio hidrológico	97
5.1. Existe información	. 98
5.2. Existen registros pluviométricos	107
5.3. Se cuenta con registros de caudal en una estación cercana	
5.4. Medición de caudal	
Capítulo 6. Geológicos y geomorfológicos 1	127
6.1. Estudios geológicos	127
6.2. Estudios geomorfológicos	132
Capítulo 7. Estudio de impacto ambiental 1	137
7.1. Evaluación del impacto ambiental	138
7.1.1. Los objetivos de la evaluación del impacto ambiental	139
7.1.2. Alcance de la evaluación del impacto ambiental	140
7.1.3. Fases de la evaluación del impacto ambiental	140
7.2. Desarrollo del estudio	143
7.3. Documentación de la evaluación ambiental	146
Capítulo 8. Evaluación socioeconómica 1	149
8.1. Análisis de beneficios	151
8.2. Análisis de ingresos y egresos	151
8.2.1. Ingresos del proyecto	152
8.2.2. Costos del proyecto	152
8.2.3. Utilidades	
8.3. Métodos para el cálculo de la rentabilidad financiera	
8.3.1. Métodos estáticos para el cálculo de rentabilidad	162
8.3.2. Métodos dinámicos para el cálculo de rentabilidad	
8.4. La inflación y la incidencia sobre la rentabilidad	
8.5. Análisis de la sensibilidad	
8.6. Criterios económicos de decisión	
8.7. Experiencias de financiación de PCH	
8.8. La energía eléctrica de las PCH en la sociedad	178
Capítulo 9. Evaluación de los recursos hidroenergéticos en pequeña	
escala 1	187
9.1. Evaluación del potencial hidroenergético en pequeña escala	188

9.2. Evaluación del potencial hidroenergético en pequeña escala, en	
función de las limitantes socioambientales	194
9.3. Evaluación del potencial técnico-hidroenergético en pequeña	
escala	
9.4. Estudio de prefactibilidad multicriterio y multivariable	200
Capítulo 10. Obras de captación	207
10.1. Toma lateral con espigones	
10.2. Toma en el lecho	
10.3. Toma convencional	
10.4. Las captaciones Coanda	229
Capítulo 11. Desarenador	247
11.1. Desarenador de lavado intermitente	247
11.2. Desarenador de lavado continuo	257
11.3. Desarenador multicámara	259
Capítulo 12. Obra de conducción	261
12.1. Conducción abierta	
12.2. Conducción cerrada	
12.3. El aliviadero	
12.4. Obras especiales	287
Capítulo 13. Cámara de carga	303
13.1. Golpe de ariete	304
13.2. Tanque de carga	307
13.3. Chimenea de equilibrio	316
Capítulo 14. Conducción a presión	329
14.1. Tubería de presión	329
14.2. Diámetro de la tubería de presión	331
14.3. Pérdidas en la tubería de presión	335
14.4. Espesor de la tubería	
14.5. Material	
14.6. Válvulas	
14.7. Pautas para seleccionar una tubería de presión	354

Capítulo 15. Sistema de apoyos	365
15.1. Bloques de apoyo	366
15.2. Anclajes	374
Capítulo 16. Casa de máquinas	397
16.1. Proceso de transformación de energía	
16.2. Transmisión de energía	
16.3. Selección del número de unidades	
16.4. Estabilidad del grupo turbina-generador	409
16.5. Anclaje de los equipos	417
Capítulo 17. Turbina	423
17.1. Caída neta	424
17.2. Tubo de succión	427
17.3. Potencia de las turbinas	432
17.4. Partes de una turbina hidráulica	434
17.5. Ecuación fundamental de las turbinas	435
17.6. Similitud de las turbinas	440
17.7. Velocidad específica n _s	444
17.8. Eficiencia de las turbinas	
17.9. Clasificación de turbinas	451
17.10. Turbinas de acción	453
17.11. Turbinas de reacción	459
17.12. Selección de las turbinas	466
17.13. Bombas que operan como turbinas	
Capítulo 18. Equipo eléctrico	475
18.1. Generador eléctrico	475
18.2. El transformador	507
Capítulo 19. Transmisión de energía	513
19.1. Conexión de la PCH al sistema electro-energético	514
19.2. Calidad del servicio de energía eléctrica	
19.3. Medición de variables de la PCH	517
19.4. Protecciones de la PCH	518
19.5. Control de una PCH	521
19.6. Operación normal de la PCH	525

19.7. Transmisión de energía eléctrica en el sistema interconectado	528
19.8. Transmisión de energía eléctrica es un sistema monofilar con	
retorno a tierra (SWER)	539
19.9. Transmisión de energía eléctrica en el sistema aislado	541
_	
Bibliografía	545

Índice de figuras

Figura 1.1.	Incidencia de la energía eléctrica rural en la salud y educación	28
Figura 1.2.	Incidencia de la energía eléctrica rural en el PIB per cápita	
Figura 1.3.	PCH en derivación	
Figura 1.4.	Gradientes energéticos de una PCH	
Figura 1.5.	Proceso de conversión de energía	
Figura 1.6.	Flujograma para el desarrollo de una PCH	
Figura 2.1.	Representación del ciclo hidrológico	
Figura 2.2.	Representación de una cuenca hidrográfica (río Dagua - val	
119414 2121	del Cauca)	
Figura 2.3.	Representación del comportamiento altimétrico y del caud	
119414 2.51	de una cuenca hidrográfica (río Dagua - valle del Cauca)	
Figura 2.4.	Representación del histograma de frecuencias de altitudes	
	de una cuenca hidrográfica (río Dagua - valle del Cauca)	51
Figura 2.5.	Representación de la curva hipsométrica de una	
	cuenca hidrográfica (río Dagua - valle del Cauca)	51
Figura 2.6.	Diagrama simplificado de la cuenca hidrográfica (río Dagua	
J	valle del Cauca).	
Figura 3.1.	Potencia instalada, curva de demanda de la comunidad	
3	durante un día típico y proyección por potencia y por	
	energía de la comunidad durante T años	56
Figura 3.2.	Demanda potencial de la comunidad	
Figura 3.3.	Crecimiento de la demanda por potencia durante la vida	
	del proyecto	69
Figura 3.4.	Crecimiento de la demanda por energía durante la vida	
_	del proyecto.	70
Figura 3.5.	Factor de utilización FU y de planta FP durante la vida	
	del proyecto.	70
Figura 4.1.	Plano con cartografía de un terreno: (a) elaboración,	
	(b) cartografía de un área	80
Figura 4.2.	Ubicación de las obras de una PCH (a) y perfil de la	
	tubería de presión (b)	81
Figura 4.3.	Superposición de aerofotografías	82
Figura 4.4.	Delimitación de cuencas a partir de información tomada	
	por teledetección (cuenca del río Dagua, dpto. del valle	
	del Cauca, información base Shuttle Radar Topographic	
	Mission, SRTM).	
Figura 4.5.	Método del nivel con manguera	85
Figura 4.6.	Método del nivel de carpintero	
Figura 4.7.	Método del clinómetro	87

Figura 4.8.	Clinómetro	8
Figura 4.9.	Nivel de Abney 8	9
Figura 4.10.	Método del profundímetro9	1
Figura 4.11.	Trazado de las curvas de nivel9	3
Figura 4.12.	Plano cartográfico	4
Figura 4.13.	Opciones de aprovechamiento9	5
Figura 4.14.	Altura de cada uno de los posibles aprovechamientos9	5
Figura 4.15.	Perfil de la opción 3 9	6
Figura 5.1.	Hidrograma del caudal medio diario y su histórico medio	
	diario9	9
Figura 5.2.	Curva de probabilidades, curva de frecuencias correspondient	e
	y caudal medio histórico diario 10	0
Figura 5.3.	Representación total de un caudal máximo 10	2
Figura 5.4.	Ubicación geográfica de varias estaciones de medida de	
	precipitación10	9
Figura 5.5.	Método de los polígonos Thiessen	0
Figura 5.6.	Representación de las isoyetas de precipitación	0
Figura 5.7.	Gráfica de velocidades 11	4
Figura 5.8.	Vector velocidad en cada una de las áreas 11	6
Figura 5.9.	Escala para medir caudales 11	7
Figura 5.10.	Vertedero de medida 11	8
Figura 5.11.	Vertedero rectangular 11	8
Figura 5.12.	Vertedero triangular 11	9
Figura 5.13.	Vertedero trapezoidal 12	0
Figura 5.14.	Medidas generales del vertedero 12	1
Figura 5.15.	Medición de caudal con el método de descarga 12	.1
Figura 5.16.	Características del lugar	4
Figura 5.17.	Vertedero rectangular 12	5
Figura 6.1.	Elementos de perforación	2
Figura 6.2.	Tipos de falla	4
Figura 6.3.	Delgados estratos de roca se sostienen en el techo de	
	pequeñas aberturas 13	4
Figura 6.4.	Delgados estratos de roca incompetente no apta para la	
	excavación de grandes aberturas 13	4
Figura 6.5.	Desplazamiento sobre una veta de material plástico	5
Figura 8.1.	Costo por unidad de potencia para proyectos de generación	
	hidroeléctrica en pequeña escala (datos procesados por el	
	ingeniero Jorge Avella y el autor) 15	
Figura 8.2.	Análisis de la sensibilidad 17	4
Figura 8.3.	Diagrama del procedimiento para determinar los indicadores	
	de factibilidad para la evaluación económica de una PCH 18	1
Figura 8.4.	Consumo estimado de energía eléctrica y factor de planta 18	2

Figura 8.5.	Ingresos por la venta de energía eléctrica según tarifa de la energía eléctrica en zonas no interconectadas	183
Figura 8.6.	Ingresos por la venta de energía eléctrica según tarifa de la energía eléctrica en zonas no interconectadas	183
Figura 8.7.	Amortización del proyecto según tarifa de la energía eléctrica en zonas no interconectadas	184
Figura 8.8.	Ingresos por la venta de energía eléctrica según tarifa correspondiente al valor de los energéticos sustitutos en	
Figura 8.9.	zonas no interconectadas	das
Figura 9.1.	Algoritmo para evaluar el potencial hidroenergético en una región a nivel de fase de exploración	
Figura 9.2.	Fase preliminar para determinar si es pertinente hacer una evaluación hidroenergética	
Figura 9.3. Figura 9.4.	Evaluación del perfil hidroenergético utilizando SIG Evaluación de restricciones para los potenciales ubicados	
Figura 9.5.	según el perfil hidroenergético utilizando SIG Fase de alternativas de proyectos según los potenciales ubicados del perfil hidroenergético	
Figura 9.6.	Fase de validación de las alternativas de los proyectos	
Figura 9.7.	Fase de validación de las alternativas de los proyectos	
Figura 9.8.	Plano cartográfico de la cuenca del río Dagua (valle del	
	Cauca)	195
Figura 9.9.	Perfil hidroenergético de la cuenca hidrográfica del río Dagu	
Figura 9.10.	(departamento del valle del Cauca)	
F: 0 11	del valle del Cauca).	
Figura 9.11. Figura 9.12.	Estudio técnico y aspectos a evaluar	200
rigula 5.12.	valle del Cauca	201
Figura 9.13.		
Figura 9.14.	Ubicación de obras en el plano cartográfico (a), histórico de caudales y caudal medio (b)	203
Figura 9.15.	Probabilidad de ocurrencia del caudal y potencia (a), energías y factor de planta (b)	204
Figura 9.16.	Costos preoperativos por kilovatio (U\$D/kW,TRM 3.000) (a), costos operativos (b)	204

Figura	9.17.	Amortización a un precio de venta de 0,06 cent. USD/kWh (a TIR (energía 180 \$/kWh, 0,05 incremento de ingresos, TRM	a),
		3.000) (b)	204
Figura	10.1.	Toma lateral con espigones	
Figura		Curva de altura versus caudal	
Figura		Elementos de una bocatoma en lecho y su vista lateral	
Figura		Vista superior de la bocatoma en el lecho	
Figura		Corte de una bocatoma en lecho.	
Figura		Estructura sobre nivel y bajo nivel del río	
Figura		Dimensiones del canal de aducción y de la rejilla	
Figura		Coeficiente de derrame para diferentes perfiles de barra	
Figura		Ángulo de inclinación de la rejilla	
Figura	10.10.	Distancia entre barras.	
		Corte transversal de la bocatoma de fondo	
		Bocatoma convencional	
Figura	10.13.	Corte de la toma de agua de una bocatoma convencional	221
_		Toma de agua con vertedero sumergido	
Figura	10.15.	Vista del desripiador	224
Figura	10.16.	Transcurso del caudal por la compuerta	227
_		Transición	
Figura	10.18.	Malla Coanda	229
Figura	10.19.	Bocatoma de fondo con malla Coanda	230
Figura	10.20.	Dimensiones de la malla Coanda	231
Figura	10.21.	Dimensiones de los filamentos de la malla Coanda	232
Figura	10.22.	Medidas principales de los barrotes	235
Figura	10.23.	Dimensiones principales de la rejilla	237
Figura	10.24.	Medidas del canal colector	237
Figura	10.25.	Medidas principales de la toma de agua de fondo	239
Figura	10.26.	Vista superior de la toma de fondo	240
Figura	10.27.	Toma de agua, desripiador y rebosadero de una bocatoma	
		lateral	240
Figura	10.28.	Toma de agua y presa de una bocatoma lateral	241
Figura	10.29.	Vista superior de una bocatoma lateral	244
Figura	11.1. [Desarenador de doble cámara contiguo a la captación	248
Figura	11.2. F	Proceso de sedimentación	249
Figura	11.3. \	/iscosidad cinemática en función de la temperatura	251
Figura	11.4. [Depósito de materiales en dos desarenadores diferentes	253
		Desarenador de lavado intermitente	
Figura	11.6. [Desarenador de lavado continuo	258
		Cauce abierto	
_		Formas de canales	265
Figura	123 (Canal de conducción tranezoidal	267

Figura	12.4.	Corte de laderas para construcción del canal	271
Figura	12.5.	Corte frontal de ladera	271
Figura	12.6.	Canales en curvatura	272
Figura	12.7.	Tipos de canales	274
Figura	12.8.	Conducción cerrada circular	278
Figura	12.9.	Conducción en túnel tipo baúl	279
Figura	12.10.	Obra de aliviadero	281
Figura	12.11.	Medidas de un aliviadero de cresta gruesa	285
		Acueducto	
Figura	12.13.	Sifón	288
Figura	12.14.	Relleno.	289
Figura	12.15.	Paso de aguas Iluvias	289
Figura	12.16.	Solución grafo-analítica para determinar las dimensiones	
		del canal en función del ancho del fondo	299
Figura	12.17.	Solución grafo -analítica para determinar las dimensiones	
		del canal en función del calado	299
Figura	12.18.	Capacidad de un canal parcialmente lleno de transportar	
		caudal en función de la profundidad	301
Figura	13.1.	Golpe de ariete positivo y negativo	305
Figura	13.2.	Válvulas para reducir el golpe de ariete	307
Figura	13.3.	Tanque de carga	308
Figura	13.4.	Características hidrodinámicas de partida y parada brusca	310
Figura	13.5.	Diagrama de tiempos para partida brusca	311
Figura	13.6.	Movimiento del agua en la cámara de carga	312
Figura	13.7.	Valores de altura para parada brusca	314
Figura	13.8.	Esquema que indica la forma constructiva de una	
		chimenea de equilibrio	317
Figura	13.9.	Sistema en derivación	318
Figura	13.10.	Cámara de carga	326
_		Tubería de presión a cielo abierto	
Figura	14.2.	Determinación del diámetro de la tubería de presión	332
Figura	14.3.	Pérdidas en la rejilla por fricción	
Figura		Coeficiente de pérdidas en la entrada de la tubería	
Figura		Ángulo en un codo.	
_		Tubo en Y asimétrico	
_		Tubo en Y simétrico.	
_		Tensiones en la tubería	
_		Unión por medio de bridas	
_		Unión de espiga y campana	
_		Unión soldada	
_		Junta de expansión	
Figura	14.13.	Válvula tipo compuerta	353

Figura	14.14.	Válvula de mariposa	353
Figura	14.15.	Válvula esférica	354
Figura	14.16.	Pérdidas de caída en función del caudal	356
Figura	14.17.	Caída neta en función del caudal	356
Figura	14.18.	Pérdidas de caída en función del diámetro	357
Figura	14.19.	Excavaciones y rellenos para el trazado de la tubería a	
		presión	359
Figura	15.1.	Sistema de apoyos y anclajes de una tubería de presión	365
Figura	15.2.	Apoyos	367
Figura	15.3.	Dimensiones de un apoyo	368
Figura	15.4.	Tensiones de un apoyo	369
Figura	15.5.	Anclajes para variar pendiente horizontal y vertical	375
Figura	15.6.	Dimensiones generales para variar pendiente vertical y/o	
		horizontal	375
Figura	15.7.	Esfuerzos por el peso del agua y el peso de la tubería	376
Figura	15.8.	Fuerzas sobre el anclaje	
Figura	15.9.	Fuerza hidrostática en la junta de expansión	379
Figura	15.10.	Estabilidad de un anclaje	380
Figura	15.11.	Excavaciones y rellenos para el trazado de la tubería a	
		presión	385
Figura	16.1.	Casa de máquinas de una PCH (río Amaime, propiedad de	
		CELSIA)	398
Figura	16.2.	Proceso de transformación de energía en una PCH	399
Figura	16.3.	Casa de máquinas con turbinas de Francis y Pelton de eje	
		horizontal	401
Figura	16.4.	Casa de máquinas con turbinas de Michel Banki	401
Figura	16.5.	Subestación eléctrica de una PCH	403
Figura	16.6.	Diagrama unifilar de la PCH (a) y una MiniCHE (b)	404
Figura	16.7.	Curva de duración de caudales	406
Figura	16.8.	Gráfico de energías y factor de carga en función del	
		caudal	407
Figura	16.9.	Elementos que intervienen en el proceso de conversión	
		de energía en un esquema de una PCH	410
		Comportamiento del grupo en parada brusca	
Figura	16.11.	Dimensiones del volante.	416
Figura	16.12.	Esfuerzos debidos a la excentricidad del rotor	418
Figura	16.13.	Reacción del rodete sobre el distribuidor	419
Figura	17.1.	Turbina de reacción y de acción	424
Figura	17.2.	Instalación de una turbina de reacción	425
Figura	17.3.	Tubo de aspiración	427
Figura	17.4.	Disposición de un tubo de succión	429
Figura	17.5.	Velocidades a la entrada y salida de la turbina	435

Figura	17.6.	Velocidades a la entrada y salida en una turbina de acción	439
Figura	17.7.	Variación de tamaño del rodete en función de la velocidad	
		específica y rango de aplicación por caída de las turbinas	449
Figura	17.8.	Eficiencia de diferentes tipos de turbinas hidráulicas	450
Figura	17.9.	Turbina Pelton.	453
		Turbina Pelton	
Figura	17.11.	Tipos de turbinas Pelton	456
Figura	17.12.	Turbina Pelton de eje horizontal	457
Figura	17.13.	Turbina Michel Banki	457
Figura	17.14.	Turbina Turgo	458
Figura	17.15.	Turbina Francis de eje horizontal	461
Figura	17.16.	Turbina Francis-radial-axial	462
Figura	17.17.	Turbina Francis de eje vertical y horizontal	463
Figura	17.18.	Turbina Kaplan	464
Figura	17.19.	Turbina hélice de eje horizontal	465
Figura	17.20.	Hidrogrupos con turbinas hélice	466
Figura	17.21.	Diagrama para la selección de turbinas hidráulicas a nivel	
		de PCH	467
Figura	17.22.	Máquinas reversibles operando en modo motobomba y	
		en modo turbina-generador	468
Figura	17.23.	Costo por unidad de potencia para proyectos de generación	1
		hidroeléctrica en pequeña escala	469
Figura	17.24.	Rotor de la bomba	472
Figura	17.25.	Pasador para fijar la tuerca del rotor de la bomba en modo	
		reversible	472
Figura	17.26.	Sellos de las bombas	473
Figura	17.27.	Acople mecánico por poleas para ubicar la velocidad de	
		mayor eficiencia	473
Figura	18.1.	Generador de energía eléctrica alterna monofásico	
		sinusoidal	477
Figura	18.2.	Generador trifásico.	477
Figura	18.3.	Conexión de generador trifásico en Y o Δ	478
Figura	18.4.	Diagrama vectorial de las tensiones de un generador	
		trifásico en Y	479
Figura	18.5.	Componentes de una máquina síncrona	481
Figura	18.6.	Sistema electromagnético de sistemas de excitación con	
		escobillas (a) y sin escobillas (b)	482
Figura	18.7.	Principio de autoexcitación de los generadores síncronos	483
Figura		Generador asíncrono de rotor jaula de ardilla	485
Figura		Máquina asincrónica de rotor jaula de ardilla	
Figura	18.10.	Esquema principal de un generador asíncrono con	
_		condensador de excitación	487

Figura	18.11.	Diagrama equivalente y característico en vacío de	
		autoexcitación de un generador asíncrono	490
Figura	18.12.	Esquema de un generador asíncrono con condensador de	
		excitación y autorregulación	493
Figura	18.13.	Diagrama vectorial de un generador asíncrono autoexcitado)
		y autorregulado	493
Figura	18.14.	Característica externa (a) y de regulación (b) de un generado	or
		asíncrono autónomo	494
Figura	18.15.	Posibles conexiones de máquina asincrónica en modo	
		generador y niveles de tensión	497
Figura	18.16.	Relación de la capacitancia dependiendo de la velocidad	
		específica de giro del generador para una máquina de 4,5	
		KVA en vacío	499
Figura	18.17.	Esquema principal de regulación automática de tensión del	
		generador a través de regulación de tensión suministrada a	
		los condensadores	500
Figura	18.18.	Esquema principal de regulación de tensión del generador	
		con ayuda de un transformador con regulación del coeficier	nte
		de transformación (a) y con un reactor saturable (b)	501
Figura	18.19.	Generador monofásico a partir de un generador asíncrono	
		trifásico autoexcitado y autorregulado con transformadores	de
		corriente TI con un proceso de rectificación, acumulación de	ā
		energía e inversión a AC monofásica en condiciones	
		aisladas	503
Figura	18.20.	Relación masa y potencia en generadores asincrónicos (a) y	
		sincrónicos (b) (las gráficas 1,2 corresponden a un generado	r
		asincrónico sin regulador de excitación y 3, 4 con	
		regulador)	504
Figura	18.21.	Dimensiones del generador	506
Figura	18.22.	Transformador eléctrico: partes y diagrama	507
Figura	18.23.	Conexión y designación de los bornes de un transformador	
		trifásico	509
Figura	18.24.	Partes de un transformador trifásico	510
Figura	18.25.	Transformadores monofásicos	511
Figura	19.1.	Transmisión de energía eléctrica en un sistema	
		interconectado	513
Figura	19.2.	Diagrama unifilar de la PCH	515
Figura	19.3.	Instrumentos de medida de una PCH	519
Figura	19.4.	Protecciones eléctricas de una PCH	520
Figura	19.5.	Puesta en operación de una PCH interconectada	523
Figura	19.6.	Sincronización del generador	
Figura	19.7.	Operación de la PCH en modo isla	528

Figura	19.8.	Conexión de un generador de una PCH interconectada	529
Figura	19.9.	Conexión de la PCH al punto de conexión	532
Figura	19.10.	Circuito eléctrico de la red	532
Figura	19.11.	Configuración de conductores ACSR para distribución	
		aérea (información del fabricante CENTELSA)	534
Figura	19.12.	Relación de potencia/longitud para una línea de una	
		PicoCHE conectada a 220 voltios con un factor de potencia	
		de 0,8 y una regulación del 3 %, para conductores calibre 2,	
		1/0 y 2/0	536
Figura	19.13.	Relación de potencia/longitud para una línea de una	
		PicoCHE conectada a 440 voltios con un factor de potencia	
		de 0,8 y una regulación del 3 %, para conductores calibre 2,	
		1/0 y 2/0	536
Figura	19.14.	Relación de potencia/longitud para una línea de una	
		MicroCHE conectada a 760 voltios con un factor de potencia	
		de 0,8 y una regulación del 3 %, para conductores calibre 1/	
		2/0 y 4/0	537
Figura	19.15.	Relación de potencia/longitud para una línea de una	
		MiniCHE conectada a 3.400 voltios con un factor de potenci	
		de 0,8 y una regulación del 3 %, para conductores calibre 1/	
		2/0 y 4/0	538
Figura	19.16.	Relación de potencia/longitud para una línea de una PCH	
		conectada a 7.600 voltios con un factor de potencia de 0,8	
		y una regulación del 3 %, para conductores calibre 2/0, 4/0	
		y 267	538
Figura	19.17.	Relación de potencia/longitud para una línea de una PCH	
		conectada a 34.500 voltios con un factor de potencia de 0,8	
		y una regulación del 3 % para conductores calibre 4/0,	
		267 y 335	
		Esquema de un sistema SWER.	
_		Red de electrificación rural aislada para MiniCHE y/o PCH	
Figura	19.20.	Red de electrificación rural aislada para Micro y/o PicoCHE	543

Índice de tablas

Tabla 1.1.	Clasificación para pequeños aprovechamientos hidroenergéticos
	según la capacidad instalada y el tipo de usuario en las ZNI 34
Tabla 1.2.	Clasificación para PCH según la caída35
Tabla 2.1.	Distribución porcentual del agua en la Tierra 44
Tabla 2.2.	Tiempo promedio de permanencia del agua en diferentes
	reservorios
Tabla 2.3.	Información base para construir el diagrama simplificado
	de la cuenca hidrográfica (río Dagua - valle del Cauca) 53
Tabla 3.1.	Proyección de la demanda per cápita de energía eléctrica
	(kWh per cápita) según el Banco Mundial para el período
	1971-201457
Tabla 3.2.	Característica del consumo de energía de un día típico
Tabla 3.3.	Potencia media de algunos equipos eléctricos domésticos y
	agroindustriales
Tabla 3.4.	Potencia media de algunos equipos básicos en centros de
	atención de salud
Tabla 3.5.	Proyección de la demanda para la comunidad aislada67
Tabla 3.6.	Demanda residencial
Tabla 3.7.	Demanda industrial, comercial y servicios públicos
Tabla 3.8.	Demanda total
Tabla 3.9.	Crecimiento de la demanda
Tabla 5.1.	Valores del coeficiente K 112
Tabla 5.2.	Valores de velocidad media
Tabla 5.3.	Recomendaciones de la FAO para vertederos rectangulares 119
Tabla 5.4.	Valores de caudal y altura según la FAO para vertederos
	triangulares 119
Tabla 5.5.	Historial de caudales medios mensuales correspondiente
	a cinco años (m³/s) 122
Tabla 5.6.	Curva de frecuencias y curva de caudales 123
Tabla 8.1.	Costo del kilovatio instalado (USD/kW) y costo de la energía
	generada (USD/kWh) por diferentes plantas de energía
	eléctrica CE
Tabla 8.2.	Costo del kilovatio instalado (USD/kW) de PCH en
	Latinoamérica (datos procesados y tomados de OLADE) 153
Tabla 8.3.	Distribución porcentual de los costos de construcción de
	una PCH (datos procesados y tomados del documento

	Costos indicativos de generación eléctrica en Colombia	
	elaborado por la Unidad de Planeación Minero-Energética,	1 - 1
T-1-1- 0 4	2005)	154
Tabla 8.4.	Costos de construcción de PCH realizados en las ZNI	1
T.I.I.O.F	(tomado de la página: www.ipse.gov.co/)	155
Tabla 8.5.	Costo del kilovatio instalado para proyectos individuales y	
	estandarizados en US\$/kW	155
Tabla 8.6.	Distribución porcentual de los costos de construcción de una	
	PCH (datos procesados y tomados de la International Energy	
	Commission)	156
Tabla 8.7.	Porcentajes y valores estipulados para el cálculo de los costos	
	operativos (información de la UPME)	
Tabla 8.8.	Cronograma de actividades	161
Tabla 8.9.	Beneficios económicos de la electricidad (USD/año) en los	
	usuarios rurales de Perú	179
Tabla 8.9.	Tarifa de la energía eléctrica en zonas no interconectadas.	
	Consumo de energéticos en la población	180
Tabla 8.11.	Pago por uso de otros energéticos	181
Tabla 9.1.	Información hidroenergética de la cuenca	196
Tabla 10.2.	Coeficiente e	227
Tabla 11.1.	Velocidades de sedimentación de las partículas sólidas en	
	suspensión de acuerdo a su tamaño dadas por Arkhangelski	
	(1935)	250
Tabla 12.1.	Coeficiente de Manning para diferentes tipos de cauce n	264
Tabla 12.2.	Coeficiente de Razin para diferentes tipos de cauce γ	265
	Valores de pendiente m	
	Límites de velocidad del agua en el canal según el tipo de	
	suelo o de revestimiento.	275
Tabla 12.5.	Dimensiones para un canal de conducción trapezoidal	
	Coeficientes de pérdidas por fricción	
	Coeficiente de pérdida ξ_{κ} para codos de tubos circulares	
	Valores de <i>k</i> para calcular el coeficiente de pérdidas	
	Valores típicos de ξ	
	Coeficiente ξ_{ram} para bifurcaciones de tubos circulares de	
	cantos aristas de diámetros iguales de $d = da$	339
Tabla 14.6.	Coeficientes para tubos en Y simétricos con B = 45° y	
	diferente admisión.	340
Tabla 14.7	Criterios para la selección del material del tubo	
	Comparación de los diferentes materiales para tuberías de	,
	presión	348
Tabla 14.9	Propiedades físicas de materiales para tuberías	

Tabla 15.1.	Coeficiente de rozamiento.	368
Tabla 15.2.	Tensiones de compresión	372
Tabla 17.1.	Parámetros de velocidad específica y caída para diferentes	
	tipos de turbina	448
Tabla 17.2.	Rango de caída para diferentes tipos de turbinas	467
Tabla 18.1.	Capacitor de excitación shunt y serie para diferentes	
	motores	495
Tabla 19.1.	Resistencia eléctrica en CA y reactancia inductiva para	
	conductores ACSR de instalación trifásica a 60 Hz y 75 °C	
	(fabricante CENTELSA)	534

Lista de símbolos principales

A, a	Área, cantidad, longitud
B, b	Ancho
С, с	Coeficiente, costo, valor monetario, velocidad
D, d	Diámetro, calado, longitud
E, e	Módulo de elasticidad, espesor
F, f	Fuerza, frecuencia
G, g	Peso, aceleración de la gravedad
GD2	Momento de inercia
H, h	Profundidad, caída, pérdidas de caída
l, i	Inversión, pendiente, tasa de interés, corriente eléctrica
j, l	Pendiente
K, k	Constante
L, I	Longitud
M, m	Masa, momento, coeficiente, pendiente transversal o talud
N, n	Fuerza, cantidad, velocidad
Q, q	Caudal, factor de descuento, potencia reactiva
Р	Presión, potencia, precipitación, número de pares de polos
R	Radio, radio hidráulico, resistencia eléctrica
Re	Número de Reynolds
S	Sección, coeficiente, potencia aparente
T, t	Período, tiempo
V, v	Volumen, velocidad, voltaje
Z	Impedancia
W	Sección, área
Χ	Perímetro mojado
Υ	Altura
z	Altura, desnivel
β	Ángulo de inclinación
γ	Peso específico, coeficiente de Razin
ρ	Densidad
υ	Viscosidad
γ	Peso específico, coeficiente
Φ	Flujo magnético
φ	Ángulo de factor de potencia
ω	Sección viva
δ, χ, ε, λ, ξ	Coeficiente

Introducción

La energía eléctrica, a partir su aplicación comercial, ha sido un factor determinante para la economía y el desarrollo social que, si bien inicialmente fue utilizada para los sistemas de alumbrado público, posteriormente, a la vez que se convirtió en la fuerza motriz que necesitaba la industria y el comercio, también se constituyó como una herramienta necesaria para el confort de los hogares.

Al revisar la historia, las primeras centrales de generación de energía eléctrica fueron hidráulicas de baja potencia con generadores de corriente continua; posteriormente, se logró aumentar la potencia y la capacidad de transmisión al utilizar generadores de corriente alterna; esto conllevó a que, hasta mediados de la primera mitad del siglo XX, la mayor parte de la generación se diera con Pequeñas Centrales Hidroeléctricas (PCH), las cuales estaban dirigidas por empresas de energía eléctrica que nacieron y se consolidaron como fruto de los esfuerzos locales, creciendo sin una directriz central y sin una visión de planificación unificada a nivel nacional. No obstante, con el fin de aunar esfuerzos, interconectar sus sistemas, realizar una planeación integral y una operación conjunta, las diferentes empresas de energía se interconectaron en un Sistema Energético Nacional. Esta forma de suministro de energía eléctrica hizo que las PCH cayeran en el olvido; sin embargo, el monopolio del Estado dio lugar a ineficiencias técnicas y económicas que, en conjunto con el endeudamiento, colocaron las finanzas del sector eléctrico en condiciones precarias. Razón por la cual el Estado dejó de ser el monopolio y cambió a un esquema de un mercado regulado, en donde la generación con fuentes renovables y, en particular, las PCH es importante frente a la generación con combustibles fósiles.

Dada la importancia que se requiere al decidir la construcción de una PCH, se necesita de un apoyo escrito que permita realizar el dimensionamiento de una pequeña central hidroeléctrica con criterio técnico y económico. Sin embargo, un texto de estas características en nuestro medio es escaso y su información está dispersa en diferentes libros de ingeniería aplicada. Por tal motivo, se organizó la información necesaria para el dimensionamiento de una PCH, partiendo de unos conocimientos básicos de hidráulica, mecánica

y de máquinas eléctricas. Por tal motivo, en el presente material se incorporaron aplicaciones SIG para evaluación de recursos hidroenergéticos y el uso de máquinas reversibles. Estructuralmente, este libro está compuesto por dos áreas: la primera de ellas comprende todos los estudios que se requieren y la segunda, el dimensionamiento de las obras civiles y la selección de los equipos electromecánicos.

La primera parte del libro inicia resaltando la importancia y las generalidades de las PCH; le siguen: un capítulo base para realizar el estudio de demanda y la evaluación socioeconómica; los posteriores capítulos corresponden a los siguientes estudios: estudio de demanda, estudio socioeconómico, estudio hidrológico, estudio topográfico y cartográfico, estudio geológico y geomorfológico, estudio de impacto ambiental y estudio hidroenergético.

El estudio de la demanda identifica en la comunidad el consumo por usuario (residencial, industria, comercial y servicios públicos) de potencia y energía. Esta información es proyectada para determinar la potencia instalada por el total de los usuarios, su demanda pico y la energía demanda. Con base en la información de la demanda proyectada de la comunidad, el estudio socioeconómico indicará su viabilidad, basado en un análisis costo-beneficio del proyecto. Una vez que se tiene la viabilidad socioeconómica del proyecto, el recurso debe garantizar la potencia y la energía demandada, la cual está condicionada a la disponibilidad de caudales y de caída del recurso hidroenergético. La disponibilidad de caudales se determina con el estudio hidrológico y la caída, con el estudio topográfico y cartográfico, utilizando SIG.

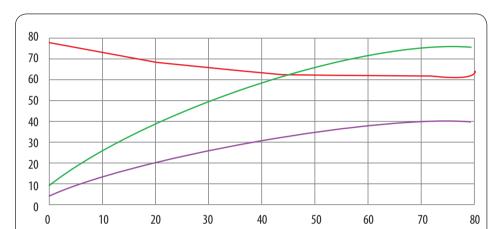
Las condiciones anteriores nos permiten disponer de una viabilidad energética del recurso, la cual es confirmada con el estudio geológico y geomorfológico, que nos indica la estabilidad del terreno y la ausencia de fallas geológicas. Para poder iniciar el dimensionamiento de las obras, se necesita mitigar el impacto que se causará en el área del proyecto a la fauna y a la flora. Por ello, se realiza el estudio de impacto ambiental. Estos estudios se organizan en un capítulo que permite hacer la evaluación hidroenergética integral.

Realizados los estudios anteriores, el ingeniero ubicará las obras de captación, conducción, desarenador, tanque de carga, conducción a presión y casa de máquinas del proyecto e iniciará el dimensionamiento de ellas. Para finalizar el proyecto, se selecciona el equipo mecánico y eléctrico de la PCH, haciendo énfasis en la utilización de bombas en régimen de turbina y motores asíncronos como generadores.

El mejoramiento de este material se logra en la medida en que usted, lector, nos aporte sugerencias para enriquecerlo; por tal motivo, muchas gracias por ello.

Capítulo 1

Desarrollo de la energía eléctrica utilizando recursos hidroenergéticos en pequeña escala


1.1. Energía eléctrica rural

Una meta propuesta por los Estados miembros de la ONU para el año 2030 que forma parte de los Objetivos de Desarrollo Sostenible es erradicar la pobreza y asegurar la prosperidad de sus habitantes, labor que particularmente requiere de la electrificación de las comunidades rurales aisladas. Sin embargo, un deficiente planeamiento electroenergético estatal para cubrir la demanda rural, sumado al difícil acceso de estas las zonas rurales y a la dispersión de sus habitantes, hacen que tengan muy baja cobertura.

A la fecha, la solución para el suministro de energía eléctrica en zonas rurales basado en grupos electrógenos y/o extensión de redes eléctricas ha demostrado que es una estrategia financieramente ineficiente y de baja calidad en el servicio. Por tal motivo, la autogeneración de energía eléctrica principalmente con Pequeñas Centrales Hidroeléctricas (PCH) en zonas donde se dispone del recurso hídrico es una solución técnico-económicamente viable que, además de preservar la cuenca, es la alternativa correcta para la prestación de un servicio confiable, seguro, sostenible y de calidad dado el involucramiento de las comunidades en el desarrollo del proyecto.

Es evidente que una mayor cobertura con calidad en la prestación del servicio de energía eléctrica permitirá que los habitantes de las comunidades rurales aisladas puedan tener mejores condiciones de salud, educación, bienestar social y emprendimientos productivos; sin embargo, es indispensable encontrar evidencia mensurable del impacto del acceso a la electricidad que valide esta afirmación. Esto se puede corroborar con base en los datos para el mundo del

Banco Mundial que muestran la relación entre el suministro de energía eléctrica rural con: la mortalidad de niños menores de cinco (5) años, la esperanza de vida y el nivel de analfabetismo (ver figura 1.1).

Sector rural sin energía (%)

Figura 1.1. *Incidencia de la energía eléctrica rural en la salud y la educación.*

Fuente: datos del Banco Mundial y procesados por el autor.

Tasa de mortalidad, menores de 5 años por cada 1.000

Analfabetización (%)

Esperanza de vida (años)

De acuerdo con la Organización Mundial de la Salud (OMS), esta declara que, si bien la salud y la energía son factores interdependientes, no es posible tener mejoras en la salud sin un servicio de energía eléctrica confiable. En su experiencia, la OMS señala que la energía con grupos electrógenos ha fallado en su confiabilidad y accesibilidad, fundamentalmente debido a su limitado funcionamiento, que no le permite mantener constante la cadena de frío para preservar vacunas, sus AOM son costosos, por tal motivo, se reservan solo para emergencias cuando se disponen de ellos. Sin embargo, la mayoría de los centros de salud rurales están sin energía eléctrica. Este aspecto hace que la atención médica básica, esencial para el avance de los programas de supervivencia infantil y la calidad general de las condiciones humanas, sea deficiente y/o inexistente.

Los beneficios de la energía eléctrica sobre la educación son innumerables; de hecho, una iluminación eléctrica confiable en las zonas rurales ha causado un impacto positivo sobre la concentración de los estudiantes y ha mejorado la

calidad en el trabajo de los maestros; así mismo ha alentado la asistencia, dado que acudir a la escuela es más atractivo; de igual forma, se han extendido las horas de estudio y enseñanza, lo que es importante en las áreas rurales en las que los estudiantes suelen trabajar en granjas familiares durante el día. Un estudio del Banco Interamericano de Desarrollo (BID) ha identificado que un año de escolarización primaria aumenta el ingreso de una persona en un 5,5 %, cifra que afirma que la educación produce beneficios socioeconómicos colectivos e individuales. Es decir, para reducir la desigualdad social en las zonas rurales, es indispensable fomentar la educación, lo que exige un suministro de energía eléctrica confiable.

La evidencia mensurable del impacto del acceso a la electricidad se obtiene con base en la información del Banco Mundial, que permite cuantificar la relación del suministro de energía eléctrica rural con el PIB per cápita (dado en dólares americanos, ver figura 1.2).

4,000 3,500 3,000 2,500 2,000 1,500 1,000 500 0 20 40 60 80 Sector rural sin energía (%)

Figura 1.2. Incidencia de la energía eléctrica rural en el PIB per cápita.

Fuente: datos del Banco Mundial y procesados por el autor.

1.2. La importancia de las PCH en el desarrollo

Desde el momento de la aplicación comercial de la energía eléctrica a finales del siglo XIX, esta no ha dejado de ser un factor determinante para la economía y el desarrollo. Si bien es conocido que inicialmente fue utilizada para los sistemas de alumbrado público de las principales ciudades, sustituyendo los

faroles de petróleo y gas, posteriormente, a la vez que se convirtió en la fuerza motriz que necesitaba la industria y el comercio, también se constituyó como una herramienta necesaria para el confort de los hogares.

Las primeras centrales de generación de energía eléctrica usualmente eran hidráulicas de bajas potencias con generadores de corriente continua, destinadas para los alumbrados públicos, ubicadas cerca de los centros de consumo debido al escaso desarrollo del transporte eléctrico. Posteriormente, con el desarrollo de la generación eléctrica en corriente alterna, se lograron aumentar la potencia y la capacidad de transmisión; esto conllevó a que, hasta mediados de la primera mitad del siglo XX, la mayoría de los municipios tuvieran una pequeña central hidroeléctrica y las fincas de microcentrales, construidas con recursos económicos propios y parte de la ingeniería de diseño y construcción regional, las cuales estaban dirigidas por empresas de energía eléctrica que nacieron y se consolidaron como fruto de los esfuerzos locales, creciendo sin una directriz central y sin una visión de planificación unificada a nivel nacional.

Este esquema hizo que, durante este tiempo, la prestación del servicio de energía eléctrica fuera dispersa y haya estado a cargo de entidades oficiales, del orden nacional, regional, departamental y municipal con distintos niveles de especialización y de participación en la capacidad de generación, transformación y transporte de energía. No obstante, con el fin de aunar esfuerzos, interconectar sus sistemas, realizar una planeación integral y una operación conjunta, las diferentes empresas de energía se interconectaron en sistema.

Esta forma de suministro de energía eléctrica monopolizado por el Estado fue apropiada hasta finales de la década de los años 70 cuando culminaron importantes esfuerzos relativos a la ampliación de la cobertura del servicio de electricidad; sin embargo, originó dos zonas: la zona interconectada y la zona no interconectada (ZNI), e hizo que durante esta década los pequeños aprovechamientos hidroenergéticos cayeran en el olvido.

No obstante, el monopolio del Estado sobre la prestación del servicio de energía eléctrica dio lugar al desarrollo de vicios e ineficiencias, que en conjunto con el alto nivel de endeudamiento colocaron las finanzas del sector eléctrico en condiciones precarias, lo cual se acentuó en la década de los 80 y produjeron una delicada situación de insolvencia en la mayoría de las empresas.

Esto conllevo a que el Estado, en el año 1991, fijara una "Estrategia de Reestructuración del Sector Eléctrico", basada en cambios estructurales; para ello, introdujo en el sector la competencia en aquellas actividades que lo permitían, como la generación de electricidad, consolidando entidades encargadas de la

regulación y del control, inspección y vigilancia de las empresas, introduciendo una gestión eficiente de las empresas estatales y abriendo las puertas al sector privado.

De esta forma, el suministro de energía eléctrica dejó de ser un monopolio y cambió a un esquema de un mercado regulado, dentro del cual, energéticamente, persisten las dos zonas. En la zona interconectada, la energía eléctrica se suministra a través del sistema interconectado SIN, el cual lleva energía eléctrica desde las centrales hidroeléctricas y termoeléctricas a los centros de consumo, y la zona no interconectada ZNI está caracterizada por poseer una baja densidad demográfica y en ella la energía eléctrica es generada con grupos electrógenos, los cuales tienen un elevado costo de operación debido a las dificultades para transportar el combustible y un servicio poco fiable, ya que su mantenimiento no es realizado por personal capacitado. Esta forma de suministro de energía eléctrica en la ZNI, a la vez que es costosa y poco fiable, no permite el desarrollo actual de las comunidades aisladas y a mediano plazo está condicionada por la autosuficiencia petrolera y la capacidad de refinación de cada Estado.

Dentro del esquema de mercado regulado se podía prever tener un sector eléctrico, caracterizado por una mayor eficiencia técnica y económica, que condujera a una mayor confiabilidad en la prestación del servicio y que, a su vez, por ser un libre mercado, este se desarrollara con la inversión en nuevos proyectos en centrales eléctricas. Sin embargo, a la fecha, los proyectos más representativos dentro del Sistema de Interconexión Nacional (SIN) los ha realizado el Estado y, al observar la ZNI, la inversión de capital privado también ha estado ausente.

Bajo este escenario, en el cual la demanda de energía eléctrica es creciente y la oferta de esta sigue siendo estatal, se puede inferir que el Estado debe crear nuevos mecanismos para su financiación y estímulo. Por ello, a través de leyes, fija pautas para la promoción de la utilización de energías alternativas dentro del SIN y concibe fondos de apoyo financiero para la energización de las ZNI, sostenidos por los usuarios de SIN.

Al disponer de mecanismos para el desarrollo de proyectos de inversión en PCH, el Estado tiene las herramientas para suministrar energía eléctrica en estas comunidades y, a la vez, dar respuesta a la comunidad internacional, en el marco de las presiones naturales ejercidas por el cambio climático. Esto ha llevado a que el Estado en ZNI haya empezado a sustituir el ACPM por recursos energéticos renovables para suministro de energía eléctrica en algunas de las principales cabeceras municipales de las zonas aisladas, especialmente con recursos hidroenergéticos.