The Genetic Effects of Radiation

Isaac Asimov and Theodosius Dobzhansky

Contents

THE MACHINERY OF INHERITANCE 1
Introduction 1
Cells and Chromosomes 2
Enzymes and Genes 5
Parents and Offspring 8
MUTATIONS 10
Sudden Change 10
Spontaneous Mutations 13
Genetic Load 16
Mutation Rates 19
RADIATION 22
Ionizing Radiation 22
Background Radiation 27
Man-made Radiation 30
DOSE AND CONSEQUENCE 32
Radiation Sickness 32
Radiation and Mutation 33
Dosage Rates 37
Effects on Mammals 40
Conclusion 43
SUGGESTED REFERENCES 47

THE COVER

The cover design embodies a radiation symbol, a stylized karyotype of human chromosomes, and a genealogical table.

THE AUTHORS

ISAAC ASIMOV received his academic degrees from Columbia University and is Associate Professor of Biochemistry at the Boston University School of Medicine. He is a prolific author who has written over 65 books in the past 15 years, including about 20 science fiction works, and books for children. His many excellent science books for the public cover subjects in mathematics, physics, astronomy, chemistry, and biology, such as The Genetic Code, Inside the Atom, Building Blocks of the Universe, The Living River, The New Intelligent Man’s Guide to Science, and Asimov’s Biographical Encyclopedia of Science and Technology. In 1965 Dr. Asimov received the James T. Grady Award of the American Chemical Society for his major contribution in reporting science progress to the public.

THEODOSIUS DOBZHANSKY was graduated from Kiev University and is now a professor at the Rockefeller University. He has done research in genetics and biological evolution on every continent except Antarctica. Among his distinguished published works are Radiation, Genes, and Man, Heredity and the Nature of Man, Mankind Evolving, and Evolution, Genetics, and Man. Mr. Dobzhansky received the Daniel G. Elliot Prize and Medal and the Kimber Genetics Award from the National Academy of Sciences in 1958, and the National Medal of Science awarded by the President of the United States, in 1965.

THE MACHINERY OF INHERITANCE

Introduction

There is nothing new under the sun, says the Bible. Nor is the sun itself new, we might add. As long as life has existed on earth, it has been exposed to radiation from the sun, so that life and radiation are old acquaintances and have learned to live together.

We are accustomed to looking upon sunlight as something good, useful, and desirable, and certainly we could not live long without it. The energy of sunlight warms the earth, produces the winds that tend to equalize earth’s temperatures, evaporates the oceans and produces rain and fresh water. Most important of all, it supplies what is needed for green plants to convert carbon dioxide and water into food and oxygen, making it possible for all animal life (including ourselves) to live.

Yet sunlight has its dangers, too. Lizards avoid the direct rays of the noonday sun on the desert, and we ourselves take precautions against sunburn and sunstroke.

The same division into good and bad is to be found in connection with other forms of radiation—forms of which mankind has only recently become aware. Such radiations, produced by radioactivity in the soil and reaching us from outer space, have also been with us from the beginning of time. They are more energetic than sunlight, however, and can do more damage, and because our senses do not detect them, we have not learned to take precautions against them.

To be sure, energetic radiation is present in nature in only very small amounts and is not, therefore, much of a danger. Man, however, has the capacity of imitating nature. Long ago in dim prehistory, for instance, he learned to manufacture a kind of sunlight by setting wood and other fuels on fire. This involved a new kind of good and bad. A whole new technology became possible, on the one hand, and, on the other, the chance of death by burning was also possible. The good in this case far outweighs the evil.

In our own twentieth century, mankind learned to produce energetic radiation in concentrations far surpassing those we usually encounter in nature. Again, a new technology is resulting and again there is the possibility of death.

The balance in this second instance is less certainly in favor of the good over the evil. To shift the balance clearly in favor of the good, it is necessary for mankind to learn as much as possible about the new dangers in order that we might minimize them and most effectively guard against them.

To see the nature of the danger, let us begin by considering living tissue itself—the living tissue that must withstand the radiation and that can be damaged by it.

MUTATIONS

Sudden Change

Shifts in chromosome combinations, with or without crossovers, can produce unique organisms with characteristics not quite like any organism that appeared in the past nor likely to appear in the reasonable future. They may even produce novelties in individual characteristics since genes can affect one another, and a gene surrounded by unusual neighbors can produce unexpected effects.

Matters can go further still, however, in the direction of novelty. It is possible for chromosomes to undergo more serious changes, either structural or chemical, so that entirely new characteristics are produced that might not otherwise exist. Such changes are called mutations.

We must be careful how we use this term. A child may possess some characteristics not present in either parent through the mere shuffling of chromosomes and not through mutation.

Suppose, for instance, that a man is heterozygous to eye color, carrying one gene for brown eyes and one for blue eyes. His eyes would, of course, be brown since the gene for brown eyes is dominant over that for blue. Half the sperm cells he produces would carry a single gene for brown eyes in its half set of chromosomes. The other half would carry a single gene for blue eyes. If his wife were similarly heterozygous (and therefore also had brown eyes), half her egg cells would carry the gene for brown eyes and half the gene for blue.

It might follow in this marriage, then, that a sperm carrying the gene for blue eyes might fertilize an egg carrying the gene for blue eyes. The child would then be homozygous, with two genes for blue eyes, and he would definitely be blue-eyed. In this way, two brown-eyed parents might have a blue-eyed child and this would not be a mutation. If the parents’ ancestry were traced further back, blue-eyed individuals would undoubtedly be found on both sides of the family tree.

If, however, there were no record of, say, anything but normal color vision in a child’s ancestry, and he were born color-blind, that could be assumed to be the result of a mutation. Such a mutation could then be passed on by the normal modes of inheritance and a certain proportion of the child’s eventual descendants would be color-blind.

A mutation may be associated with changes in chromosome structure sufficiently drastic to be visible under the microscope. Such chromosome mutations can arise in several ways. Chromosomes may undergo replication without the cell itself dividing. In that way, cells can develop with two, three, or four times the normal complement of chromosomes, and organisms made up of cells displaying such polyploidy can be markedly different from the norm. This situation is found chiefly among plants and among some groups of invertebrates. It does not usually occur in mammals, and when it does it leads to quick death.

Less extreme changes take place, too, as when a particular chromosome breaks and fails to reunite, or when several break and then reunite incorrectly. Under such conditions, the mechanism by which chromosomes are distributed among the daughter cells is not likely to work correctly. Sex cells may then be produced with a piece of chromosome (or a whole one) missing, or with an extra piece (or whole chromosome) present.

In 1959, such a situation was found to exist in the case of persons suffering from a long-known disease called Down’s syndrome.[2] Each person so afflicted has 47 chromosomes in place of the normal 46. It turned out that the 21st pair of chromosomes (using a convention whereby the chromosome pairs are numbered in order of decreasing size) consists of three individuals rather than two. The existence of this chromosome abnormality clearly demonstrated what had previously been strongly suspected—that Down’s syndrome originates as a mutation and is inborn (see the figure on the next page).

page 4