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Chapter 1
Introduction

Quantum field theory is an important research area in theoretical physics, with a
wide range of applications and an impressive agreement with experiment. Despite
this success, the mathematical foundations of this theory are still under investigation
and many fundamental questions remain open. The rapid development of the field
makes it difficult to find textbooks which are up to date with all the recent advances,
especially if one looks for a mathematically rigorous approach. It is a common
misconception that working with QFT necessarily implies doing something “not-
well defined”, while in fact most of the formalmanipulations presented in the physics
literature can be made completely rigorous.

Forme quantumfield theory is a beautiful bizarreworld full ofwonders suspended
somewhere in-between mathematics and physics. It charms physicists by providing
results that agree with experiments with incredible precision. It lures mathematicians
seeking to explore the land of QFT and get a closer look at the beautiful mathematical
structures that inhabit it. And yet, after more than 50 years of research, we do not
fully understand what QFT really is and what wonders it is hiding from us deep in
its conceptual roots.

As both a physicist and a mathematician, I am fascinated by the richness of
structures that one can encounter in QFT land, and from my first visit I have decided
that I do not want to leave it ever again. So what is this book about?Well, maybe first
I should explain what it isn’t about…It is far from being a complete account of what
has been done in QFT research (this would have taken multiple volumes!). It also
doesn’t touch the problem of non-perturbative construction of models of interacting
quantum field theories, which at the moment remains open.

You can think of this book as amathematician’s diary from a journey into an exotic
land. As opposed to some other textbooks on the subject, I will not use the excuse that
“physicists often do something that is not well defined”, so as mathematicians we
don’t need to bother and just turn around for awhile, until it’s over. Instead, Iwill jump
straight into the lion’s den and will try to make mathematical sense of perturbative
QFT all the way from the initial definition of the model to the interpretation of the

© The Author(s) 2016
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2 1 Introduction

results. This is not always easy and sometimes I will have to bring into the story
results from several fields of mathematics at once. I hope this will not discourage
you from exploration of the QFT wonderland. After all, its beauty lies in the fact that
it is so diverse and full of surprises…So, come along! Our journey starts here.



Chapter 2
Algebraic Approach to Quantum Theory

2.1 Algebraic Quantum Mechanics

Before entering the realm of the quantum theory of fields, let’s have a look at some-
thing simpler and better understood, namely quantum mechanics (QM). To prepare
the ground for what follows, we will present an abstract formulation of QM and dis-
cuss how it relates to the more standard Dirac–von Neumann axioms [Dir30, vN32].
The exposition presented in this chapter is based on [BF09b, Mor13, Fre13, Str08].

2.1.1 Functional Analytic Preliminaries

Let us start by recalling some basic definitions from functional analysis. For more
information see [Rud91, RS80, BR87, BR97, Kad83]. Readers familiar with basic
functional analysis can skip this subsection.

Definition 2.1 An algebra A over the field K = R or C is a K-vector space with an
operation · : A× A→ A called the product with the following properties:

1. (A · B) · C = A · (B · C), ∀A, B, C ∈ A (associativity),
2. A · (B + C) = A · B + A · C , (B + C) · A = B · A + C · A,

α(A · B) = (αA) · B = A · (αB), for all A, B, C ∈ A, α ∈ K (distributivity).

Wewill usually denote the algebra product · simplyby juxtaposition, i.e. A · B ≡ AB.

Definition 2.2 An algebra A is said to have a unit (i.e. A is unital) if there exists an
element 1 ∈ A such that 1A = A1 = A, for all A ∈ A.

Definition 2.3 An involutive complex algebra (a ∗-algebra) A is an algebra over
the field of complex numbers, together with a map, ∗ : A→ A, called an involution.
The image of an element A of A under the involution is written A∗. Involution is
required to have the following properties:
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1. for all A, B ∈ A: (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗,
2. for every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,
3. for all A ∈ A: (A∗)∗ = A.

Definition 2.4 A ∗-morphism is a map ϕ : A→ B between ∗-algebras A and B,
which is an algebra morphism compatible with the involution, i.e.:

1. ϕ(AB) = ϕ(A)ϕ(B), for all A, B ∈ A,
2. ϕ(λA + B) = λϕ(A)+ ϕ(B), for all A, B ∈ A, λ ∈ C,
3. ϕ(A∗) = ϕ(A)∗ for every A ∈ A.

Up to now all the properties we have considered are purely algebraic. In order to
quantify the notion of distance between the elements of the algebra we need some
topology.

Let us start with some basic definitions and notation.

Definition 2.5 A topological space X is a pair (X, τ ), where X is a set X and τ is a
collection of subsets of X (called open sets), with the following properties:

• X ∈ τ
• ∅ ∈ τ
• the intersection of any two open sets is open: U ∩ V ∈ τ for U, V ∈ τ
• the unionof every collectionof open sets is open:

⋃
α∈A Uα ∈ τ for Uα ∈ τ ∀α ∈ A,

where A is some index set.

Consider mappings between topological spaces. A topology tells us something
about the regularity of those mappings, since it contains already a notion of “being
close to something” and we can ask ourselves to what extend a given map preserves
this notion.

Definition 2.6 A function f : X→ Y, where X and Y are topological spaces, is
continuous if and only if for every open set V ⊆ Y , the inverse image:

f −1(V ) = {x ∈ X | f (x) ∈ V } (2.1)

is open.

Given a collection of topological spaces, one can define a new topological space
by taking their Cartesian product. This is a very commonly used operation, so we
recall here the definition of a natural topology on such product.

Definition 2.7 Let X be a set such that

X =
∏

i∈I

Xi

is the Cartesian product of topological spaces Xi , indexed by i in some set I . Let
pi : X → Xi be the canonical projections. The product topology on X is defined as
the coarsest topology (i.e. the topology with the fewest open sets) for which all the
projections pi are continuous.
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In our applications the topology will not be enough to capture all the structure
we need. In the physics context it is common that we want to add certain quantities
and scale them. This leads in a natural way to a vector space structure. We want this
structure to be compatible also with the topology.

Definition 2.8 A Topological vector space (tvs) over a fieldK = R orC (with their
standard topologies) is a pair (X, τ ) ≡ X, where τ is a topology such that:

• every point of X is a closed set (i.e. its complement is an open set),
• vector additionX× X→ X and scalar multiplicationK× X→ X are continuous
functions with respect to the product topology on the respective domains.

Definition 2.9 LetX,Y be topological vector spaces over the field K. We denote by
L(X,Y) the space of continuous linear maps from X to Y and by X′ the topological
dual of X, i.e. the space of continuous linear maps from X to K.

A topology can be introduced for example by means of a norm. This leads to the
concept of a normed space.

Definition 2.10 A complex normed space is a vector spaceX overC, equipped with
a map ‖.‖ : X→ R, which satisfies:

1. ‖λA‖ = |λ|‖A‖ (scaling),
2. ‖A + B‖ ≤ ‖A‖ + ‖B‖ (triangle inequality also called subadditivity),
3. If ‖A‖ = 0, then A is the zero vector (separates points).

One of the nice features of normed spaces is that the continuity of maps between
such spaces can be probed by convergent sequences. Recall that in general:

Definition 2.11 A point x of the topological space X is the limit of the sequence
(xn) in X if, for every neighbourhood U of x , there is an N such that, for every
n ≥ N , xn ∈ U .

In particular, for normed spaces:

Definition 2.12 A point x of a normed space (X, ‖.‖) is the limit of the sequence
(xn) if, for all ε > 0, there is an N such that, for every n ≥ N , ‖xn − x‖ < ε. A
sequence that has a limit is called convergent.

Definition 2.13 Let X, Y be topological spaces. Then a function f : X→ Y is said
to be sequentially continuous if for every convergent sequence (xn) in X with the
limit x we have f (xn) → f (x) in Y.

An elementary result from analysis states that if X, Y are normed spaces equipped
with topologies induced by the respective norms then f : X→ Y is continuous if
and only if it is sequentially continuous. However, in Sect. 2.4.1 we will consider
spaces where these two notions do not coincide.

Having defined the notion of convergence of sequences, we are now ready to
introduce the notion of completeness. First we define:
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Definition 2.14 A sequence (xn) in a normed spaceX is called aCauchy sequence if
for every ε > 0 there exists N ∈ N such that for all integers m, n such that m, n > N
we have ‖xn − xm‖ < ε.

Definition 2.15 A normed space X in which every Cauchy sequence converges to
an element of X is called complete.

Given a normed space X that is not complete one can always construct its com-
pletion,1 i.e. a complete normed space that contains X as a dense subspace.

Let us now come back to our algebras. If an algebraA is equipped with a norm, we
can ask for the continuity of the algebraic relations with respect to the norm topology
and for some notion of completeness. This leads to the following definitions.

Definition 2.16 A normed algebra A is a normed vector space whose norm ‖.‖
satisfies

‖AB‖ ≤ ‖A‖‖B‖.

If A is unital, then it is a normed unital algebra if in addition ‖1‖ = 1.

Definition 2.17 A Banach space is a normed vector space equipped with the norm-
induced topology that is complete with respect to this topology. A Banach (unital)
algebra is a Banach space and a normed (unital) algebra with respect to the same
norm.

A particularly important class of Banach algebras with involution is distinguished
by the C∗-property. We will see in this chapter that such algebras can be used to
describe spaces of observables in quantum systems.

Definition 2.18 A C∗-algebra is a Banach involutive algebra (Banach algebra with
involution satisfying ‖A∗‖ = ‖A‖), such that the norm has the C∗-property:

‖A∗A‖ = ‖A‖‖A∗‖, ∀A ∈ A.

2.1.2 Observables and States

In this section we will see how the structures introduced in the previous section
are used in quantum physics. First note that in order to describe a physical system
we need to specify a collection of physical quantities, which we want to measure
(we call them observables) and a collection of states in which the system can be
prepared. Now we want to deduce what kind of mathematical structure is suitable
to describe observable and states. Operationally, each observable corresponds to
some measurement apparatus, which measures given properties of the system. An
example of such an apparatus is a particle detector localized in some region of space.

1The completion ofXcan be constructed as a set of equivalence classes of Cauchy sequences inX.
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Next, one considers operations that can be performed on observables. Scaling of
the measurement apparatus means multiplying the corresponding observable A by
a real number. One can also consider other functions of the observables, which
can be operationally realized as “repainting the scale”. The simplest examples are
monomials An , interpreted as measuring the observable A and taking the nth power
of the result.

Now we discuss the notion of states. We need to assume that we are able to
repeat experiments, so that we can measure a given observable repeatedly in the
same state (i.e. for the same preparation of the system). This statistical interpretation
presupposes that each experiment comes with a protocol that allows us to obtain
the same initial condition each time it is repeated. Under this assumption, a state ω
associates to an observable A a real number ω(A) obtained by averaging the results
of measurements of A for the system prepared to be in the state ω. It is natural to
assume that ω(λA) = λω(A) for λ ∈ R+ (scaling). Let 1 be the observable, which
always takes value 1. For this observable we require that ω(1) = 1. One can also
deduce the positivity of states from the fact that the average of positive numbers is
positive, so ω(A2) ≥ 0.

If we assume that physical properties of observables can be measured only by
looking at expectation values in various states of the system, it is natural to identify
the observables that give the same expectation values in all the states. Now let A be
the space of equivalence classes of observables, where A ∼ B if ω(A) = ω(B) for
all states ω of the system. A notion of a norm can be introduced by assigning to each
observable A ∈ A a finite positive number defined by

‖A‖ .= sup
ω
|ω(A)|

The operational properties of states imply that ‖λA‖ = |λ|‖A‖ for λ ∈ R and ‖A‖ =
0 implies that A = 0 (states separate observables). What is still missing is the linear
structure on A and the product. Let us start with the linear structure. We want to be
able to construct measuring devices that measure the sum of any two observables
A and B, i.e. we need the operation “A + B”. This operation has to satisfy

ω(A + B) = ω(A)+ ω(B),

for all states of the system. It is, however, not clear if an element “A + B” exists inA,
so one needs to embed the initial space of observables in a larger structure in such a
way that states will remain positive linear functionals on this enlarged space. Further
considerations (see for example [Str08]) lead to the notion of Jordan algebras [Jor33,
JvNW34] and finally, by bringing in a complex structure, to C∗-algebras, introduced
in [Gel43] and discussed in [Seg47a, Seg47b] in the context of quantum mechanics.
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We can summarize the basic axioms in the algebraic approach to QM as follows:

1. A physical system is defined by its unital C∗-algebra A.
2. States are identified with positive, normalized linear functionals on A, i.e.

ω(A∗A) ≥ 0 for all A ∈ A and ω(1) = 1.

Note that on a unital C∗-algebra a positive, normalized linear functional is auto-
matically continuous with respect to the topology induced by the C∗-norm. More
generally, we can define states also on involutive topological algebras.

Definition 2.19 A state on an involutive algebraA is a linear functionalω, such that:

ω(A∗A) ≥ 0, ω(1) = 1.

Observables are self-adjoint elements of A and possible measurement results for
an observable A are characterized by its spectrum σ(A). Recall that an element A of
a C∗-algebra is called self-adjoint if A∗ = A.

Definition 2.20 The spectrum spec(A) of A ∈ A is the set of all λ ∈ C such that
A − λ1 has no inverse in A.

A standard result from functional analysis states that a spectrum of self-adjoint
element is a subset of the real line and this agrees with the physical intuition, as
outcomes of measurements have to be real.

2.1.3 Hilbert Space Representations

Having defined the abstract setup we can proceed to a more concrete description that
provides a way to recover the Dirac–von Neumann axioms. The crucial observation
is that abstract elements of an involutive algebra A can be realized as operators on
some Hilbert space by a choice of a representation. Definitions introduced in this
section follow closely [Mor13, RS80]. First let us recall the definition of a Hilbert
space.

Definition 2.21 Let H be a complex vector space. A map 〈., .〉 : H×H → C is a
Hermitian inner product if

1. 〈u, v〉 = 〈u, v〉, ∀u, v ∈ H,
2. 〈u,αv + βw〉 = α〈u, v〉 + β〈u, w〉 (linear in the second argument),
3. 〈v, v〉 ≥ 0 where the case of equality holds precisely when v = 0 (positive defi-

nite).

Properties 1 and 2 imply that 〈., .〉 is antilinear in the first argument. One can
define a norm onH by setting

‖v‖ .= √〈v, v〉.



2.1 Algebraic Quantum Mechanics 9

Definition 2.22 AHilbert spaceH is a complex vector space with a Hermitian inner
product 〈., .〉 such that the norm induced by this productmakesH into aBanach space.

In physics separable Hilbert spaces play an important role.

Definition 2.23 AHilbert spaceH is called separable if it admits a countable subset
whose linear span is dense in H. In fact a Hilbert space is separable if it is either
finite dimensional or has a countable basis.

We are ready to define the notion of linear operators on Hilbert spaces, which is
important in the context of C∗-algebras and physical observables.

Definition 2.24 An operator A on aHilbert spaceH is a linear map from a subspace
D ⊂ H into H. In particular, if D = H and A satisfies ||A|| .= sup||x ||=1{||Ax ||} <

∞, it is called bounded.

We will always assume that D is dense inH (i.e. A is denesly defined).

Definition 2.25 Let A be a densly defined linear operator on a Hilbert spaceH. Let
D(A∗) be the set of all v ∈ H such that there exists u ∈ H with

〈Aw, v〉 = 〈w, u〉, ∀w ∈ D(A).

For each such v ∈ D(A∗) we define A∗v = u. A∗ is called the adjoint of A.

An important class of bounded operators is provided by the unitary ones.

Definition 2.26 A bounded linear operator U : H → H on a Hilbert space H is
called a unitary operator if it satisfies U ∗U = UU ∗ = 1.

Note that the spaceB(H) of bounded linear operators on a Hilbert spaceH forms
a C∗-algebra. We will see later on that one can argue the other way and realize any
abstractC∗-algebra as the algebra of bounded operators on someH. If A is a bounded
operator on a Hilbert space then the self-adjointness is the same as hermiticity, i.e.
is the condition that A∗ = A. In general this is not sufficient.

Definition 2.27 Anoperator A on aHilbert spaceHwith a dense domain D(A) ⊂ H

is called symmetric if for any vectors u, v ∈ D(A) we have 〈u, Av〉 = 〈Au, v〉. This
implies that D(A) ⊆ D(A∗). A symmetric operator A is self-adjoint if in addition
D(A∗) ⊂ D(A).

Definition 2.28 Let A be an operator on a Hilbert space H with a dense domain
D(A) ⊂ H. A self-adjoint operator A′ is called a self-adjoint extension of A if
D(A) ⊆ D(A′) and if A′v = Av for any v ∈ D(A).

A is called essentially self-adjoint if it admits a unique self-adjoint extension.

Abstract elements of an involutive algebra A are realized as operators on some
Hilbert space by a choice of a representation.


