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Introduction

Holomorphic dynamics has several points of view: it can be discrete or
continuous, and be studied locally or globally, but all these aspects are,
sometimes surprisingly and in a very fascinating way, linked to one an-
other.
The setting of global discrete holomorphic dynamics is the following:

one has a complex space X of dimension d, and a holomorphic map
f : X → X , and wants to understand the behavior of the iterates f ◦n of
f . For example one can check if the orbit of a point x ∈ X (i.e., the set
{ f ◦n(x) | n ∈ N}) changes regularly by moving the starting point x .
On the other hand, local discrete holomorphic dynamics still studies

the behavior of a map f , but near a given fixed point p, and hence in
coordinates one is interested into the behavior of a holomorphic germ
f : (Cd, 0)→ (Cd, 0) and its iterates, existence of basins of attractions,
or the structure of the stable set (where all the iterates of f are defined in
a neighborhood of 0).
One of the main techniques to study the dynamics of a family F of

holomorphic germs is looking for normal forms. Roughly speaking, one
looks for a (possibly small) family G of germs, whose dynamics is easier
to study, and such that every f ∈ F can be reduced to a germ g ∈ G by
changing coordinates.

Definition. Let f, g : (Cd, 0) → (Cd, 0) be two holomorphic germs.
We shall say that f and g are (holomorphically, topologically, formally)
conjugated if there exists a (biholomorphism, homeomorphism, formal
invertible map) φ : (Cd, 0)→ (Cd, 0) such that

φ ◦ f = g ◦ φ.

Depending on the regularity of the change of coordinates: holomorphic,
homeomorphic, formal, we talk about holomorphic, topological or formal
classification.
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We can say that holomorphic dynamics was born in 1884, when
Kœnigs (in [44]) proved a conjugacy result in local discrete dynamics
in dimension d = 1.
Theorem (Kœnigs). Let f : (C, 0) → (C, 0) be a holomorphic germ
such that the multiplier λ := f ′(0) is such that |λ| �= 0, 1. Then f is
holomorphically conjugated to the linear part z �→ λz.

Twenty years later, Böttcher proved a result on the same lines for non-
invertible germs (see [10]).

Theorem (Böttcher). Let f : (C, 0) → (C, 0) be a holomorphic germ
of the form

f (z) = apz
p + ap+1z p+1 + . . . ,

with p ≥ 2 and ap �= 0. Then f is holomorphically conjugated to the
map z �→ z p.

Still in the beginning of the 20th century, Leau (see [46] and [47]) and
Fatou (see [24]) proved a local conjugacy result for the parabolic case,
i.e., when f : (C, 0) → (C, 0) is such that its multiplier λ = f ′(0) is a
root of 1. Up to taking a suitable iterate of f , we can suppose that λ = 1.
Definition. Let f : (Cd, 0) → (Cd, 0) be a holomorphic germ. It is
called tangent to the identity if d f0 = Id.
In dimension d = 1, write f : (C, 0)→ (C, 0) in the form

f (z) = z(1+ akz
k + ak+1zk+1 + . . .),

with k ≥ 1 and ak �= 0. Then k + 1 is called the parabolic multiplicity
of f .

Definition. A parabolic domain in C is a simply connected open domain
� such that 0 ∈ ∂�.
A parabolic domain� is said to be an attracting petal (resp., repelling

petal) for a map f tangent to the identity if f (�) ⊂ � and f ◦n(x)→ 0
for every x ∈ � (resp., the same for f −1).

Theorem (Leau, Fatou). Let f : (C, 0) → (C, 0) be a tangent to the
identity germ with parabolic multiplicity k+1. Then there exist k attract-
ing petals and k repelling petals such that in every petal f is holomorphi-
cally conjugated to z �→ z+1. Distinct attracting petals are disjoint, and
the same holds for repelling petals. The union of attracting and repelling
petals form a punctured neighborhood of 0.
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The formal and topological classifications for this kind of germs are
not so difficult at least to state, but the holomorphic classification is sur-
prisingly complicated: the moduli space is infinite-dimensional, and the
final answer of this question was given almost 70 years later, indepen-
dently by Écalle using resurgence theory (see [21, 22, 23]) and Voronin
(see [61]).
Fatou, Julia, Cremer, Siegel, Brjuno, Sullivan, Douady, Hubbard, Yoc-

coz and many others gave their contribution to the study of holomorphic
dynamics in dimension 1, and right now most of the main issues for both
local and global holomorphic dynamics in dimension 1 are solved.
In higher dimensions, a very fruitful theory has been developed for the

global setting, by Bedford, Sibony, Fornaess, Smillie and many others,
whereas in the local setting only a few simpler cases are well understood,
such as the invertible attracting case, while the more complicated ones
are still subject of study, even in dimension d = 2.
Definition. Let f : (C2, 0)→ (C2, 0) be a holomorphic germ, and let us
denote by Spec(d f0) = {λ1, λ2} the set of eigenvalues of d f0. Then f is
said:

• attracting if |λi | < 1 for i = 1, 2;
• superattracting if d f0 = 0;
• nilpotent if d f0 is nilpotent (i.e., d f 20 = 0; in particular, superattracting
germs are nilpotent germs);

• semi-superattracting if Spec(d f0) = {0, λ}, with λ �= 0;
• of type (0, D) if Spec(d f0) = {0, λ} and λ ∈ D, with D ⊂ C a subset
of the complex plane.

In particular the semi-superattracting germs are the ones of type (0,C∗).

We shall always consider only dominant holomorphic germs, i.e., holo-
morphic germs f such that det d fz �≡ 0. For non-dominant holomorphic
germs, the dynamics is essentially 1-dimensional.
Favre in 2000 gave the holomorphic classification of a special type of

germs, namely the (attracting) rigid germs (see [25]).

Definition. Let f : (Cd, 0) → (Cd, 0) be a holomorphic germ. We
denote by C( f ) = {z | det(d fz) = 0} the critical set of f , and by
C( f∞) =⋃n∈N f −nC( f ) the generalized critical set of f . Then a (dom-
inant) holomorphic germ f is rigid if:

(i) C( f∞) (is empty or) has simple normal crossings (SNC) at the ori-
gin; and

(ii) C( f∞) is forward f -invariant.
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Another very interesting class of holomorphic germs is given by strict
germs, that (in dimension 2, but not in higher dimensions) are a subset of
rigid germs.

Definition. Let f : (Cd, 0) → (Cd, 0) be a (dominant) holomorphic
germ. Then f is a strict germ if there exist a SNC divisor with support
C and a neighborhood U of 0 such that f |U\C is a biholomorphism with
its image.

Besides giving interesting classes of examples of local dynamics in
higher dimensions, in the 2-dimensional case rigid and strict germs are
very important for at least two reasons: first, every (dominant) holomor-
phic germ is birationally conjugated to a rigid germ; second, every strict
germ gives rise to a compact complex non-Kähler surface (Kato surface).

Valuative tree

A very useful tool for the study of holomorphic dynamics (in dimen-
sion 2 or higher) has been borrowed from algebraic geometry: blow-ups.
Roughly speaking, a blow-up of a point p in Cd consists in replacing p
by the set P(TpX), i.e., the set of “directions” through p.
If then one wants to study holomorphic dynamics locally at 0 ∈ C2,

one can look for a suitable modification over 0, (i.e., a sequence of blow-
ups, the first one over 0), to get a simpler dynamical situation on the
blown-up space.
These techniques were first used for studying foliations by Seidenberg,

Camacho and Sad, and many others (see, e.g., [55] and [13]), and then
transferred, by Hakim, Abate and others, to the tangent to the identity
case in local dynamics in C2 (see [34] and [2]).
To study local (and global) holomorphic dynamics, Favre and Jonsson

in [26] developed a tool, the valuative tree, that roughly speaking is a
way to look at all possible modifications over the origin.
Using the valuative tree, and the action induced on it by a germ f :

(C2, 0)→ (C2, 0), they proved that up to modifications you can suppose
that a super-attracting germ is actually rigid. Let us be more precise.

Definition. Let f : (C2, 0) → (C2, 0) be a (dominant) holomorphic
germ. Let π : X → (C2, 0) be a modification and p ∈ π−1(0) a point
in the exceptional divisor of π . Then we shall call the triple (π, p, f̂ ) a
rigidification for f if the lift f̂ = π−1 ◦ f ◦ π is a holomorphic rigid
germ with fixed point p = f̂ (p).

Finding a rigidification is, a priori, extremely hard, since if we have a
germ f : (C2, 0)→ (C2, 0), a modification π : X → (C2, 0) and a point
p ∈ π−1(0), the lift f̂ = π−1 ◦ f ◦ π in general is just a rational map,
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and it is already not easy to have f̂ to be a holomorphic germ in a fixed
point p.
In this thesis we extend Favre’s and Jonsson’s result (see [27, Theorem

5.1]) to germs with non-invertible differential in 0 (for invertible germs,
the result is trivial, being the map already rigid), getting

Theorem. Every (dominant) holomorphic germ f : (C2, 0) → (C2, 0)
admits a rigidification.

Then we shall study more carefully the case of semi-superattracting
germs, getting a sort of uniqueness of the rigidification process, and a
result on the existence (and uniqueness) of invariant curves.

Theorem. Let f be a (dominant) semi-superattracting holomorphic germ
of type (0, λ). Then there exist two curves C and D such that the follow-
ing holds:

• C is a (possibly formal) curve through 0, with multiplicity equal to 1
and tangent to the λ-eigenspace of d f0, such that f (C) = C.

• D is a (holomorphic) curve through 0, with multiplicity equal to 1
and tangent to the 0-eigenspace of d f0, such that either f (D) = D or
f (D) = 0.

• There are no other invariant or contracted (not even formal) curves
for f besides C and D.

Thanks to this result, the formal classification of semi-superattracting
rigid germs can be found. We shall quote here only a consequence of
this classification (see Section 2.5 for the precise statement):

Corollary. The moduli space of semi-superattracting germs in C2 up to
formal conjugacy is infinite-dimensional.

This result shows how difficult (if not impossible) is to give an ex-
plicit classification of semi-superattracting germs up to holomorphic con-
jugacy. As a matter of fact, one has always to consider the complexity
of the generalized critical set, that generally has an infinite number of
irreducible components.
With the rigidification result and the last remark in mind, we can then

focus on better understanding the dynamics of rigid germs. For semi-
superattracting rigid germs of type (0,D) Favre’s result gives the holo-
morphic classification; in this thesis we focus our attention on a sort of
limit case, germs of type (0, 1). Hakim proved (see [33]) the following
result on the existence of basins of attraction.

Definition. Let f : (C2, 0) → (C2, 0) be a holomorphic germ of
type (0, 1). Let C be the f -invariant (formal) curve associated to the
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1-eigenspace of the differential d f0 at 0, parametrized by a suitable (for-
mal) map γ : C[[t]] → C[[z, w]]. Then we shall call parabolic multi-
plicity of f the parabolic multiplicity of γ−1 ◦ f |C ◦ γ .
Theorem (Hakim). Let f : (C2, 0) → (C2, 0) be a holomorphic germ
of type (0, 1), with parabolic multiplicity k + 1, and let us denote by Dρ

the open disc in C centered at 0 and with radius ρ > 0. Then there exist
k (disjoint) parabolic domains�0, . . . ,�k−1 ⊂ C, such that, for ρ small
enough,

Wj := � j × Dρ

are basins of attraction for f and there exist holomorphic submersions

φ j : Wj → C

that satisfy the following functional equation:

φ j
(
f (p)

) = φ j (p)+ 1.

Notice that, even if the basins of attraction are a product of a parabolic
domain� j and a discDρ , the parabolic domain� j×{0} is not necessarily
f -invariant (as happens for germs tangent to the identity, see [34]), and
f might not admit parabolic curves.

Definition. A parabolic curve for a germ f : (C2, 0) → (C2, 0) at
the origin is a injective holomorphic map ϕ : � → Cd satisfying the
following properties:

(i) � is a parabolic domain in C;
(ii) ϕ is continuous at the origin, and ϕ(0) = 0;
(iii) ϕ(�) is invariant under f , and f ◦n(z)→ 0 for every z ∈ ϕ(�).

Roughly speaking, Hakim’s result tells us the behavior of “one coordi-
nate” of f in a basin of attraction. We can focus on understanding the
behavior of f also with respect to the “other coordinate”, to get a com-
plete description of the dynamics f in the basins of attraction. For the
reasons we anticipated above, we shall consider rigid germs and prove
the following result.

Theorem. Let f : (C2, 0) → (C2, 0) be a holomorphic rigid germ of
type (0, 1) of parabolic multiplicity k + 1. Let

Wj := � j × Dρ
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for j = 0, . . . , k − 1 be basins of attraction for f as above. If there
is a parabolic curve in Wj , then there exists a holomorphic conjugation

 j : Wj → W̃ j between f |Wj and the map

f̃ (z, w) =
(

z
k
√
1+ zk

, zcwd
(
1+ h̃(z)

))
,

where W̃ j is a suitable parabolic domain. Moreover, if d ≥ 2 then we
can get h̃ ≡ 0.
In particular, the action of such germ in the second coordinate is either

monomial or linear with respect to w.
The assumption of the existence of parabolic curves is quite technical;

the feeling on the matter is that, if parabolic curves do not exist, then f
should be conjugated (in each basin of attraction) to a map that in the
second coordinate is affine with respect to w.

Kato Varieties

Coming back to local dynamics in the attracting case, given an attracting
germ f : (Cd, 0)→ (Cd, 0), it is natural to look at its basin of attraction
to 0, and its fundamental domain, i.e., (any dense open subset of) the
basin of attraction modulo the action of f itself.
Starting from the 70’s, Kato, Inoue, Dloussky, Oeljeklaus, Toma and

others proved that one can find some compactifications of these funda-
mental domains when f : (C2, 0) → (C2, 0) is also strict, getting in-
teresting examples of compact complex non-Kähler surfaces, called Kato
surfaces.
Kato surfaces are of great interest also for the Kodaira-Enriques clas-

sification of compact complex surfaces. Indeed, they all belong to the so
called Class VII.

Definition. A surface X is called of class VII if it has Kodaira dimension
kod (X) = −∞ and first Betti number b1 = 1. If moreover X is a
minimal model, it is called of class VII0.

We have to explain now what is the Kodaira dimension of a compact
complex manifold, and what is a minimal model. We shall start from the
second.

Definition. A compact complex surface X is called minimal model if
it does not exist a compact complex surface Y and a modification π :
X → Y .



xviii Matteo Ruggiero

This definition can seem difficult to check directly, but thanks to the
Castelnuovo-Enriques criterion (see [31, p. 476]), it is equivalent to ask-
ing that the surface X has no exceptional curves, i.e., rational curves with
self-intersection −1.
Theorem (Castelnuovo-Enriques Criterion). Let X be a 2-manifold,
and D ⊂ X a curve in X. Then there exists a 2-manifold Y so that
π : X → Y is the blow-up of a point p ∈ Y with D = π−1(p) if and
only if D is a rational curve of self-intersection −1.
So, up to modifications (and hence up to birationally equivalent mod-

els), a compact complex surface can be supposed to be a minimal model.
If reducing to minimal models can be considered as the first step for

the classification of compact complex surfaces, the second step would be
sorting surfaces with respect to the Kodaira dimension.

Definition. Let X be a compact complex n-manifold. For every m ∈ N∗,
we shall call the m-th plurigenera the dimension

Pm := h0
(
X,O (mKX )

)
of the space of holomorphic sections of the line bundle mKX , where
KX = ∧n T ∗X is the canonical bundle of X (here T ∗X denotes the
holomorphic cotangent bundle of X).
The Kodaira dimension of X is

kod (X) = min{k | Pm = O(mk) for m →+∞}.

The Kodaira dimension somehow tells us how positive is the canonical
bundle.
When Pm = 0 for every m ≥ 1, we shall say that the Kodaira dimen-

sion is −∞.
For a (compact complex) n-manifold, the Kodaira dimension can take

values in {−∞, 0, . . . , n}. The case kod (X) = n is said to be of general
type.
In dimension 2, surfaces of general type are not completely under-

stood. There are results on the structure of the moduli spaces, but it
seems not easy to compute them for all cases.
However for Kodaira dimension 1 and 0 the classification is done and

classical, while for Kodaira dimension −∞, only one case is still not
completely understood: class VII surfaces.
When the second Betti number b2(X) = 0, these surfaces have been

completely classified, thanks to the work of Kodaira ([42, 43]), Inoue
([38]), Bogomolov ([8]), Li, Yau and Zheng ([48]), Teleman ([60]).
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For b2 > 0, the classification is not completed yet. Before describing
the known results, we need a definition.

Definition. Let X be a compact complex n-manifold. A spherical shell
is a holomorphic embedding i : V ↪→ X , where V is a neighborhood of
S2n−1 = ∂B2n ⊂ Cn . A spherical shell is said global (or GSS) if X \ i(V )

is connected.

Kato introduced a construction method for surfaces of class VII0 with
b2 > 0, called Kato surfaces (see [40]), that starts from a Kato data.

Definition. Let B = Bε be a closed ball in Cn of center 0 and radius
ε > 0, and π : B̃ → B a modification over 0. Let σ : B → B̃ be a bi-
holomorphism with its image such that σ(0) is a point of the exceptional
divisor of π . The couple (π, σ ) is called a Kato data.

Kato datas and (rigid, strict) germs are strictly related, as the following
definition shows.

Definition. Let (π, σ ) be a Kato data. Then we can consider f0 = π ◦σ :
B → B, that turns out to be a holomorphic rigid and strict germ, with a
fixed point in 0 the center of B. We shall call this germ the base germ
associated to the given Kato data.
On the other hand, given a (rigid and strict) holomorphic germ f0 :

(Cn, 0)→ (Cn, 0), we shall call resolution for f0 a decomposition f0 =
π ◦ σ , with π a modification over 0 and σ a (germ) biholomorphism that
sends 0 into a point of the exceptional divisor of π .

Then, roughly speaking, a Kato variety is constructed as follows.

Definition. Let (π, σ ) be a Kato data. Let B = Bε be a ball in Cn of cen-
ter 0 and radius ε > 0. The Kato variety associated to the given Kato data
is the quotient of X̃ = π−1(B)\σ(B) by the action of σ ◦π : π−1(∂B)→
σ(∂B), that is a biholomorphism on a suitable neighborhood of π−1(∂B)
for ε small enough.

Dloussky in his PhD thesis [15] studied deeply this construction and
properties of Kato surfaces. Among these properties, we shall underline
the following (see [40] and [20]).

Theorem (Kato, Dloussky-Oeljeklaus-Toma). Let X be a surface of
class VII0 with b2 = b2(X) > 0. Then X admits at most b2 rational
curves. Moreover, X admits a GSS if and only if X has exactly b2 rational
curves.

There are no known examples of surfaces X of class VII0 that do not
admit global spherical shells, and a big conjecture (called the GSS Con-
jecture) claims that there are none.
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Dloussky and Oeljeklaus (see [17]) studied the case when the germ f0
arises from the action at infinity of an automorphism of C2.

Definition. An automorphism f : C2 → C2 is said to be a Hénon map if
it is of the form

f (x, y) = (p(x)− ay, x
)
,

with p a polynomial of degree d = deg p ≥ 2.
Polynomial automorphisms of C2 can be subdivided into two classes,

elementary automorphisms, whose dynamics is easier to study, and com-
positions of Hénon maps; see [29].
The idea is then to consider the extension F : P2 → P2, that has an

indeterminacy point at [0 : 1 : 0], and an indeterminacy point for the
inverse at [1 : 0 : 0].
Looking at the action of F on the line at infinity, one finds that there is

a fixed point p = [1 : 0 : 0], and the germ Fp := f0 is strict and admits a
resolution, and hence an associated Kato surface.
This new approach gives a connection between the dynamics of f and

the Kato surface X associated to f0: in particular, if we denote by U the
basin of attraction of f to p, then X turns out to be a compactification of
the fundamental domain V of U .
From this dynamical interpretation of Kato surfaces, some questions

arise:

• Can we add a point “at infinity” to V and get a (possibly singular)
compact complex manifold? Or equivalently, is the Alexandroff one-
point compactification of V a (possibly singular) complex manifold?

• Can we lift objects that are invariant for f0 to X , obtaining some addi-
tional structure on X (such as the existence of subvarieties, foliations,
vector fields)?

The first property is actually equivalent to contracting all the rational
curves to a point, that was a result already known for Kato surfaces (see
[15]).
The second phenomenon has been studied for example by Dloussky,

Oeljeklaus and Toma, starting from [15]; see, e.g., [16, 18] and [19].
Favre, in his PhD thesis (see [25]), used his classification of attracting

rigid germs in C2 and studied the construction of a holomorphic foliation
on X , and the computation of the first fundamental group of the basin U ,
already obtained using other techniques by Hubbard and Oberste-Vorth
(see [37]), that turns out to be very complicated.
In this work, we shall study an example of these phenomena in dimen-

sion 3. Several aspects become more complicated. First of all, while the



xxi Rigid Germs, the Valuative Tree, and Applications to Kato Varieties

structure of polynomial automorphisms in C2 is pretty clear, in higher
dimensions it is still a subject of research, and we have no “Hénon maps”
that we can use. Indeed only a few cases have been classified: for in-
stance, the automorphisms of degree 2 in C3 (see [30] and [49]).
However, Sibony and others identified a special property of Hénon

maps, regularity, and studied maps with this property in higher dimen-
sions, getting a very fruitful theory on global holomorphic dynamics, us-
ing currents and pluripotential theory.

Definition. Let f : Cn → Cn be a polynomial automorphism, F : Pn →
Pn be its extension to Pn , and denote by I+ and I− the indeterminacy sets
for F and F−1 respectively. Then f is said to be regular (in the sense of
Sibony) if I+ ∩ I− = ∅.
Furthermore, the structure of birational maps is more complicated in

dimension ≥ 3: one can blow-up not only points, but also curves and
varieties of higher dimension, and not every birational map is obtained
as a composition of blow-ups followed by a composition of blow-downs
(the inverse of blow-ups, see [9]). Moreover, the problem of finding an
equivalent of minimal models in dimensions higher than 2 is still open
(the project to solve this problem is called “Minimal Model Program”,
based on Mori theory).
So not so much is known about Kato varieties in higher dimensions.

We shall then study the case of a specific regular quadratic polynomial
automorphism f : C3 → C3 in normal form with respect to [30], namely

f (x, y, z) = (x2 + cy2 + z, y2 + x, y),

where c ∈ C. The example we chose is essentially the only example of
regular polynomial automorphism in C3 of degree 2. Indeed by direct
computation one gets that I+ = [0 : 0 : 1 : 0] is a point, while I− =
{z = t = 0} is a line at infinity.
In this thesis we shall construct a Kato variety associated to f −1 and

its basin of attraction to [0 : 0 : 1 : 0].
This polynomial automorphism was already considered by Oeljeklaus

and Renaud in 2006 (see [52]), who constructed a different kind of 3-fold
(called of Class L , see [41]) associated to the basin of attraction of f to
I−.
We shall then prove the following properties.

Theorem. Let f : C3 → C3 be the regular polynomial automorphism
given by

f (x, y, z) = (x2 + cy2 + z, y2 + x, y),


