cover.eps

Title page image

Electronics All-in-One For Dummies®

To view this book's Cheat Sheet, simply go to www.dummies.com and search for “Electronics All-in-One For Dummies Cheat Sheet” in the Search box.

Introduction

Welcome to the amazing world of electronics!

Ever since I was a kid, I’ve been fascinated with electronics. When I was about 10 years old, my dad bought me an electronic experimenter’s kit from the local RadioShack store. I still have it; it’s pictured here.

image

I have incredible memories of evenings spent with my dad, wiring the sample circuits to make squawking police sirens, flashing lights, a radio receiver, and even a telegraph machine.

The best part was dreaming that when I grew up, I’d have a job in the field of electronics, that someday I’d understand exactly how those resistors, capacitors, inductors, transistors, and integrated circuits actually worked, and I’d use that knowledge to design televisions or computers or communication satellites.

Well, that dream didn’t come true. Instead, I went into a closely related field: computer programming. But my love of electronics never died, and I’ve spent the last 40 years or so experimenting with electronics as a hobbyist.

This book is an introduction to electronics for people who have always been fascinated by electronics but didn’t make a career out of it. In these pages, you’ll find clear and concise explanations of the most important concepts that form the basis of all electronic devices, concepts such as the nature of electricity (if you think you really know what it is, you’re kidding yourself); the difference between voltage, amperage, and wattage; and how basic components such as resistors, capacitors, diodes, and transistors work.

Not only will you gain an appreciation for the electronic devices that are a part of everyday life, but you’ll also learn how to build simple circuits that will not only impress your friends but may actually be useful!

About This Book

Electronics All-in-One For Dummies, 2nd Edition, is intended to be a reference for the most important topics you need to know when you dabble in building your own electronic circuits. It’s a big book made up of nine smaller books, which we at the home office like to call minibooks. Each of these minibooks covers the basics of one key topic for working with electronics, such as circuit building techniques, how electronic components like diodes and transistors work, or using integrated circuits.

This book doesn’t pretend to be a comprehensive reference for every detail on every possible topic related to electronics. Instead, it shows you how to get up and running fast so that you have more time to do the things you really want to do. Designed using the easy-to-follow For Dummies format, this book helps you get the information you need without laboring to find it.

Whenever one big thing is made up of several smaller things, confusion is always a possibility. That’s why this book is designed with multiple access points to help you find what you want. At the beginning of the book is a detailed table of contents that covers the entire book. Then each minibook begins with a minitable of contents that shows you at a miniglance what chapters are included in that minibook. Useful running heads appear at the top of each page to point out the topic discussed on that page, and handy thumbtabs run down the side of the pages to help you find each minibook quickly. Finally, a comprehensive index lets you find information anywhere in the entire book.

This isn’t the kind of book you pick up and read from start to finish, as if it were a cheap novel. If I ever see you reading it at the beach, I’ll kick sand in your face. Beaches are for reading romance novels or murder mysteries, not electronics books. Although you could read this book straight through from start to finish, this book is designed like a reference book, the kind of book you can pick up, open to just about any page, and start reading.

You don’t have to memorize anything in this book. It’s a “need-to-know” book: You pick it up when you need to know something. Need a reminder on how to calculate the correct load resistor for an LED circuit? Pick up the book. Can’t remember the pinouts for a 555 timer IC? Pick up the book. After you find what you need, put the book down and get on with your life.

You can find a total of 61 projects strewn throughout this book’s chapters. You’ll find a plethora of simple projects you can build to demonstrate the operation of typical circuits. For example, in the chapter on transistors, you’ll find several simple projects that demonstrate common uses for transistors, such as driving an LED, creating an oscillator, or inverting an input.

I suggest you build each of the projects as you read the chapters. Reading about electronics circuits is one thing, but to understand how a circuit works, you really need to build it and see it in operation. Most of the projects are simple enough that you can build them in 20 to 30 minutes, assuming you have the parts on hand.

If you are lucky enough to have a RadioShack or other store that carries electronic components in your community, you’re in luck! If you want to build one of the projects on a Saturday afternoon, you can buzz over to your local electronics store, pick up the parts you’ll need, take them home, and build the circuit.

Of course, you can also purchase the components you need at any other store that stocks electronic hobbyist components, and you can find many sources for purchasing the parts online.

Finally, most of the electronic circuits described in this book are perfectly safe: They run from common AA or 9 V batteries and therefore don’t work with voltages large enough to hurt you.

However, you’ll occasionally come across circuits that work with higher voltages, which can be dangerous. Any project that involves line voltage (that is, that you plug into an electrical outlet) should be considered potentially dangerous and handled with the utmost care. In addition, even battery-powered circuits that use large capacitors can build up charges that can deliver a potentially painful shock.

When you work with electronics, you’ll also encounter dangers other than those posed by electricity. Soldering irons are hot and can burn you. Wire cutters are sharp and can cut you. And there are plenty of small parts that can fall on the floor and find themselves in the mouths of kids or pets.

Safety is an important enough topic that I’ve devoted a chapter to it in Book 1. I strongly urge you to read Book 1, Chapter 4 before you build anything.

Please be careful! The projects that are presented in Book 9 all work directly with line-level voltage and should be considered dangerous. You must exercise great care if you decide to build any of those projects, as a single mistake could kill you or someone else. Those projects are offered as educational prototypes that are designed to be operated only within the safe confines of your workbench, where you can control the power connections so that no one is exposed to dangerous voltages.

Foolish Assumptions

Throughout this book, I make very few assumptions about what you may know about the subject of electronics. I certainly don’t assume that you’ve ever taken a class on electronics, have ever assembled a circuit, or are well versed in advanced science or math.

In fact, there are really very few things I do assume:

Icons Used in This Book

Like any For Dummies book, this one is chock-full of helpful icons that draw your attention to items of particular importance. You find the following icons throughout this book:

tip Pay special attention to this icon; it lets you know that some particularly useful tidbit is at hand.

technicalstuff Hold it — overly technical stuff is just around the corner. Obviously, because this is an electronics book, almost every paragraph of the entire book could get this icon. So I reserve it for those paragraphs that go into greater depth, down into explaining how something works under the covers — probably deeper than you really need to know to use a feature, but often enlightening. You also sometimes find this icon when I want to illustrate a point with an example that uses some electronics gadget that hasn’t been covered so far in the book, but that is covered later. In those cases, the icon is just a reminder that you shouldn’t get bogged down in the details of the illustration and should instead focus on the larger point.

warning Danger, Will Robinson! This icon highlights information that may help you avert disaster. You should definitely pay attention to the warning icons because they will let you know about potential safety hazards.

remember Did I tell you about the memory course I took?

Beyond the Book

In addition to the material in the print or e-book you’re reading right now, this product also comes with some access-anywhere goodies on the web. Check out the free Cheat Sheet for some safety rules to follow, a list of electronic resistor color codes, and more. To get this Cheat Sheet, simply go to www.dummies.com and type Electronics All-in-One For Dummies Cheat Sheet in the Search box.

Where to Go from Here

Yes, you can get there from here. With this book in hand, you’re ready to plow right into the exciting hobby of electronics. Browse through the table of contents and decide where you want to start. Be bold! Be courageous! Be adventurous! And above all, have fun!

Book 1

Getting Started in Electronics

Contents at a Glance

  1. Chapter 1: Welcome to Electronics
    1. What Is Electricity?
    2. But Really, What Is Electricity?
    3. What Is Electronics?
    4. What Can You Do with Electronics?
    5. Looking inside Electronic Devices
  2. Chapter 2: Understanding Electricity
    1. Pondering the Wonder of Electricity
    2. Looking for Electricity
    3. Peering Inside Atoms
    4. Examining the Elements
    5. Minding Your Charges
    6. Conductors and Insulators
    7. Understanding Current
    8. Understanding Voltage
    9. Comparing Direct and Alternating Current
    10. Understanding Power
  3. Chapter 3: Creating Your Mad-Scientist Lab
    1. Setting Up Your Mad-Scientist Lab
    2. Equipping Your Mad-Scientist Lab
    3. Stocking up on Basic Electronic Components
    4. One Last Thing
  4. Chapter 4: Staying Safe
    1. Facing the Realities of Electrical Dangers
    2. Other Ways to Stay Safe
    3. Keeping Safety Equipment on Hand
    4. Protecting Your Stuff from Static Discharges
  5. Chapter 5: Reading Schematic Diagrams
    1. Introducing a Simple Schematic Diagram
    2. Laying Out a Circuit
    3. To Connect or Not to Connect
    4. Looking at Commonly Used Symbols
    5. Simplifying Ground and Power Connections
    6. Labeling Components in a Schematic Diagram
    7. Representing Integrated Circuits in a Schematic Diagram
  6. Chapter 6: Building Projects
    1. Looking at the Process of Building an Electronic Project
    2. Envisioning Your Project
    3. Designing Your Circuit
    4. Prototyping Your Circuit on a Solderless Breadboard
    5. Constructing Your Circuit on a Printed Circuit Board (PCB)
    6. Finding an Enclosure for Your Circuit
  7. Chapter 7: The Secrets of Successful Soldering
    1. Understanding How Solder Works
    2. Procuring What You Need to Solder
    3. Preparing to Solder
    4. Soldering a Solid Solder Joint
    5. Checking Your Work
    6. Desoldering
  8. Chapter 8: Measuring Circuits with a Multimeter
    1. Looking at Multimeters
    2. What a Multimeter Measures
    3. Using Your Multimeter
  9. Chapter 9: Catching Waves with an Oscilloscope
    1. Understanding Oscilloscopes
    2. Examining Waveforms
    3. Calibrating an Oscilloscope
    4. Displaying Signals

Chapter 1

Welcome to Electronics

IN THIS CHAPTER

check Understanding electricity

check Defining the difference between electrical and electronic circuits

check Perusing the most common uses for electronics

check Looking at a typical electronic circuit board

I thought it would be fun to start this book with a story, so please bear with me. In January of 1880, Thomas Edison filed a patent for a new type of device that created light by passing an electric current through a carbon-coated filament contained in a sealed glass tube. In other words, Edison invented the light bulb. (Students of history will tell you that Edison didn’t really invent the light bulb; he just improved on previous ideas. But that’s not the point of the story.)

Edison’s light bulb patent was approved, but he still had a lot of work to do before he could begin manufacturing a commercially viable light bulb. The biggest problem with his design was that the lamps dimmed the more you used them. This was because when the carbon-coated filament inside the bulb got hot, it shed little particles of carbon, which stuck to the inside of the glass. These particles resulted in a black coating on the inside of the bulb, which obstructed the light.

Edison and his team of engineers tried desperately to discover a way to prevent this shedding of carbon. One day, someone on his team noticed that the black carbon came off of just one end of the filament, not both ends. The team thought that maybe some type of electric charge was coming out of the filament. To test this theory, they introduced a third wire into the lamp to see if it could catch some of this electric charge.

It did. They soon discovered that an electric current flowed from the heated filament to this third wire, and that the hotter the filament got, the more electric current flowed. This discovery, which came to be known as the Edison Effect, marks the beginning of technology known as electronics. The device, which Edison patented on November 15, 1883, is the world’s first electronic device.

When Edison patented his device in 1883, he had no idea what it would lead to. Now, just about 130 years later, it’s hard to imagine a world without electronics. Electronic devices are everywhere. There are more television sets in the United States than there are people. No one uses film to take pictures anymore; cameras have become electronic devices. And you rarely see a teenager anymore without headphones in his ears.

Without electronics, life would be very different.

Have you ever wondered what makes these electronic devices tick? In this chapter, I lay some important groundwork that will help the rest of this book make sense. I examine the bits and pieces that make up the most common types of electronic devices, and take a look at the basic concept that underlies all of electronics: electricity.

I promise I won’t bore you too much with tedious or complicated physics concepts, but I must warn you from the start: In order to learn how electronics works at a level that will let you begin to design and build your own electronic devices, you need to have at least a basic idea of what electricity is. Not just what it does, but what it actually is. So put on your thinking cap and get started.

What Is Electricity?

Before you can understand even the simplest concepts of electronics, you must first understand what electricity is. After all, the whole purpose of electronics is to get electricity to do useful and interesting things.

The concept of electricity is both familiar and mysterious. We all know what electricity is, or at least have a rough idea, based on practical experience. In particular, consider these points:

But Really, What Is Electricity?

In the previous section, I list several ideas most of us have about electricity based on everyday experience. But the reality of electricity is something very different. Chapter 2 of this minibook is devoted to a deeper look at the nature of electricity, but for the purposes of this chapter, I want to start by introducing you to three very basic concepts of electricity: namely, electric charge, electric current, and electric circuit.

  • Electric charge refers to a fundamental property of matter that even physicists as smart as Stephen Hawking don’t totally understand. Suffice it to say that two of the tiny particles that make up atoms — protons and electrons — are the bearers of electric charge. There are two types of charge: positive and negative. Protons have positive charge, electrons have negative charge.

    Electric charge is one of the basic forces of nature that hold the universe together. Positive and negative charges are irresistibly attracted to each other. Thus, the attraction of negatively charged electrons to positively charged protons hold atoms together.

    If an atom has the same number of protons as it has electrons, the positive charge of the protons balances out the negative charge of the electrons, and the atom itself has no overall charge.

    However, if an atom loses one of its electrons, the atom will have an extra proton, which gives the atom a net positive charge. When an atom has a net positive charge, it goes looking for an electron to restore its balanced charge.

    Similarly, if an atom somehow picks up an extra electron, the atom has a net negative charge. When this happens, the atom goes looking for a way to get rid of the extra electron to once again restore balance.

    technicalstuff Okay, technically atoms don’t really go “looking” for anything. They don’t have eyes, and they don’t have minds that are troubled when they’re short an electron or have a few too many. However, the natural attraction of negative to positive charges causes atoms that are short an electron to be attracted to atoms that are long an electron. When they find each other, something almost magic happens … The atom with the extra electron gives its electron to the atom that’s missing an electron. Thus, the charge represented by the electron moves from one atom to another, which brings us to the second important concept …

  • Electric current refers to the flow of the electric charge carried by electrons as they jump from atom to atom. Electric current is a very familiar concept: When you turn on a light switch, electric current flows from the switch through the wire to the light, and the room is instantly illuminated.

    Electric current flows more easily in some types of atoms than in others. Atoms that let current flow easily are called conductors, whereas atoms that don’t let current flow easily are called insulators.

    Electrical wires are made of both conductors and insulators, as illustrated in Figure 1-1. Inside the wire is a conductor, such as copper or aluminum. The conductor provides a channel for the electric current to flow through. Surrounding the conductor is an outer layer of insulator, such as plastic or rubber.

    The insulator serves two purposes. First, it prevents you from touching the wire when current is flowing, thus preventing you from being the recipient of a nasty shock. But just as importantly, the insulator prevents the conductor inside the wire from touching the conductor inside a nearby wire. If the conductors were allowed to touch, the result would be a short circuit, which brings us to the third important concept …

  • An electric circuit is a closed loop made of conductors and other electrical elements through which electric current can flow. For example, Figure 1-2 shows a very simple electrical circuit that consists of three elements: a battery, a lamp, and an electrical wire that connects the two.

    The circuit shown in Figure 1-2 is, as I already said, very simple. Circuits can get much more complex, consisting of dozens, hundreds, or even thousands or millions of separate components, all connected with conductors in precisely orchestrated ways so that each component can do its bit to contribute to the overall purpose of the circuit. But all circuits must obey the basic principle of a closed loop.

    remember All circuits must create a closed loop that provides a complete path from the source of voltage (in this case, the battery) through the various components that make up the circuit (in this case, the lamp) and back to the source (again, the battery).

image

FIGURE 1-1: An electric wire consists of a conductor surrounded by an insulator.

image

FIGURE 1-2: A simple electrical circuit consisting of a battery, a lamp, and some wire.

What Is Electronics?

One of the reasons I started this chapter with the history lesson about Thomas Edison was to point out that when the whole field of electronics was invented in 1883, electrical devices had already been around for at least 100 years. For example:

All of these devices, and many other common devices still in use today, such as light bulbs, vacuum cleaners, and toasters, are known as electrical devices. So what exactly is the difference between electrical devices and electronic devices?

The answer lies in how devices manipulate electricity to do their work. Electrical devices take the energy of electric current and transform it in simple ways into some other form of energy — most likely light, heat, or motion. For example, light bulbs turn electrical energy into light so you can stay up late at night reading this book. The heating elements in a toaster turn electrical energy into heat so you can burn your toast. And the motor in your vacuum cleaner turns electrical energy into motion that drives a pump that sucks the burnt toast crumbs out of your carpet.

In contrast, electronic devices do much more. Instead of just converting electrical energy into heat, light, or motion, electronic devices are designed to manipulate the electrical current itself to coax it into doing interesting and useful things.

That very first electronic device invented in 1883 by Thomas Edison manipulated the electric current passing through a light bulb in a way that let Edison create a device that could monitor the voltage being provided to an electrical circuit and automatically increase or decrease the voltage if it became too low or too high.

tip Don’t worry if you aren’t certain what the term voltage means at this point. You learn about voltage in the next chapter.

One of the most common things that electronic devices do is manipulate electric current in a way that adds meaningful information to the current. For example, audio electronic devices add sound information to an electric current so that you can listen to music or talk on a cellphone. And video devices add images to an electric current so you can watch great movies like Office Space, Ferris Bueller’s Day Off, or The Princess Bride over and over again until you know every line by heart.

Keep in mind that the distinction between electric and electronic devices is a bit blurry. What used to be simple electrical devices now often include some electronic components in them. For example, your toaster may contain an electronic thermostat that attempts to keep the heat at just the right temperature to make perfect toast. (It will probably still burn your toast, but at least it tries not to.) And even the most complicated electronic devices have simple electrical components in them. For example, although your TV set’s remote control is a pretty complicated little electronic device, it contains batteries, which are simple electrical devices.