

DIETER EBERLEIN CHRISTINA MANZKE RALPH SATTMANN

Lichtwellenleiter-Technik

12., überarbeitete und erweiterte Auflage

Hohe Packungsdichte robust verpackt

LWL-Datensteckverbinder der Serie M17 MPO

Phoenix Contact präsentiert industrietaugliche MPO-Steckverbinder für die Echtzeitdatenübertragung in intelligenten Stromnetzen. Die robusten LWL-Schnittstellen zeichnen sich durch eine hochqualitative Faseroptik aus, die stabile Bandbreiten über lange Übertragungsstrecken gewährleistet.

Mehr Informationen unter phoenixcontact.com/m17mpo

Lichtwellenleiter-Technik

Dieter Eberlein, Christina Manzke, Ralph Sattmann

Lichtwellenleiter-Technik

12., überarbeitete und erweiterte Auflage

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

© 2020 · expert verlag GmbH Dischingerweg 5 · D-72070 Tübingen

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Alle Informationen in diesem Buch wurden mit großer Sorgfalt erstellt. Fehler können dennoch nicht völlig ausgeschlossen werden. Weder Verlag noch Autoren oder Herausgeber übernehmen deshalb eine Gewährleistung für die Korrektheit des Inhaltes und haften nicht für fehlerhafte Angaben und deren Folgen.

Internet: www.expertverlag.de eMail: info@verlag.expert

Printed in Germany

ISBN 978-3-8169-3520-9 (Print) ISBN 978-3-8169-8520-4 (ePDF) ISBN 978-3-8169-0028-3 (ePub) Die Lichtwellenleiter-Technik spielt eine entscheidende Rolle in der Telekommunikation. Lichtwellenleiter werden genutzt zur Übertragung von Diensten mit hohen Datenraten sowohl über kurze als auch über lange Strecken. Cloud-basierte Anwendungen, Audio-Video-Dienste und Video-on-Demand führen zu einem unersättlichen Datenhunger. Die Nachfrage nach Lichtwellenleitern boomt.

Neben Weitverkehrsanwendungen dringt die Faser zunehmend in die Fläche ein. Die Fasern enden immer dichter an den Wohnungen, Büros und Funkmasten. Ein 1 Gbit/s bis zum Teilnehmer ist bereits Realität.

Die Errichtung von 5G-Netzen erfordert einen engmaschigen Ausbau der LWL-Netze. Die Faser wird genutzt, um die Daten an den Antennen zu sammeln und zu verarbeiten.

Der Lichtwellenleiter spielt auch eine große Rolle in Rechenzentren. Dort müssen zunehmend höhere Bandbreiten übertragen werden.

Durch Wellenlängenmultiplex, moderne Modulationsverfahren, Polarisationsmultiplex und kohärente Empfänger können riesige Datenmengen über Lichtwellenleiter übertragen werden. 400 Gbit/s-Systeme (pro Wellenlänge) sind angekündigt und werden getestet. Kommerziell verfügbare DWDM-Systeme ermöglichen eine Übertragungskapazität von 128 Wellenlängen á 100 Gbit/s je Faser (12,8 Tbit/s).

In der überarbeiteten und erweiterten 12. Auflage wurde unter anderem folgende Aspekte berücksichtigt:

- Trends bei der Entwicklung und beim Einsatz von Transceivern
- aktualisierte Messvorschrift der Deutschen Telekom zur Messung an FTTH-Netzen
- Aktualisierung der gültigen Normen

Den Mitautoren dieses Buches gilt mein Dank für die kollegiale Zusammenarbeit. Bei Herrn Christoph Schmickler (Netze BW GmbH) bedanke ich mich für seine hilfreichen Hinweise, bei meiner Tochter Julia für die Bearbeitung der Zeichnungen.

Dresden, August 2020

Dieter Eberlein

Das Handwerker Paket

Hier kostenloses Angebot anf<u>ordern</u>

Diese Kombi ist unschlagbar!

Mit dem High-End Spleißgerät, dem modularen OTDR und dem passenden Zubehör sind Sie für die Installation, Inbetriebnahme und Wartung von Glasfasernetzen bestens ausgestattet.

Im Paket enthalten*:

- 1 x MTS2000 Quad, VFL, SLM
- 1 x T-72C, WKS, FC-8, Akku, Krimppresse
- 1 x UN1CO Bag
- 1 x Video Kamera P-5000i
- 2 x Vorlauffaser Multimode OM3 50/125 100m SC/SC
- 2 x Vorlauffaser Singlemode OS2 9/125 SC/SC 300m
- 1 x Starter Werkzeugkit
- 1 x Starter Reinigungskit

*Auf Wunsch sind auch andere Ausstattungen möglich!

UNICO

the fiber experts tso GmbH Hermann-Köhler-Str. 13 58553 Halver T 02353/66987 - 0 info@tso-gmbh.de www.tso-gmbh.de

Inhaltsverzeichnis

Vorwort zur 12. Auflage

Inhaltsverzeichnis

1	Grundlagen der Lichtwellenleiter-Technik Dieter Eberlein, Ralph Sattmann (Abschnitt 1.2)	1
1.1	Physikalische Grundlagen der Lichtwellenleiter-Technik	1
1.1.1	Prinzip der optischen Informationsübertragung	2
1.1.2	Vor- und Nachteile der LWL-Übertragung	3
1.1.3	Elektromagnetisches Spektrum	5
1.1.4	Signalausbreitung im Lichtwellenleiter	6
1.1.5	Dämpfung im Lichtwellenleiter	10
1.1.5.1	Definition der Dämpfung	10
1.1.5.2	Dämpfungseffekte im Lichtwellenleiter	13
1.1.6	Zusammenfassung	16
1.2	Materialien und Herstellungsverfahren für Lichtwellenleiter	17
1.2.1	Quarzglas	17
1.2.2	Herstellung von Quarzglas-Lichtwellenleitern	19
1.2.2.1	Herstellung eines Kernstabes	19
1.2.2.2	Herstellung der Vorform	23
1.2.2.3	Faserziehen	24
1.2.2.4	Verkabelung	26
1.3	Lichtwellenleiter-Typen und Dispersion	27
1.3.1	Stufenprofil-Lichtwellenleiter und Modendispersion	27
1.3.1.1	Strahlausbreitung im Stufenprofil-LWL	27
1.3.1.2	Dispersion im Stufenprofil-LWL	28
1.3.1.3	Typen von Stufenprofil-LWL	30
1.3.2	Gradientenprofil-Lichtwellenleiter und Profildispersion	32
1.3.2.1	Strahlausbreitung im Gradientenprofil-LWL	32
1.3.2.2	Dispersion im Gradientenprofil-LWL	34
1.3.2.3	Numerische Apertur im Gradientenprofil-LWL	34
1.3.2.4	Typen von Gradientenprofil-LWL	35
1.3.3	Vergrößerung Bandbreite-Längen-Produkt	39
1.3.3.1	Parabelprofil-LWL mit optimiertem Brechzahlprofil	39
1.3.3.2	Materialdispersion	39
1.3.4	Biegeunempfindlicher Multimode-LWL	43
1.3.5	Standard-Singlemode-Lichtwellenleiter und chromatische Dispersion	44
1.3.5.1	Wellenausbreitung im Singlemode-LWL	45
1.3.5.2	Dispersion im Singlemode-LWL	46
1.3.5.3	Wellenleiter Dispersion	46

1.3.5.4	Chromatische Dispersion	47
1.3.5.5	Eigenschaften des Singlemode-LWL	49
1.3.5.6	Parameter Standard-Singlemode-LWL	51
1.3.6	Singlemode-LWL mit reduziertem Wasserpeak	53
1.3.7	Dispersionsverschobener Singlemode-LWL	54
1.3.8	Cut-off shifted Lichtwellenleiter	55
1.3.9	Non-zero dispersion shifted Lichtwellenleiter	55
1.3.10	NZDSF für erweiterten Wellenlängenbereich	58
1.3.11	Lichtwellenleiter mit reduzierter Biegeempfindlichkeit	59
1.3.11.1	Kategorie A	60
1.3.11.2	Kategorie B	61
1.3.11.3	Praktische Aspekte	62
1.3.12	Kategorien von Singlemode-LWL	63
1.3.13	Trends bei der Faserentwicklung	64
1.3.13.1	Weiterentwicklung des Standard-Singlemode-LWL	64
1.3.13.2	Fasern mit reduziertem Coating-Durchmesser	65
1.3.13.3	Fasern für Raummultiplex	67
1.3.14	Polarisationsmodendispersion (PMD)	68
1.3.14.1	PMD-Effekt	69
1.3.14.2	PMD-Koeffizient	73
1.3.14.3	Polarisationsmodendispersion optischer Bauelemente	75
1.3.14.4	Auswahl der zu messenden Fasern	75
1.3.14.5	PMD-Koeffizient langer Strecken	76
1.3.15	Alterung von Lichtwellenleitern	77
1.3.15.1	Materialeigenschaften	77
1.3.15.2	Durchlauftest und Risswachstum	78
1.3.15.3	Statistische Beschreibung der Ausfallwahrscheinlichkeit	80
1.3.15.4	Richtlinien für zulässige Faserspannungen	81
1.3.15.5	Richtlinien für zulässigen Biegeradien	83
1.3.15.6	Effekte, die die Lebensdauer der Faser herabsetzen	85
1.3.15.7	Allgemeine Hinweise zur Faserhandhabung	86
1.3.15.8	Faserhandhabung beim Spleißen	87
1.3.16	Zusammenfassung	88
1.4	Optoelektronische Bauelemente	89
1.4.1	Elektrooptische Wechselwirkungen im Halbleiter	90
1.4.2	Lumineszenzdioden	92
1.4.3	Laserdioden	93
1.4.3.1	Arten von Laserdioden	93
1.4.3.2	Kenngrößen und Eigenschaften von Laserdioden	96
1.4.4	Emptangerdioden	100
1.4.4.1	PIN-Photodiode	100
1.4.4.2	Lawinen-Photodiode	103
1.4.4.3	Wichtige Eigenschaften von Empfangerdioden	103
1.4.5		104
1.4.5.1		104
1.4.5.2	Gigabit Interface Converter (GBIC)	104
1.4.5.3		104
1.4.5.4		106
1.4.5.5	Reichweiten entsprechend Ethernet-Standard IEEE 802.3	106

1.4.5.6	Ausblick	108
1.4.6	Zusammenfassung	109
1.5	Literatur	109
2	Löoborg Varbindungstachnik von Lichtwellenleitern	
2	Dieter Eberlein	111
2.1	Allgemeine Eigenschaften	111
2.2	Koppelverluste zwischen Lichtwellenleitern	112
2.2.1	Verluste zwischen Multimode-LWL	113
2.2.2	Verluste zwischen Singlemode-LWL	114
2.3	Stirnflächenkontakt	115
2.3.1	Stecker mit ebener Stirnfläche	115
2.3.2	Stecker mit physischem Kontakt	116
2.3.3	Schrägschliffstecker	116
2.3.4	APC/HRL-Stecker	117
2.4	Verdrehsicherung	118
2.5	Stift-Hülse-Prinzip	118
2.6	Verringerung der Steckerdämpfung	120
2.6.1	Ablageverfahren	121
2.6.2	Prägeverfahren	121
2.7	Dämpfungs- und Reflexionsklassen	123
2.8	Steckertypen	124
281	Farbmarkierungen	124
2.8.2	Herkömmliche Steckertypen	125
283	Small-Form-Factor-Stecker	127
284	Spezielle Steckerlösungen	128
29	Trends der lösbaren Verbindungstechnik	130
291	Stecker für den Outdoorbereich	130
292	Erhöhung der Fasernackungsdichte	131
2921	Datenübertragung in Rechenzentren	131
2922	Mehrfaserstecker	132
2923	LIRM-Stecker	133
2024	CS- SN- und MDC-Stecker	134
293	Stecker für die Leiterplattenkonplung	135
201	Selbstreinigende Steckeroberflächen	136
2.3.4	Sorafalt im Umgang mit Steckverbindern	137
2 10 1	Auswirkungen von Verschmutzungen	137
2.10.1		138
2.10.2	Steckerreinigung	130
2.10.0	Sichtnrüfung an Steckerstimflächen	1/2
2.10.4	l iteratur	1/6
2.11	Literatur	140
3	Nichtlösbare Glasfaserverbindung - Fusionsspleißen	147
	Christina Manzke	
2.4	Finfilmum	4 4 7
3.1		147

3.2	Fusionsspleißen	148
3.2.1	Einflussfaktoren	148
3.2.1.1	Intrinsische Faktoren	149
3.2.1.2	Extrinsische Faktoren	150
3.2.2	Spleißvorbereitung	150
3.2.2.1	Vorbereitung des Arbeitsplatzes	150
3.2.2.2	Kabelvorbereitung	151
3.2.2.3	Faservorbereitung	152
3.2.3	Spleißen	158
3.2.3.1	Justage der Fasern	158
3.2.3.2	V-Nut-Geräte	159
3.2.3.3	3-Achsen-Geräte	160
3.2.3.4	Verschmelzen der Fasern	164
3.2.3.5	Selbstiustageeffekt	167
3236	Becksche Linie	168
324	Bestimmen der Spleißdämpfung	168
325	Zuafestiakeit	169
326	Spleiße mit hoher Festiakeit	171
327	Schutz des Spleißes	172
33	Snezielle Snleiße	174
331	Faserbändchen	174
3311	Vorhereiten der Faserhändchen	176
3312	Snleißen der Faserhändchen	177
3313	Grenzwerte für die Spleißdämnfung	177
3311	Schutz des Spleißes	178
3315	Abechluss der Strecke	178
332	Spleißen unterschiedlicher Fasern	178
3321	Standard-Singlemode-I WI auf biggeontimierte Lichtwellenleiter (BIE)	178
3322	Standard Singlemode LWL auf NZDS LWL	10
3323	Signalemode_I WI auf hochdotierte Spezialfasern	182
3321	Singlemode I WL auf Multimode I W/	102
222	Siligiemode-LWL auf Multimode-LWL	104
2.0.0		100
2.4		109
3.5		190
4	Lichtwellenleiter-Messtechnik	191
	Dieter Ebenein	
4.1	Allgemeine Hinweise	191
4.2	Messung von Leistungen und Dämpfungen	193
4.2.1	Definierte Anregung des Multimode-I WI	193
4.2.2	Leistungsmessung	194
4.2.3	Dämpfungsmessung	196
4231	Praktische Hinweise	196
4232	Auswertung der Messergebnisse	197
4233	Normen zur Dämpfungsmessung	198
4234	Dämpfungsmessungen an Steckern	198
4235	Dämpfungsmessungen an Leitungen	199

4.2.3.6	Hoch genaue Dämpfungsmessung	202
4.2.3.7	Allgemeine Hinweise nach DIN ISO/IEC 14763-3	207
4.2.4	Zusammenfassung	207
4.3	Optische Rückstreumessung	208
4.3.1	Prinzip der Rückstreumessung	208
4.3.2	Rückstreukurve als Messergebnis	210
4.3.3	Interpretation der Ereignistabelle	216
4.3.4	Gestreute und reflektierte Leistungen	218
4.3.4.1	Rayleighstreuung	219
4.3.4.2	Reflektierende Ereignisse	223
4.3.5	Zusammenfassung	224
4.4	Analyse von Rückstreudiagrammen	224
4.4.1	Interpretation der Rückstreukurve	224
4.4.1.1	Längenmessung	224
4.4.1.2	Dämpfungsmessung	227
4.4.2	Auswertung problematischer Rückstreudiagramme	228
4.4.2.1	Prinzip der bidirektionalen Messung	228
4.4.2.2	Vorteile der bidirektionalen Messung	231
4.4.2.3	Änderung der Rückstreudämpfung an der Koppelstelle	232
4.4.2.4	Quasibidirektionalen Rückstreumessung	233
4.4.3	Kopplung von SM-LWL mit unterschiedlichen Modenfelddurchmessern	234
444	Zusammenfassung	238
4.5	Interpretation der Messergebnisse	238
451	Vergleich zwischen Dämpfungs- und Rückstreukurve	238
452	Mittelung der Messergebnisse	240
453	Zusammenfassung	241
4.6	Parameter und Definitionen	241
461	Dynamik	241
4.6.2	Impulswiederholrate	242
463	Impulslänge und Auflösungsvermögen	244
4.6.4	Totzonen	246
465	Weitere Parameter	240
4.6.6	Zusammenfassung	2/18
4.0.0	Praktische Hinweise zur Rückstreumessung	240
4.7 171		2/18
472	Vor- und Nachlaufprüfschnur	250
4.7.2	Vorteile	250
4.7.2.1	Einseitige Messung mit Vorlauf I WI	250
4.7.2.2	Beidseitige Messung mit Vor- und Nachlauf-LWI	252
4.7.2.0	Ceisterreflevionen	252
4.7.0	Auswertung und Dokumentation	259
4.7.4	Feblappassungen	250
4.7.5	Interschiedliche I WI Darameter	250
4750	Unterschiedliche Steckerstirnflächen	250
4752	Untersonieuliure Oleunersumilauren	209
4.1.5.5	Claiche Stackarstirnflächen	200
4.7.5.4		200
4.7.0.0	Kriterion zur Pourteilung der Qualität der installierten Stracke	202
4.7.0	Allgemaine Hinweise Abnehmeverschriften	202
4.1.0.1		203

4.7.6.2	Vorschlag Abnahmevorschrift Multimode-LWL	264
4.7.6.3	Vorschlag Abnahmevorschrift Singlemode-LWL	264
4.7.7	Zusammenfassung	266
4.8	Reflexionsmessungen	266
4.9	LWL-Überwachungssysteme	267
4.9.1	Dunkelfasermessung	268
4.9.2	Messung der aktiven Faser	268
4.10	Messungen an DWDM-Systemen	269
4.10.1	Modifikation der herkömmlichen Messungen	269
4.10.2	Spektrale Messungen	270
4.10.3	Dispersionsmessungen	270
4.10.4	Zusammenfassung	271
4.11	Literatur	271
-		
5	Fiber-to-the-Home/Building	272
5.1	Anforderungen an die Bandbreite	272
5.2	Netzstrukturen	274
5.2.1	Ethernet-Punkt-zu-Punkt (EP2P)	275
5.2.2	Punkt-zu-Multi-Punkt	276
5.2.2.1	Aktives optisches Netz (AON).	276
5222	Passives optisches Netz (PON)	277
5.2.3	Vergleich der Varianten	281
5.3	Offene Infrastruktur	282
5.4	Wellenlängenbelegung bei FTTx	282
5.5	Normen	283
5.5.1	Breitband-PON	284
5.5.2	Gigabit-PON	284
5.5.3	Gigabit-Ethernet-PON	284
554	Next-Generation PON	285
555	Downstream 10 Ghit/s	285
5.5.6	TWDM-PON	286
5.5.7	Wellenlängenmultiplex-PON (P2P WDM-PON)	287
5.5.8	Zusammenfassung FTTx-Varianten	289
5.6	Passive Komponenten	290
5.6.1	Steckverbinder	290
5.6.2	lichtwellenleiter	290
5.6.3	Kabel für FTTx-Projekte	291
5.6.4	Koppler	293
5.6.5	Ratgeber für Planung und Bau (DTAG)	295
5.7	Aktive Komponenten	296
5.7.1	Sender	296
5.7.2	Empfänger.	298
5.7.3	Optische Verstärker	298
5.8	Faserabschluss beim Teilnehmer	299
5.8.1	Piatail mit Fusionsspleißgerät anspleißen.	299
5.8.2	Pigtail mit mechanischem Spleißgerät anspleißen	300
	5	

5.8.3	Stecker mit Fusionsspleißgerät anspleißen	301
5.8.4	Stecker mit mechanischem Spleißgerät anspleißen	301
5.8.5	Verlegung vorkonfektionierter Kabel	301
5.9	Budgetplanung	302
5.10	Normung	304
5.11	Messungen an FTTH/B-Netzen	304
5.11.1	Allgemeine Hinweise	304
5.11.2	Empfehlungen der Deutschen Telekom	305
5.12	Förderung durch den Bund	306
5.13	Zusammenfassung	306
5.14	Literatur	307
6	Optische Übertragungssysteme	308
	Dieter Eberlein	
6.1	Planung von LWL-Strecken aus physikalischer Sicht	308
6.1.1	Allaemeine Reaeln	308
6.1.2	Planung des Dämpfungsbudgets	309
6.1.3	Pegeldiagramm	312
6.1.4	Dispersion in Lichtwellenleitern	314
6.1.4.1	Chromatische Dispersion	314
6.1.4.2	Dispersionstoleranz	317
6143	Kompensation der chromatischen Dispersion	317
6.1.5	Systemplanung	319
6.1.6	Zusammenfassung	320
6.2	Mehrkanalübertragung über MTP/MPO-Stecker	321
6.2.1	Einsatzfälle	321
6.2.2	Mehrkanalübertragung	322
6.2.3	Beschaltungsmöglichkeiten	325
6.2.4	Dämpfungsmessung an Mehrfaserkabeln	327
6.3	Realisierung hoher Bandbreiten mit Multimode-LWL	329
6.3.1	Von Ethernet zu 10-Gigabit-Ethernet	329
6.3.2	40/100-Gigabit-Ethernet	330
6.3.3	Physikalische Begrenzungen	331
6.3.4	Bandbreiten-Definitionen	331
6.3.4.1	LED-Bandbreite	332
6.3.4.2	EMB-Bandbreite	332
6.3.4.3	minEMBc-Bandbreite	333
6.3.5	Kategorien von Multimode-Lichtwellenleitern	334
6.3.6	Zusammenfassung	334
6.4	Systeme mit Kunststoff-Lichtwellenleitern	335
6.4.1	Eigenschaften von Kunststoff-Lichtwellenleitern	335
6.4.2	Komponenten für Kunststoff-LWL-Systeme	336
6.4.3	Verbindungstechnik	337
6.4.4	Passive optische Komponenten	337
6.4.5	Einsatz von Kunststoff-Lichtwellenleitern	338
6.4.6	Weitere Entwicklungen	338
6.4.7	Zusammenfassung	339

6.5 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.5.7 6.6	Optische Freiraumübertragung Vergleich mit herkömmlichen Verfahren Einsatzfelder Prinzip der optischen Freiraumübertragung Besonderheiten der optischen Freiraumübertragung Optische Freiraumübertragungssysteme Budgetkalkulation Zusammenfassung und Ausblick Literatur	339 341 341 343 344 345 346 347
7	Anhang Dieter Eberlein	348
7.1 7.2 7.3	Abkürzungen Formelzeichen und Maßeinheiten Fachbegriffe	348 352 356
8	Stichwortverzeichnis	369
9	Autorenverzeichnis	376

Der Lichtwellenleiter (LWL) durchdringt alle Lebensbereiche und löst zunehmend den Kupferleiter ab:

- Der Kunststoff-LWL (POF: Polymer Optical Fiber) dient der Kurzstreckenübertragung. Er wird millionenfach im PKW oder im Wohnbereich eingesetzt.
- Der PCF-LWL (PCF: Polymer Cladded Fiber) wird vor allem im industriellen Bereich mit starken elektromagnetischen Störungen verwendet.
- Herkömmliche Gradientenprofil-LWL dienen der Inhouse-Verkabelung bei geringen Anforderungen an die Bandbreite.
- Gradientenprofil-LWL mit optimiertem Brechzahlprofil sind für die breitbandige Inhouse-Verkabelung geeignet (Gigabit-Ethernet, 10 Gigabit-Ethernet, 40 Gigabit-Ethernet, 100 Gigabit-Ethernet), speziell in Rechenzentren.
- Mit Hilfe des Wellenlängenmultiplex (WDM: Wavelength Division Multiplex, CWDM: Coarse Wavelength Division Multiplex, DWDM: Dense Wavelength Division Multiplex) gelingt es, die Übertragungskapazität des Lichtwellenleiters zu vervielfachen und damit riesige Übertragungskapazitäten zu erreichen.
- Weltweit hat FTTH (Fiber to the Home) bzw. FTTB (Fiber to the Building) eine sehr große Bedeutung erlangt. Privathaushalte erhalten über einen Lichtwellenleiter direkt breitbandige Dienste wie Sprache, Daten und Video. International werden derzeit 100 Mbit/s als Standard-Zugangsrate betrachtet. 1 Gbit/s-Netze sind mittlerweile verfügbar.
- 5G erfordert massiven Ausbau der LWL-Netze.

1.1 Physikalische Grundlagen der Lichtwellenleiter-Technik

In diesem Abschnitt beschreiben wir die physikalischen Grundlagen der Lichtwellenleiter-Technik. Ausgehend vom Prinzip der optischen Informationsübertragung werden die wesentlichen Bestandteile eines solchen Systems erläutert und die wichtigsten Vorteile gegenüber herkömmlichen Übertragungssystemen herausgestellt. Auch die Ursachen für die Begrenzung der Leistungsfähigkeit von LWL-Systemen werden erwähnt.

Die Darstellung des elektromagnetischen Spektrums zeigt, wo der optische Bereich, der für die LWL-Übertragung genutzt wird, einzuordnen ist.

Das Prinzip der Signalausbreitung im Multimode-LWL wird anhand der Totalreflexion veranschaulicht. Um diese zu gewährleisten, müssen bestimmte Anforderungen bei der Einkopplung des Lichts in den Lichtwellenleiter erfüllt werden.

So ist innerhalb eines Akzeptanzkegels einzukoppeln. Die Einführung des Begriffes der numerischen Apertur des Lichtwellenleiters zeigt, wodurch dieser Akzeptanzkegel beeinflusst wird.

Schließlich wird die Dämpfung im Lichtwellenleiter definiert, typische Dämpfungseffekte im Lichtwellenleiter erläutert und ihre Auswirkungen auf den spektralen Dämpfungsverlauf des Lichtwellenleiters gezeigt.

1.1.1 Prinzip der optischen Informationsübertragung

Die optische Informationsübertragung ist mit Hilfe von Lichtwellenleitern oder über die Freiraumausbreitung möglich. Die nachfolgenden Betrachtungen beziehen sich im Wesentlichen auf den Lichtwellenleiter. Kurze Entfernungen können unter gewissen Bedingungen auch mit der optischen Freiraumübertragung überbrückt werden (Abschnitt 6.5).

Ein elektrisches Signal moduliert in einem Sendemodul einen optischen Träger und erzeugt damit ein optisches Signal. Die Modulation kann analog oder digital erfolgen.

Der Sender muss sehr kleine Abmessungen haben, um effektiv in den kleinen Kern des Lichtwellenleiters einkoppeln zu können. Darüber hinaus muss das Bauelement mit sehr hohen Datenraten (bis in den Gigabit-Bereich) modulierbar sein. Diese Anforderungen werden nicht von herkömmlichen Bauelementen (zum Beispiel Glühbirne) erfüllt.

Es wurden optoelektronische Bauelemente auf der Basis von Halbleitermaterialien entwickelt, die die genannten Kriterien erfüllen. Als Sender kommen Lumineszenzdioden oder Laserdioden zum Einsatz (Abschnitt 1.4.2 und 1.4.3).

Das optische Signal der Senderdiode wird in den Lichtwellenleiter eingekoppelt. Es ist auf eine hohe Qualität der Einkopplung zu achten, um die Koppelverluste möglichst gering zu halten. Das Prinzip der optischen Informationsübertragung wird in Bild 1.1 dargestellt.

Bild 1.1: Prinzip der optischen Informationsübertragung

Der Lichtwellenleiter kann für geringe Anforderungen ein Multimode-Stufenprofil-LWL, beispielsweise ein Kunststoff-LWL oder ein PCF (Polymer Cladding Fiber) sein. Für höhere Anforderungen kommt der Gradientenprofil-LWL zum Einsatz. Höchste Anforderungen bezüglich Dämpfung und Dispersion erfüllen Singlemode-LWL (vergleiche Abschnitt 1.3.5).

Am Ende der Übertragungsstrecke wird das optische Signal mit Hilfe des Empfängers in ein elektrisches Signal gewandelt, gegebenenfalls verstärkt und demoduliert. Die optisch-elektrische Wandlung übernimmt eine PIN- bzw. Lawinen-Photodiode (vergleiche Abschnitt 1.4.4).

Das Übertragungssystem kann dämpfungsbegrenzt oder dispersionsbegrenzt sein. Dämpfungsbegrenzung heißt, dass die maximal realisierbare Streckenlänge durch die Dämpfung im System begrenzt wird. Genauer gesagt: Die am Empfänger ankommende Leistung darf einen bestimmten Wert nicht unterschreiten, damit das Signal noch fehlerfrei oder mit einer noch zulässigen Fehlerrate detektiert werden kann.

Die **Dämpfungsbegrenzung** wird nicht nur durch eine zu hohe Streckendämpfung verursacht, auch die Höhe der eingekoppelten Leistung und die Empfindlichkeit des Empfängers spielen eine wichtige Rolle.

Dispersionsbegrenzung heißt, dass die maximal realisierbare Streckenlänge durch die Dispersion im System begrenzt wird. Dispersion verursacht eine Impulsverbreiterung während der Ausbreitung entlang des Lichtwellenleiters (vergleiche Bild 1.17).

Die Auswahl der geeigneten Komponenten (Typ des Senders, Lichtwellenleiters und Empfängers) wird durch die jeweiligen Anforderungen an das Übertragungssystem bestimmt. Dabei ist es sinnlos, einen hohen Aufwand zur Reduktion der Dämpfung zu treiben, wenn das System dispersionsbegrenzt ist und umgekehrt. Bei der Erfüllung der beiden Forderungen sollte man optimieren (Abschnitt 6.1).

1.1.2 Vor- und Nachteile der LWL-Übertragung

LWL-Übertragungssysteme haben im Vergleich zu konventionellen, also auf Kupferkabeln basierenden Systemen eine Reihe gravierender **Vorteile**.

Mit elektrischen Multiplexverfahren werden heute 2,5 Gbit/s-, 10 Gbit/s-, 40 Gbit/soder 100 Gbit/s-Signale erzeugt. Mit optischen Multiplexverfahren (Wellenlängenmultiplex) können diese Signale erneut gebündelt werden, so dass bereits Übertragungskapazitäten von mehr als 10 Tbit/s auf einem einzigen Lichtwellenleiter realisiert werden konnten.

Die theoretische Bandbreite des Koaxialkabels liegt bei 1 GHz, die des Lichtwellenleiters bei 50 THz. Das entspricht einem Faktor 50.000! Deshalb ist der Lichtwellenleiter das Übertragungsmedium der Zukunft!

Die geringen Verluste des Lichtwellenleiters ermöglichen eine optische Übertragung über mehr als 100 km. In Verbindung mit optischen Verstärkern ist es möglich, mehrere 1000 km über einen Lichtwellenleiter rein optisch zu übertragen.

Die Dämpfung des Lichtwellenleiters hängt im Gegensatz zum Kupferleiter nicht von der Bandbreite des übertragenen Signals ab. Hier zeigt der Lichtwellenleiter seine Überlegenheit vor allem im Teilnehmerbereich. Die Dämpfung des Kupferleiters steigt mit zunehmender Bandbreite an und ermöglicht nur Streckenlängen von wenigen hundert Metern.

Da der Lichtwellenleiter ein Isolator ist, ermöglicht er eine Potenzialtrennung zwischen Sender und Empfänger. Es treten keine Potenzialausgleichsströme auf. Es besteht kein Zerstörungsrisiko der angeschlossenen Geräte bei Blitzeinschlägen.

Aber auch in Systemen, die an Datenraten und Streckenlängen nur geringe Anforderungen stellen, wird der Kupferleiter zunehmend durch den Lichtwellenleiter ersetzt. Vor allem in Umgebungen mit starken Störstrahlungen (Kraftwerke, Produktionsbetriebe) kommt die Unempfindlichkeit des Lichtwellenleiters gegenüber elektrischer Störstrahlung vorteilhaft zur Geltung.

Selbst im PKW wird der Kunststoff-LWL zur Vermeidung möglicher Störbeeinflussungen verwendet (Abschnitt 6.4).

Die Tatsache, dass Lichtwellenleiter keine Signale abstrahlen, hat den Vorteil, dass LWL-Systeme prinzipiell abhörsicher sind.

Bei hinreichend kleinen Leistungen (< (15...150) mW) ist ein Einsatz in explosionsgefährdeten Räumen möglich, da nicht die Gefahr der Funkenbildung besteht.

Der Lichtwellenleiter hat ein geringes Gewicht und Volumen. Der Materialeinsatz ist minimal. Mit einem Gramm Glas kann etwa die gleiche Informationsmenge übertragen werden, wie mit zehn Kilogramm Kupfer! Unter dem Gesichtpunkt "Green-IT" (Energie und Ressourcen sparen) ist das ein sehr wichtiger Aspekt.

Die **Nachteile** der LWL-Technik ergeben sich aus den erhöhten technischen Anforderungen und einer aufwändigeren Messtechnik. Die Anforderungen ergeben sich aus den geringen Abmessungen des Lichtwellenleiters. Werden zwei Lichtwellenleiter miteinander verbunden, müssen die LWL-Kerne exakt zueinander positioniert werden.

Wegen der sehr kleinen Kerndurchmesser (Multimode-LWL: Kerndurchmesser typisch 50 µm oder 62,5 µm; Singlemode-LWL: Kerndurchmesser typisch 8 µm) ist das eine sehr anspruchsvolle Aufgabe. Daraus ergeben sich besondere Anforderungen an die lösbare Verbindungstechnik (Steckerkonfektionierung: Kapitel 2) bzw. an die nichtlösbare Verbindungstechnik (Spleißtechnik: Kapitel 3).

Ein weiterer Nachteil ist, dass über LWL-Verkabelung keine Stromversorgung möglich ist. Eine zusätzliche Kupferverkabelung ist erforderlich.

Das LWL-Kabel kann im Erdreich nicht geortet werden, sofern es kein Metall enthält.

Die Komponenten sind teurer, da zusätzlich elektrisch-optische bzw. optischelektrische Wandler benötigt werden.

1.1.3 Elektromagnetisches Spektrum

Das elektromagnetische Spektrum überstreicht hinsichtlich Frequenz bzw. Wellenlänge 24 Zehnerpotenzen, beginnend vom niederfrequenten Bereich über die Rundfunkwellen, die optische Strahlung, die Röntgen- und γ -Strahlung bis zu den hochenergetischen kosmischen Strahlen.

In diesem riesigen Bereich nimmt das sichtbare Licht nur wenig Raum ein: Das ist der Wellenlängenbereich von 380 nm (violett) bis 780 nm (rot).

Daran schließt sich zu kleineren Wellenlängen hin die ultraviolette Strahlung und zu größeren Wellenlängen hin die infrarote Strahlung an.

Bild 1.2: Das Spektrum der elektromagnetischen Wellen

Während die Übertragung mit Kunststoff-LWL vorzugsweise bei 570 nm bzw. 650 nm, also im sichtbaren Bereich erfolgt, liegen die Übertragungswellenlängen bei Anwendungen für die Telekommunikation bei 850 nm, 1300 nm, 1550 nm und 1625 nm/1650 nm, also im nahen Infrarotbereich und sind deshalb unsichtbar.

Einen Überblick über das Spektrum der elektromagnetischen Wellen gibt Bild 1.2. Man beachte die logarithmische Darstellung der Frequenz- bzw. Wellenlängenskala.

Die jeweiligen Übertragungswellenlängen ergeben sich aus den (bei modernen Lichtwellenleitern allerdings kaum noch bemerkbaren) Dämpfungsminima der Lichtwellenleiter und werden optische Fenster des Lichtwellenleiters genannt.

1.1.4 Signalausbreitung im Lichtwellenleiter

Der Lichtwellenleiter besteht aus einem Kern mit dem Durchmesser d_K und einem Mantel mit dem Durchmesser d_M (Bild 1.3). Der Durchmesser des Glasmantels beträgt bei Telekommunikationsfasern 125 µm. Unmittelbar nach dem Ziehen des Lichtwellenleiters wird eine zweistufige Schutzschicht auf den Mantel aufgebracht (Durchmesser 250 µm, neuerdings auch 200 µm (Abschnitt 1.3.13.2)).

Diese so genannte Primärbeschichtung (Coating) soll das Eindringen von OH-Ionen in den Lichtwellenleiter verhindern, was zu einer Dämpfungserhöhung führen würde. Außerdem gewährleistet das Coating einen mechanischen Schutz. Die Faser lässt sich problemlos biegen. Ohne Schutzschicht ist die Faser spröde und bricht schnell.

Bild 1.3: Struktur des Lichtwellenleiters

Die Schutzschicht ist eine zweischichtig aufgebaute Kunststoffhülle, die die Festigkeit des Lichtwellenleiters verbessert, nach innen Mikrobiegungen verhindert und nach außen eine einfachere Handhabung ermöglicht.

Bild 1.4: Aufbau der LWL-Faser

Das Prinzip der Signalausbreitung im Stufenprofil-LWL beruht auf der Totalreflexion.

Fällt ein Lichtstrahl auf eine Grenzfläche zwischen einem optisch dichteren Medium mit der Brechzahl n1 und einem optisch dünneren Medium mit der Brechzahl n2, so wird dieser Strahl in Abhängigkeit von seinem Einfallswinkel gebrochen oder reflektiert (Bild 1.5).

Dabei bedeutet optisch dichteres Medium eine höhere Brechzahl und optisch dünneres Medium eine geringere Brechzahl, also $n_1 > n_2$. Unter dem Einfallswinkel versteht man den Winkel zwischen dem Lot auf die Grenzfläche und dem einfallenden Strahl.

Der Zusammenhang zwischen dem Einfallswinkel α_1 und dem Austrittswinkel α_2 wird durch das Snelliussche Brechungsgesetz beschrieben:

 $n_1 \cdot \sin \alpha_1 = n_2 \cdot \sin \alpha_2$

(1.1)

Da n₂ < n₁ ist, muss entsprechend Gleichung (1.1) $\alpha_2 > \alpha_1$ sein, der Strahl wird vom Lot weg gebrochen (Strahl 1 in Bild 1.5). Vergrößert man den Einfallswinkel (Strahl 2), wächst auch der Austrittswinkel. Mit $\alpha_2 = 90^{\circ}$ ist der Grenzwinkel der Totalreflexion erreicht. Das ist der maximal mögliche Brechungswinkel. Für den **Grenzwinkel der Totalreflexion** folgt aus (1.1) mit sin90° = 1:

$$\alpha_{\text{Grenz}} = \arcsin\left(\frac{n_2}{n_1}\right) \tag{1.2}$$

Wird dieser Winkel überschritten, geht die Brechung in eine Totalreflexion über (Strahl 3). Dann gilt das normale Reflexionsgesetz. Das Licht tritt nicht mehr aus dem Medium mit der Brechzahl n₁ aus, sondern bleibt in ihm gefangen.

Um das zu gewährleisten, müssen zwei Bedingungen erfüllt sein:

- Ein Glas mit höherer Brechzahl muss von einem Glas mit geringerer Brechzahl umgeben sein.
- Der Strahl muss auf die Grenzfläche zwischen den beiden Materialien hinreichend flach auftreffen.

Diese beiden Anforderungen wurden beim Entwurf des Lichtwellenleiters umgesetzt:

Auf das optisch dichtere Kernmaterial mit der Brechzahl n₁ wird ein optisch dünnerer Mantel mit der Brechzahl n₂ aufgebracht (Bild 1.6). So ist die Brechzahl des Kerns stets höher als die des Mantels. Die höhere Kernbrechzahl erreicht man durch Dotierung des Quarzglases (SiO₂) mit Fremdatomen (meist GeO₂).

Bild 1.6: Totalreflexion im Stufenprofil-LWL

Damit der Strahl hinreichend flach auf die Grenzfläche zwischen Kern und Mantel trifft, das heißt, damit der Grenzwinkel der Totalreflexion im Lichtwellenleiter α_{Grenz} nicht unterschritten wird, darf der Einfallswinkel θ_{Grenz} (Akzeptanzwinkel) nicht überschritten werden. Durch nochmalige Anwendung des Brechungsgesetzes auf die Stirnfläche und unter Berücksichtigung der Winkelverhältnisse entsprechend Bild 1.6 gilt:

$$n_0 \sin \theta_{\text{Grenz}} = n_1 \sin(90^\circ - \alpha_{\text{Grenz}}) \tag{1.3}$$

Unter Berücksichtigung von $n_0 = 1$ (Luft) und Gleichung (1.2) ergibt sich:

$$\sin\theta_{Grenz} = n_1 \cos\alpha_{Grenz} = n_1 \cos\left[\arcsin\left(\frac{n_2}{n_1}\right)\right] = n_1 \cos\left(\arccos\sqrt{1 - \frac{n_2^2}{n_1^2}}\right) = \sqrt{n_1^2 - n_2^2} (1.4)$$

Als **numerische Apertur** NA des Lichtwellenleiters wird der Sinus des Grenzwinkels θ_{Grenz} definiert. Sie ist ein Maß dafür, wie groß der maximale Einfallswinkel auf die Stirnfläche sein darf, damit das Licht im Lichtwellenleiter noch geführt wird.

$$NA = \sin\theta_{Grenz} = \sqrt{n_1^2 - n_2^2}$$
(1.5)

Strahlen, die unter einem zu großen Winkel auf die LWL-Stirnfläche auftreffen, werden im Lichtwellenleiter nicht total reflektiert, sondern in den Mantel hinein gebrochen. Das Licht gelangt zum Coating (dieses hat eine größere Brechzahl als der Mantel) und wird stark gedämpft. Um das zu vermeiden, muss das Licht innerhalb des so genannten Akzeptanzkegels eingekoppelt werden (Bild 1.7).

Bild 1.7: Akzeptanzkegel beim Multimode-LWL

Erfolgt die Einkopplung mit einem Winkel, der kleiner als θ_{Grenz} ist, wird das Licht an der Kern-Mantel-Grenze reflektiert, durchläuft den LWL-Kern, wird an der gegenüberliegenden Kern-Mantel-Grenze reflektiert und breitet sich so zickzackförmig durch den Lichtwellenleiter aus. Mit der Definition für die relative Brechzahldifferenz

$$\Delta = \frac{n_1^2 - n_2^2}{2n_1^2} \approx \frac{n_1 - n_2}{n_1}$$
(1.6)

kann man die numerische Apertur auch folgendermaßen darstellen:

$$NA = n_1 \sqrt{2\Delta}$$
(1.7)

Die numerische Apertur ist eine entscheidende Größe bei der Einkopplung von Licht in den Lichtwellenleiter und bei Kopplung von Lichtwellenleitern miteinander. Sie wird durch die Unterschiede zwischen den Brechzahlen von Kern und Mantel beeinflusst.

Das Prinzip der Totalreflexion, wie in Bild 1.6 dargestellt, funktioniert prinzipiell auch unter Verzicht auf den Glasmantel, da ja Luft eine deutlich kleinere Brechzahl (\approx 1) als das Kernglas hat und folglich die Funktion des Glasmantels übernehmen kann.

Jede Berührung des Glases würde aber an dieser Stelle den Effekt zerstören und einen Lichtverlust verursachen. Außerdem wäre wegen des großen Brechzahlunterschiedes zwischen Kern und Luft die numerische Apertur und damit die Modendispersion sehr groß (vergleiche Abschnitt 1.3.1.2).

1.1.5 Dämpfung im Lichtwellenleiter

1.1.5.1 Definition der Dämpfung

Die in den Lichtwellenleiter eingekoppelte Leistung Po fällt entlang des Lichtwellenleiters exponentiell ab:

$$P(L) = P_0 \cdot e^{-a'(L)}$$

$$\tag{1.8}$$

Dabei ist a' die Dämpfung als dimensionslose Größe (in Neper), P_0 die eingekoppelte Leistung ($P_0 = P(L = 0)$) und L die durchlaufene Länge des Lichtwellenleiters. Die Dämpfung ergibt sich aus einem Leistungsverhältnis. Gebräuchlich ist die Definition in Dezibel (dB):

$$a/dB = 10 \lg \frac{P_0}{P(L)} \iff P(L) = P_0 \cdot 10^{-\frac{a(L)}{10dB}}$$
(1.9)

Diese Darstellung unterscheidet sich von Gleichung (1.8). Gleichung (1.8) bezieht sich auf die Basis des natürlichen Logarithmus ($e \approx 2,7183...$) und Gleichung (1.9) auf die Basis des dekadischen Logarithmus. Man beachte, ob die Dämpfung in Dezibel oder Neper angegeben wird, wobei heute Neper kaum noch gebräuchlich ist. Durch Vergleich zwischen (1.8) und (1.9) ergibt sich folgender Zusammenhang:

a in Dezibel =
$$10 \lg e^{a'} = 10a' \lg e = 4,34 \cdot a'$$
 in Neper (1.10)

Der **Dämpfungskoeffizient** oder Dämpfungsbelag α ist die auf die LWL-Länge bezogene Dämpfung und damit ein wichtiger Materialparameter. Ist dieser entlang des LWL konstant, so gilt:

$$\alpha = \frac{a}{L} \tag{1.11}$$

Medium	Dämpfungskoeffizient	Abfall auf die Hälfte nach
Fensterglas	25.000 dB/km	0,00012 km
LWL um 1966	1.000 dB/km	0,003 km
modernes optisches Glas	700 dB/km	0,004 km
dichter Nebel	500 dB/km	0,006 km
LWL um 1970	20 dB/km	0,15 km
MM-LWL, 850 nm	2,5 dB/km	1,2 km
MM-LWL, 1300 nm	0,7 dB/km	4,3 km
SM-LWL, 1310 nm	0,33 dB/km	9,1 km
SM-LWL, 1550 nm	0,20 dB/km	15 km
SM-LWL, 1625 nm	0,22 dB/km	13,6 km
Weltrekord SM-LWL, 1568 nm	0,151 dB/km	19,9 km

Tabelle 1.1: Beispiele für Dämpfungskoeffizienten

Die Maßeinheit ist analog zu oben dB/km oder 1/km, je nachdem, ob a oder a' im Zähler steht. Die Umrechnung zwischen diesen beiden Angaben ist zu beachten! In Tabelle 1.1 wurden typische Dämpfungskoeffizienten verschiedener Materialien zusammengestellt.

Während der Dämpfungskoeffizient von Fensterglas bei 25.000 dB/km liegt (Abfall auf die Hälfte nach 12 cm), beträgt der beste Dämpfungskoeffizient des Lichtwellenleiters 0,151 dB/km (Abfall auf die Hälfte nach 19,9 km). Dieser Wert ist mehr als fünf Größenordnungen geringer! Hieraus wird ersichtlich, welch große technologische Herausforderung es ist, ein derart reines Glas zu fertigen.

Aus der Definition entsprechend Gleichung (1.9) ergeben sich folgende Zusammenhänge zwischen linearer und logarithmischer Darstellung:

-30 dB =	1000
-20 dB =	100
-10 dB =	10
0 dB =	1
10 dB =	0,1
20 dB =	0,01
30 dB =	0,001
	-30 dB = -20 dB = -10 dB = 0 dB = 20 dB = 30 dB =

Aus den Beispielen ist zu erkennen, dass sich das Signal alle 10 dB um einen Faktor 10 verringert. Dämpfungen werden meist als positive dB-Werte und Verstärkungen als negative dB-Werte definiert.

Neben den angegebenen Werten lassen sich auch Zwischenwerte ableiten. Dabei hilft folgender Zusammenhang: $10 \cdot lg2 = 3,0103$. Das heißt, ein Signalabfall auf die Hälfte (P₀/P(L) = 2) entspricht etwa 3 dB. Eine nochmalige Halbierung entspricht 6 dB und so weiter:

3 dB ≈ 0,5		
6 dB ≈ 0,25		
9 dB ≈ 0,125		
12 dB ≈ 0,0625	=>	2 dB ≈ 0,625
15 dB ≈ 0,03125	=>	5 dB ≈ 0,3125
	$3 dB \approx 0.5$ $6 dB \approx 0.25$ $9 dB \approx 0.125$ $12 dB \approx 0.0625$ $15 dB \approx 0.03125$	3 dB ≈ 0,5 6 dB ≈ 0,25 9 dB ≈ 0,125 12 dB ≈ 0,0625 => 15 dB ≈ 0,03125 =>

Beträgt die Dämpfung 10 dB (also Abfall auf ein Zehntel) und man verdoppelt den Wert (also Abfall auf ein Fünftel), so sind 3 dB zu subtrahieren:

10 dB ≈ 0,1		
7 dB ≈ 0,2		
4 dB ≈ 0,4		
1 dB ≈ 0,8		
-2 dB ≈ 1,6	=>	8 dB ≈ 0,16
	10 dB ≈ 0,1 7 dB ≈ 0,2 4 dB ≈ 0,4 1 dB ≈ 0,8 -2 dB ≈ 1,6	10 dB ≈ 0,1 7 dB ≈ 0,2 4 dB ≈ 0,4 1 dB ≈ 0,8 -2 dB ≈ 1,6 =>

Durch diese einfachen Überlegungen lassen sich plausible Näherungen für jeden einzelnen dB-Wert ableiten.

Eine logarithmische Darstellung der Leistung ist sinnvoll, da diese viele Zehnerpotenzen überstreichen kann. Dabei wird die Leistung auf 1 mW bezogen. Das Ergebnis ist der Leistungspegel L oder einfach der Pegel. Dieser hat die Maßeinheit dBm:

$$L/dBm = 10lg\left(\frac{P}{1mW}\right)$$
(1.12)

Entsprechend dieser Definition gelten die folgenden Zusammenhänge zwischen Pegel und Leistung:

 $\begin{array}{rll} 20 \ dBm &= 100 \ mW \\ \textbf{0} \ dBm &= & \textbf{1} \ mW \\ \textbf{-30} \ dBm &= & 1 \ \mu W \\ \textbf{-60} \ dBm &= & 1 \ nW \end{array}$

Gemäß der Definition nach Gleichung (1.12) haben Pegel kleiner als 1 mW negative und Pegel größer als 1 mW positive dBm-Werte. So wird es möglich, Leistungsverhältnisse als Differenzen darzustellen (ergibt sich aus den Logarithmusgesetzen) und auf einfache Weise die Dämpfung zu berechnen:

$$a/dB = L_0/dBm - L_1/dBm$$
(1.13)

Beispiel: Ein Sender hat eine Ausgangsleistung von $P_0 = 0,5 \text{ mW}$ ($L_0 = -3 \text{ dBm}$), der Empfänger misst eine Leistung von $P_1 = 0,188 \text{ mW}$ ($L_1 = -7,268 \text{ dBm}$). Zur Berechnung der Dämpfung aus den Leistungen in Milliwatt benötigt man Gleichung (1.9) und damit (wegen der Logarithmierung) einen Taschenrechner:

a = 10lg(0,5 mW/0,188 mW) = 4,268 dB.

Werden die Dämpfungen aus den Pegeln berechnet, reicht eine einfache Subtraktion entsprechend Gleichung (1.13) aus:

a = -3 dBm - (-7,268 dBm) = 4,268 dB.

In einem weiteren Schritt zur Vereinfachung kann bei vielen Messgeräten der Pegel bei der Referenzierung auf null gesetzt werden und das Ergebnis der Messung sind dann relative dB (bezogen auf die Referenzierung). Es wird direkt die Dämpfung der Strecke angezeigt.

Am Leistungsmesser kann eingestellt werden, ob die Anzeige in Milliwatt (Leistung), dBm (Pegel) oder relativen dB erfolgen soll.

Zusammenfassung und Beispiele:

- Angabe Leistung P in mW (absoluter Wert)
- Angabe Pegel L in dBm (relativer Wert; bezogen auf 1 mW)
- Leistung > 1 mW: Pegel ist positiv; Beispiel: 2 mW entspricht ≈ 3 dBm
- Leistung < 1 mW: Pegel ist negativ; Beispiel: 0,5 mW entspricht ≈ -3 dBm
- 3 dB entspricht 0,5 (50 %)

- -3 dB entspricht 2 (200 %)
- 13 dB = 10 dB + 3 dB ≈ 0,1 · 0,5 = 0,05

Beachte:

10 dBm + 3 dBm ≠ 13 dBm = 20 mW, sondern

10 dBm + 3 dBm =
$$10 \lg \left(\frac{10 \text{ mW}}{1 \text{ mW}}\right) + 10 \lg \left(\frac{2 \text{ mW}}{1 \text{ mW}}\right) = 10 \lg \left(\frac{20 \text{ (mW)}^2}{1 \text{ (mW)}^2}\right) \approx 13 \text{ mW}$$

Vorsicht bei der Umrechnung zwischen Pegeln und Leistungen!

1.1.5.2 Dämpfungseffekte im Lichtwellenleiter

Die LWL-Dämpfung begrenzt die Leistungsfähigkeit optischer Nachrichtenübertragungssysteme. Deshalb ist das Verständnis der Ursachen für die Dämpfung wichtig, um leistungsfähige Systeme zu entwickeln. Die Dämpfung wird durch Absorption, Streuung und Strahlungsverluste infolge Modenwandlung verursacht.

Verunreinigungen durch lonen der Metalle Cu, Fe, Ni, V, Cr, Mn können **Absorptionen** bei bestimmten Wellenlängen bewirken. Mit den heutigen technischen Möglichkeiten kann man hochreines Glas realisieren, so dass die Absorptionsverluste keine Rolle mehr spielen.

Problematischer sind die Verunreinigungen durch Hydroxyl-Ionen, das heißt durch Wasser und dessen OH-Radikal. Dadurch steigt die Absorption vor allem bei folgenden Wellenlängen stark an: 0,945 μ m, 1,24 μ m und 1,383 μ m.

Da die so genannten **Wasserpeak**s eine endliche Breite besitzen, werden auch benachbarte Wellenlängenbereiche beeinflusst. Deshalb müssen die für die optische Übertragung genutzten Wellenlängen einen möglichst großen Abstand von diesen Dämpfungsmaxima haben.

Daraus ergeben sich begrenzte Wellenlängenbereiche, die genutzt werden können, die optischen Fenster. Bei Fasern, die ab dem Jahr 2000 gefertigt wurden, sind die Wasserpeaks sehr klein (Low-Water-Peak-LWL) und ein großer Wellenlängenbereich wird nutzbar (Abschnitt 1.3.6).

Außerdem bewirken Molekülschwingungen Eigenabsorptionen des LWL-Materials im ultravioletten und im längerwelligen Infrarotbereich. Letztere begrenzen den nutzbaren Wellenlängenbereich nach oben.

Während die bisher behandelten Dämpfungseffekte infolge Absorption durch Verbesserung der Technologie zunehmend unterdrückt werden, kann man die Verluste durch **Streueffekte** mit technologischen Maßnahmen nur bis zu einer physikalisch bedingten Grenze reduzieren.

Nichtlineare Streueffekte (Raman- oder Brillouinstreuung) können bei hohen Leistungen bzw. Leistungsdichten im Lichtwellenleiter auftreten (beispielsweise in Wellenlängenmultiplex-Systemen in Verbindung mit optischen Verstärkern) und sollen hier nicht weiter betrachtet werden. Unvermeidbar ist jedoch die **Rayleighstreuung**, die durch Brechzahl- und Dichtefluktuationen im Glas hervorgerufen wird (vergleiche Kapitel 4). Sie wächst mit zunehmender Dotierung des Quarzglases mit Fremdatomen an, tritt jedoch auch im undotierten Quarzglas auf.

Bemerkenswert ist die starke Wellenlängenabhängigkeit der Rayleighstreuung: Sie fällt mit der vierten Potenz der Wellenlänge ab. Da in einem guten Lichtwellenleiter die Dämpfung im Wesentlichen durch die Rayleighstreuung bewirkt wird, nimmt die Dämpfung des Lichtwellenleiters vom ersten (850 nm) bis zum vierten (1625 nm) optischen Fenster stark ab.

Bild 1.8 zeigt den Dämpfungskoeffizient des Lichtwellenleiters als Funktion der Übertragungswellenlänge sowie die oben besprochenen dämpfungserhöhenden Effekte.

Der Dämpfungskoeffizient wurde logarithmisch dargestellt. Dadurch wird die Rayleighstreu-Kurve eine Gerade. Deutlich sind die lokalen Minima für die optischen Fenster (850 nm = 0,85 μ m, 1300 nm = 1,3 μ m, 1550 nm = 1,55 μ m) zu erkennen.

Bild 1.8: Dämpfungskoeffizient eines Lichtwellenleiters mit Wasserpeak als Funktion der Wellenlänge und typische Dämpfungseffekte