Patterns In
the Machine

A Software Engineering Guide to
Embedded Development

John T. Taylor
Wayne T. Taylor

Apress’

Patterns in the Machine

A Software Engineering Guide
to Embedded Development

John T. Taylor
Wayne T. Taylor

Apress’

Patterns in the Machine: A Software Engineering Guide to Embedded Development

John T. Taylor Wayne T. Taylor
Covington, GA, USA Golden, CO, USA
ISBN-13 (pbk): 978-1-4842-6439-3 ISBN-13 (electronic): 978-1-4842-6440-9

https://doi.org/10.1007/978-1-4842-6440-9

Copyright © 2021 John T. Taylor, Wayne T. Taylor

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Callum Wale on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484264393. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6440-9

To Sally, Bailey, Kelly, and Todd.
—J.T

Table of Contents

About the AUtROIS.........ccccmmmsmsmssmsmssnssssnssssss s sss s ssn s ssa s san s an s nnsannnnnsnnnns xiii
About the Technical REVIEWETccusesssessssnsssassssassssnsssssssssssssnsssassssassssnsssassssnsnsansas XV
Acknowledgments........ccccummssmmmmssnnmssssnsssssnssssnnsssssnsssssnsssssnsssssnsssssnsssssnnssssnnsnssnnnnns Xvii
o - [Xix
Chapter 1: Introduction..........ccccmiiisemnmnisssssnmmmssssnmmmsssnmmsssssssass s 1
Patterns in the Maching............ccccoeriincnnn s 3
What Is Software ENQINEEIING?........ccvvererrrrerrererenesseseresessessesesssssssessesssssssessessesssssssessesssssssessens 4
Software Engineering Best PractiCes........c.ccovinmininninsni s ssssesesnens 5
WRAL PIM IS NOL...... et b e e s 7
What YOU'll NE€d 10 KNOWccoceiereirieserinesenese s se e ss s sesssssssssensnnes 8
Chapter 2: Core CONCePtS ...ccuceeerrrssssmnnmmssssnnnmmsssssnnnsssssssnssssssnnssssssssnnnsssssnnnnsssssnnnnsssss 9
SOftWare ArChItECIUTEvcucciri s ————— 9
Automated Unit TESTINGcueererrereriereresersersesesss s sse e se s ssesreses e ssessesssses e ssesaesasseesesaessssesaessens 10
Functional SIMUIBLOT.........ccoviecir s 12
Continuous INTEGration..........cccvcierienisrrr e s 13
DAtA MOGEL........ooeeee e e e e p e e nn 16
Finite State MACKINESccovererererresr s 20
DOCUMENTALION......veveceereerire et r e e R r e n s 22
Chapter 3: Design Theory for Embedded Programmingccccuseesssnssssnnsssssssnsnsnsss 25
SOLID «..vtececerereessss e se s s 26
Single Responsibility PrinCiple ... 27
0pen-CloSed PrINCIPIEvvvverere s serere s se e s e s e e s s saess s e s saesassessesaesnesassensesaens 28
Liskov SubStitution PrinCIPIEcevveevieriersrirrerie s s ssesre e sessessesssssssessessessssensessens 33

TABLE OF CONTENTS

Interface Segregation PriNCIPIEccvvvriririerie s serse s s sre s ssessesnens 34
Dependency INVErsion PrINCIPIEccvvviereririersie s se s s s sne e s sneas 36
BiNGING TIME ... e e e p e e e s r e e e nenns 38
Source TiMe BiNAING........ccoovvevienrirnse sttt e st 39
Compile TiMe BiNGING......ccevvirierererreriereresessere s sessesessessesessessessessssessessesssssssessessesassensessens 40

I L T (= =1 o T o 41

A SOLID CONCIUSIONc.vvenescerensssssesesesessssssssesesssnsasssens 42
Chapter 4: Persistent Storage Detailed Design Exampleccucmrnsmsmsssnnsssssnssssans 43
Persistent Storage EXample........c..oooorenrernncr e 43
Software ReqUIrEMENTS.........ccccivicirirern s 43
High-LEVEI DESIQNceeeeercereerec e 44

A Monolithic Detailed DeSign.........cocuvrirrerinnsniesiene e s s 45

A PIM-Informed Detailed DeSignccucrinnininiennsinsese s se s ssessessssessesnes 46
Benefits of the PIM DESIgN ... s se s s 49
EXpanded Layeringcccvvcrnnirienn s srs s st s s sn s s 50
Example PIM Thermostat AppliCation..........ccvvirvnininnnni e 53
High-LEVEl DESIQNccveceeeeeereerecresese s s nennis 54
D12 V] L= T o o 56
THe PIM Dil@MMA......coveeereiereseresesessese e sesss s s s sesssssssssnssssessssssssssssssssessnses 62
Chapter 5: Software Architecture........ccucmmmnisemnmmnsssssnmmnssssnmmssssn—————— 63
About the Software ArChiteCt ... ———— 63
About Software Architecture DOCUMENTS.........cccvrriinmnmnerrsssssse e 64
MaJOr SUD-SYSTEMS ...cvcereerreierierere s sere s s e se s sr e ss s e sae e e e e aesae s e e e aesae s e e e naenaees 66
Major Interface SEMANTICScccevivvrrrerrererr s e sa s e s ae e e e ne s 68
Threading and ProcesSor MOGEL...........ccccvverveneriniinse s see s sse s s saeas 70
Communications MEChANISIMSccvrrrinnmnmrirense s 70
Memory Strategy OF RUIES........ccoceveveererierertrsersere e s esse e sss e s e ssesas e s e saesaessssessesaessssesnessees 71
Performance Requirements and ConStraints........c.ccocvvvverennnenieniennsensenesessssessessessssessessenns 72
Hardware INTErfacescoouirmrerrrnnsrssr s 73
OPErating SYSTEMcvcerevieririere s s ae b e se e s a e s a e e s e saesae e e e naenne s 76
TRird-Party SOFWAIEccceveierierererrsere s s s sa e e nnes 76

TABLE OF CONTENTS

Functional SIMUILON ... s 77
File Organization.........cccveevererrrieresenserere s sessessessesesessessessssessesaesasssssessesaessssessesassssssnsesseses 78
Localization and Internationalization.............cccorienninnnns s 79

00 01T 01 79
0T E TS S (- =T | 80
31T o B 1 80
Creating “Real” Architecture DOCUMENES........cccvvvierererrerrereresesserse e seesese e ssesessessesaesessessessees 82
Chapter 6: Unit TeStingc..cccrrrmssmmnnmssssnnnmsssssnsnsessssssssessssnsssssssssnssessssnnnssssssnnnssss 83
What IS @ UNIT TEST?.....e e 84
Source Directories and Unit TESTES........ccovcrrrrrnrerrererr e 86
T LT I T] 87
Automated UNit TESES.....ccoerecrercrerese e 88
Code Coverage MEtriCS........cuuuerennnnienese s e s s st sne s 89
About TesSting FrAMEWOIKSc.cocoereierercrresese s s e 91
ContinUOUS INTEGIAtiON........c.eceereriresere e 92
TIPS fOr UNIt TESTING «vueverieriesirsere st se e s sa e s st nne s 93
Minimize DEPENUENCIEScccriererirrirere e s s s e e 93
Use ADSEract INTEITACESccovereriierne s 93
Use the Data Model Pattern...........ccocvcrenennnmnie e s 94
LTS 0 =2 SRS 94
Develop and Test Incrementally...........coccoereerininennsr s 94
The Dark Side of Unit TESTINGc.cceivvrrrrierieresirrerie s sere s s e s s sse e s e ssessessssessesnens 95
Unit Testing vs. Integration Testing vs. System TeStiNG.......ccccvvvrverieriesensnserress s sessessennes 96
Chapter 7: Functional SImulator.........cccuseemrmnsssmnnmmmmssssnmmssssssssmssssssssssssssssssssssssssess 97
Operating System ADSTraction LAYErcccoreiererreriererese e 99
Hardware ADSTraction Layer........c.cccvvevnenernnessesese s e sessssessssessssssenns 99
MaIN PALEEIN ...t 99
SIMUIALE TIME ...t 101
How to Implement Simulated TIMEccocevvvrrrirrrr e 101

vii

TABLE OF CONTENTS

Platform BOUNGAIIEScorerireriirce e s s 102
Mocked SIMUIALION........ccoriiieecri e 103
SIMUIALEA DBVICES.....coviviveeeeerrreseeese s 103
EMUIALEA DBVICEScuccerererrrieeeri s 103

SIMUIALEA USE CASEScovrvrveueeereresrseesesesesssssssssesesss s sesss s ss e sssssssssssssassssssssssssesssssnsaes 104
A SIMUIATEA LCDcucveerrieririririseresese s ssss s se s e e ssssssssssssssssssssssasas 104
An Algorithm with Simulated TiMEcccccvvrierierr e enes 104
A Model Simulator with Simulated TIMe ... 105
A Communication ChANNEN ... 105

The Functional Simulator for the Thermostat EXample..........cccovvvrierrnccrinicnnesenssesesesenenens 106

Chapter 8: Continuous Integration...........ccccccrniinssmmmmmmnnnnnmsssssssnm s ————— 107

Implementing Continuous INtEGration..........ccccvvernsrnnesre s 108

Continuous Integration and PIM..........c.coccriinnennennse s s sesesenns 109

About the Build MACNINE..........cccoriiimrinirissrese s 110
Maximizing Build Machine Performance..........cccevvrerrrierenensensesessssessesessesessessesssssssessesses 111

About Software Configuration Management...........ccvcvrerrererersrreriesssessenesessssessesessesessesessens 112
Implementing Branching Strategiescoovvrvriererersnienie s ses e ssessessssessesseees 113

About FOrmal BUIlUS.........ccoeeierccrrceree e s 114

About the Build Automation TOOI ..o s 114

ADOUL BUIlA SCHIPIS .ot s s 116

Chapter 9: The Data Model Architecture.......ccccccimmmmsnmmmmmssssnnnmmsssssnnmssssssssssssssnnns 119

Additional Model POINt FEALUIEScccveeerrirernesriesensse e s sr s ssens 126

Model Points vs. Global VariabIes ... 133

Chapter 10: Finite State Machinegs........cccivvvunnssssmsnnnnnnmsmssssssssssssssssssssssssssssssssssssss 137

Example of @ Thermostat FSIM ... sessessessessssessessesssssssessessessssessesaens 138
R3] £ LCC RN 10 TP 141
Design vs. IMPIEMENtation ... 142
Code Generation IS @ GO0 THINGccovererenerrerere s eens 145
Tips, Hints, and SUGQESTIONS......c.cuveerrirerrnerrresesese s sr e sessessssennns 148

viil

TABLE OF CONTENTS

Chapter 11: Documentation........ccucemrrnnssnnnmmssssnnmmsssssnessssssnensssnseesasse s 153
Documenting Header Files.........ccvriiiininnnsirsene s s sss e snens 154
Document First, Then Implement ... 158
Documenting Your Development PrOCESScccuveerrnerennenesenereese s ses e sessesenns 159
Document Your Software Architecture and DeSigncccvveervnrnsesnnesennssesssessse e sessesenns 161
Document Your Team’s BeSt PractiCes........couuumrmrnmnnnnnmsinnsssss s 162

Chapter 12: File Organization and Naming.........ccoeunsssennmmsssssnnsmsssssssssssssssssssssssnnns 163

Organizing FileS DY NamMESPACE.......cuvvrerrerererrersersessessssessessesssssssessessssssssssessesssssssessesssssssessesses 163
Organizing EXternal PACKAGEScccucverereriinerinenise s sss e se s sesse e sessssessssesessssens 167
NAMING. et e s E e e e R e e R e e e e R 169
Naming Recommendations for C++.......ccvinininninnn s snes 170
Naming Recommendations fOr C..........c.ccevervrirrerierierrerseserses e sesesseessessesesssesaessessenns 171
Chapter 13: More About Late Binding.........ccccuussmmmmmmmmmmmmmsssssssssssssssmssssssssssssssssnns 175
[T T - S 175
Implementation EXAMPIE..........ccocoereerrerereserrsesese e s seenis 177
L0731 ST 181
Chapter 14: Initialization and the Main Pattern............ccccnnnmmemmmnnnnnnnnnsssssssnnns 183
Staged INHAlIZATIONccccceeee e ———————— 186
About Open/Close with Inter-thread Communicationcccoviiinnnnnsnnssssesenens 190

MaiN PALEEIN ... s 191
MAIN MINOT ...t se s e b 192

1 T PSR 196
Chapter 15: More Best PractiCesccccuumummmrmssssnnnmsssssnsnsssssssnssssssssnssssssssnsssssssnnnss 201
Avoid Dynamic Memory AlIOCALION........c.ccoviriiieriern s enens 201
Documenting Header Files.........cccviiniinininnscnsesene s sse s ss s s s st sessesnens 203
Interfaces and More INTEITACES........occrreerererere s 206
Compile TIMe BiNING......ccovoeierererererereserese s e nsenis 206

01 T T2 Lo 4o T 209

C++ Pure Virtual and Virtual CONSIFUCTS........ccoveerrererenernsesese s sese s 213

ix

TABLE OF CONTENTS

DAtA MOEL........ceeiceree e 214
BUILA SYSIBM ... e e 216
Chapter 16: PIM Thermostat EXampleccccvnsmmnnmmssssnsnmssssssssssssssssssssssssssssssssnnnss 219
Features and ReqUIrEMENTS.........cccviiiinininn s s 219
Target HardWArE..........covoerrenerrnesesene s se s ses s sr s sesse s ssssessesssenssssnssnnns 221
Installation and SELUPcccoiviircr e ———————— 223
1T o OSSO 224
WiINAOWS SEIUP...ceiireir e e e e e 224
5071 o 1 o OSSN 227
Building on Linux with the GCC COMPIIETcccvrerrreririernrirrere s ses e ssesnes 228
Building on Windows with the Visual Studio COMPIIEFccccvverernrnieniensnensene s sessensennes 229

Build Directory Naming CONVENTIONS.......cccouvererenernsesenesssesesssse s sessesessssessssesssssssssssessnss 231

PIM Thermostat Application USAgEe..........ccovermrerernnesnesnsese s s sessessssssessnses 234
ADOUL NQBP........cvvieiiiriire s 240
INSTAINNG NQBP.......ccvereriecirere e s a e e s e s e ae s a e e e naeee 241
NQBP USAQE.....ceuerrerererersessesersersessessssessessesssssssessesssssssessesssssssessessessessssessesssssssessesssssssessesses 242
NQBP BUIld MOTEL........ccerereeeeeesessssssssssssssssassssssse e se s s s s ssssssssssssssssssenes 242
NQBP Object Files VS. LIDFArIEScccvververererrerrerenssessenessesessessessessssessessessssessessesasssssessesses 242
NQBP BUild Variants.........coovrimmnmnenmnmsnssss s s ssssssssesssssssssssens 244
NQBP BUIIH SCIPLS ..vevverierierirere s se s ssssesse s s e s e ssesaesessessessessssessesaesssssssessesasssssensesas 244
Selecting What to Build With NQBPccccririnninienenn e sessessessessssessessens 245
0 [T 247
{010 0 R 249
{00 10T)AL o LR 253
COIONY.AFAUINO ...ttt e et e se e st e e b et ne e e 253
37 I8 OSSPSR 254
Chapter 17: The Tao of Developmentccccvineemmmnsssssnnmmssssssmmmsssssnmsssssssesssssnnns 255
John’s Rules 0f DEVEIOPMENL..........cccvcrierieresirrere s re e s sre s sae s e s sne s 255
Wayne’s Rules of DEVEIOPMENL.........cccccvvriiiiirn e s 261
Appendix A: Terminologyuuusseeeesmmsersssssssssnssnsssssssssssssssssnsssssssssssssnnnnsnssssssssssnnnnns 265

TABLE OF CONTENTS

Appendix B: State Machine Notationccciuvnnsmmnmmssssnnnmmnssssnmmsssssnsssssssssessssnns 269
Appendix C: A UML Cheat Sheetccernnmemnmmmsssnnnmmssssnnsssssssssssssssssssssssssssssssssnns 273
AppendiX D: WRY G4+ .uoviirmnmmmssssnmmssssssssessssssssesssssssssssssnssssssssnsssssssssssssssssnnnsssssnns 275
Appendix E: About Package Management with Qutcast..........cccccuseemnnnssnnnnnsssanns 279

L0 (v < OO 280

OUECAST MOTEL ..o e b e e s b e b e nae 281
Appendix F: Requirements vs. Design Statementsccccuneemnnnnsssnnnnnsssssnnnsssnnns 285
INA@X.uetiiissnnnnnnnsssnnnnmssssnnnnnssssnnnnssssnnnnessssnnnnsssssnnnnssssnnnnssssssnnnnssssnnnnsssssnnnnnsssnnnnnsssn 289

xi

About the Authors

John Taylor has been an embedded developer for over

29 years. He has worked as a firmware engineer, technical
lead, system engineer, software architect, and software
development manager for companies such as Ingersoll
Rand, Carrier, Allen-Bradley, Hitachi Telecom, Emerson,
and several start-up companies. He has developed firmware
for products that include HVAC control systems, telecom
SONET nodes, IoT devices, microcode for communication
chips, and medical devices. He is the coauthor of five US
patents and holds a bachelor degree in mathematics and
computer science.

Wayne Taylor has been a technical writer for 25 years.

He has worked with companies such as IBM, Novell,
Compagqg, HP, EMC, SanDisk, and Western Digital. He has
documented compilers, LAN driver development, storage
system deployment and maintenance, and dozens of system
management APIs. He also has ten years of experience as

a software development manager. He is the coauthor of

two US patents and holds master’s degrees in English and
human factors.

xiii

About the Technical Reviewer

Jacob Beningo is an embedded software consultant with
over 15 years of experience in microcontroller-based
real-time embedded systems. After spending over ten years
designing embedded systems for the automotive, defense,
and space industries, Jacob founded the Beningo Embedded
Group in 2009. Jacob has worked with clients in more than a
dozen countries to dramatically transform their businesses
by improving product quality, cost, and time to market. He
has published more than 200 articles on embedded software

development techniques and is a sought-after speaker and
technical advisor. Jacob is an avid writer, trainer, consultant,
and entrepreneur who transforms the complex into simple and understandable
concepts that accelerate technological innovation.

Jacob has demonstrated his leadership in the embedded systems industry by
consulting and working as a trusted advisor at companies such as General Motors, Intel,
Infineon, and Renesas. He also speaks at and is involved in the embedded track selection
committees at ARM Techcon, Embedded System Conferences, and Sensor Expo. Jacob
holds bachelor’s degrees in electrical engineering, physics, and mathematics from
Central Michigan University and a master’s degree in space systems engineering from
the University of Michigan.

In his spare time, Jacob enjoys spending time with his family, reading, writing, and
playing hockey and golf. When there are clear skies, he can often be found outside with
his telescope, sipping a fine scotch while imaging the sky.

Acknowledgments

We'd like to thank Mike Moran for taking the time to read through early drafts of this
book and for providing his usual insightful comments.

Xvii

Preface

The mastermind behind this book is John. John is the one who has been working and
developing code in the embedded systems space for 30 years, and this is his approach to
developing software. Patterns in the Machine, or PIM, is his development process. If you
worked with John, you’d see that his processes and his production code follow exactly
what is prescribed in this book. While not all of his colleagues have been converted to
his PIM approach, they can’t argue with his success. John not only develops a prodigious
amount of code, but he also keeps an amazing number of modules and unit tests and
simulator bits current on his projects. And he does so by practicing what he preaches.

Consequently, in this book, when you see a phrase like “In my experience ...
or “Iworked on a project once ...,” it is usually John speaking. Occasionally, it's me
editorializing or providing my own anecdote, but mostly it’s John. We wrestled for a
while about how to best alert readers to who was who, and, in the end, we decided we'd
go with first-person narration. We never really were comfortable using “we.” To us it
sounded a little pretentious, pontificatory, and too much like the “royal we.” So, when
you read this book, know that “I” is John ... mostly.

John and I have been involved with software development for a very long time.
I wrote my first computer program in the basement of the Kiewit computer center
at Dartmouth College when I was 10 years old. John was 7. Over the years, John and
I have programmed in machine language, assembler, C, C++, Java, C#, Python, Perl,
and so on. We've been involved in projects that range from firmware for very small
hardware platforms to enterprise software for insanely large storage platforms. And
while the specifics of our experience vary, we discovered over the course of writing
this book that our ideas and conclusions about what constitutes smart development,
what demonstrates elegance in design, and what is “the right way to do things” are
surprisingly similar. When it comes to software development and programming
languages, John and I are native speakers. And we speak with one voice.

—Wayne Taylor, Golden, Colorado, October 2020

Xix

CHAPTER 1

Introduction

This book is about how to be a genius—or, at least, how to design and implement
software in a way that is pretty damn smart. This book is about how to build things like
automated unit tests and functional simulators, which professionals in the embedded
systems space hardly ever do because they feel there isn’t enough time or there aren’t
enough resources in their programming environment or because there’s never been
hardware like theirs on the planet before. A lot of developers think it’s unwise to write
extensive code before the hardware is working, or they assume that their code can’t be
repurposed for a completely different hardware platform without massive rework. But
that is simply not the case.

In this book, I'll show you how to apply some software engineering principles and
best practices—or what I call patterns—to develop software in an efficient, sustainable
manner. By applying these patterns in a deliberate way, you can develop software and
firmware for embedded systems faster and with higher quality than ever before. To
be clear, these patterns are not silver bullets. If, for example, your hardware platform
requires you to “bit pack eight Boolean flags into a single byte,” then these practices
might be of limited use. Nevertheless, by implementing patterns, I think you'll find that
the sum of the parts is greater than the whole. That is, the right effort applied in the right
place can produce benefits far beyond what you might think.

In my experience, traditional embedded software projects tend to be monolithic
applications that are optimized for their target hardware platforms. And this is
understandable. Embedded projects have unique hardware characteristics, constrained
resources (limited RAM, tiny amounts of Flash, no operating system support, etc.) and
oftentimes require demanding real-time performance. On top of this, there are nearly
always aggressive schedules and high expectations for the quality of the software.
Consequently, the pressure to just get started, and to just meet the stated requirements
at hand, is immense and only intensifies when, mid-project, software requirements
change, hardware components become unavailable or go obsolete, and the time-to-
market window gets shortened.

© John T. Taylor, Wayne T. Taylor 2021
J. T. Taylor and W. T. Taylor, Patterns in the Machine,
https://doi.org/10.1007/978-1-4842-6440-9_1

https://doi.org/10.1007/978-1-4842-6440-9_1#DOI

CHAPTER 1 INTRODUCTION

But referring to “traditional” embedded software projects may be the wrong word
to use. Embedded software isn’t developed the way it is because of tradition; rather,
it is often developed this way out of a sense of desperation. As one manager I worked
with put it: the process is like “building a railroad bridge over a gorge in front of a
moving train while the bridge is burning down behind it” This rush to get things done,
then, leads to software that is fragile and that tends to collapse if there are requirement
changes or feature extensions. It also leads to software that is challenging to test,
especially before fully functioning hardware and fully integrated software are available.
But by following the patterns in this book, these patterns in the machine (PIM), if you
will, you can create software or firmware that actually embraces change and maximizes
testability. PIM does not lament the fact that change is a constant; rather, it embraces
it and focuses on highly decoupled designs that can accommodate changes without
sacrificing quality.

A NOTE ABOUT TEACHING PIM

If | were to teach a class on Patterns in the Machine, the syllabus would look something
like this:

e Week 1—Hand out a board and supply the class with requirements for an
application to be built on it. Tell them that a working application will be required
at the end of week 5.

e Weeks 2-5—Lecture and demonstrate how to design and develop with a PIM
methodology.

e Week 6—Hand out a different board and add some new requirements and
change some existing requirements. A modified version of the application they
just completed will be required at the end of week 8.

e Weeks 7-8—Lecture and demonstrate how to adapt the first application to the
new hardware and requirements.

e Week 9—Hand out a new board, add some new requirements, and change
the requirements one last time. A working application will be required to be
submitted at the end of week 10 as the final exam.

CHAPTER 1 INTRODUCTION

It should be obvious to most of the students that unless they design their software with an
eye toward accommodating the changes that will come later in the semester, they will not be
successful in week 10. Unfortunately, in the “real world,” project managers and development
managers don’t tell the team “Six weeks from now the hardware will change, and we’ll add
some new requirements.” More often than not, they say the very opposite: “The hardware and
requirements are frozen. We promise.” But almost without fail, the changes come. More than
anything else, it was this fact of life that led me to develop and implement the principles of
PIM. It was the only way | could survive.

As an exercise, then, ask yourself this about your current project: “If in a few weeks | were to
get new hardware and new software requirements, but my original deadline does not change,
could my current design and implementation allow me to proceed in a reasonable, sustainable
manner? Or would | be frantically working overtime to refactor my code?”

Patterns in the Machine

PIM is an amalgamation of design methodologies, best practices, software architectures,
and continuous integration principles which, when applied to the embedded
development space, deliver projects faster and with higher quality. As an example of
faster, consider that

o PIM allows developers to start writing and testing actual, meaningful
production code without hardware.

o PIM allows you to start testing early and often. Finding bugs at the
beginning of the development cycle—especially bugs related to
design flaws—greatly reduces the overall development time.

o PIMyields reusable code, which means there is less code to write on
subsequent projects.

As an example of higher quality, consider that

o PIM emphasizes unit tests that inherently make modules more
testable. One of the outcomes of this testing focus is that PIM
achieves many of the quality benefits of Test-driven development
(TDD). And while PIM does not embrace all TDD practices, PIM is
fully compatible with it.

CHAPTER 1 INTRODUCTION

o PIM facilitates the ability to create a functional simulator that allows
for all phases of testing to start early (i.e., before the hardware is
available). Obviously, this yields greater test time, but it also enables
downstream tasks like developing user documentation and training

materials to start much earlier.

e PIM provides for true reuse. That is, PIM allows you to reuse source
code files without modification or cloning, so there is no loss of
quality or functionality in reused modules.

Other benefits to consider are

e PIM has an extendable code base. That is, accommodating new
features and requirements is easier because of the inherent
decoupling of the code from hardware.

o PIM allows many developers to work efficiently on the same
application because the decoupled code base translates into
developers not competing for access to the same files in the software
configuration management (SCM) system.

o PIMis portable; when properly architected, over 90% of the source
code is compiler and hardware independent.

o PIMis an agnostic development process. That is, it can be used in
Agile, TDD, waterfall, and so on.

What Is Software Engineering?

Whereas there are no readily agreed-upon canonical definitions of what software
engineering is, here are some interesting definitions:

[Software engineering is] the application of a systematic, disciplined, quan-
tifiable approach to the development, operation, and maintenance of
software.

—IEEE Standard Glossary of Software Engineering Terminology,
IEEE std 610.12-1990, 1990.

CHAPTER 1 INTRODUCTION

[Software engineering is] the establishment and use of sound engineering
principles in order to economically obtain software that is reliable and
works efficiently on real machines.

—Fritz Bauer. “Software Engineering.” Information Processing.
71: 530-538.

4

Software engineering should be known as “The Doomed Discipline,
doomed because it cannot even approach its goal since its goal is self-
contradictory. Software engineering, of course, presents itself as another
worthy cause, but that is eyewash: if you carefully read its literature and
analyse what its devotees actually do, you will discover that software engi-
neering has accepted as its charter “How to program if you cannot.”

—Edsger W. Dijkstra.
www. cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

To put it simply: PIM requires you to do software engineering. And for the purposes
of this book, the IEEE definition of software engineering will suffice. Unfortunately, in
my experience, software engineering best practices require a level of discipline from
developers (and principal stakeholders) that is, more often than not, sacrificed for the
sake of tactical concerns.

Software Engineering Best Practices

Software engineering best practices can be broken down into two categories:

e Tactical—Designing and constructing individual components or
modules

o Strategic—Specifying how individual components work together,
how they can be tested, and how they can be architected in a way
that accommodates changes in requirements or the addition of new
features

In my experience, tactical best practices are routinely incorporated into projects.
Strategic best practices, however, are typically a function of the tribal knowledge
of an organization. As a result, they vary widely between groups and departments.
Additionally, the strategic best practices that do exist are usually narrowly focused to

http://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

CHAPTER 1 INTRODUCTION

meet past needs or present concerns. This differentiation between tactical and strategic
is important because without a disciplined approach and commitment to strategic
best practices, these are the first things dropped when “crunch time” arrives. While this
may seem logical or even expedient, it is a net negative to the project’s overall timeline
and quality because it’s the strategic best practices that maintain the “big picture” and
integrity of the software. While tactical missteps typically have immediate consequences,
strategic missteps typically aren’t manifested until late in the project life cycle when they
are expensive (in terms of time and effort) to fix. And, in many cases, the problems are
never fixed as development teams often elect to take on “technical debt” by patching
things together harum-scarum just to get the software out the door.

Here are some examples of tactical software engineering best practices:

o Design patterns

e Encapsulation

e Structured programming

e Object-oriented programming

o File organization

o Naming conventions

o Dependency management
Here are some examples of strategic software engineering best practices:

o Design patterns

o File organization

o Naming conventions

o Dependency management

e Automated unit testing

o Software architecture

Note that the two lists overlap. The reason is because most aspects of software
development have both tactical and strategic characteristics. For example, let’s examine
naming conventions. These conventions are usually defined in the project’s coding
standards document. Typically, these conventions address things like case, underscores,

CHAPTER 1 INTRODUCTION

nouns, verbs, Hungarian notation, scope of variables, and so on—all of which can be
considered tactical. However, an example of a strategic naming convention would be
specifying a requirement that the use of C++ namespaces (or name prefixing in C) be
incorporated to prevent future naming collisions.

Another example would be requiring the use of specific design patterns. For
example, applying the “observer pattern” to a module in isolation that implements a
callback would be considered tactical. However, it would be considered strategic to
require that the same observer pattern be applied consistently across the entire data
model so that change notifications are always generated for any changes anywhere.

Chapter 2 expands on these core concepts for PIM and explains the tactical and
strategic considerations for each concept.

What PIM Is Not

Patterns in the Machine is not an introduction to, nor a beginner’s guide for, embedded
software development. In fact, it covers very few details about tactical topics for
embedded development. This book is about how to use some basic planning,
architecture, and design to build highly decoupled embedded applications and then
how to exploit that design and implementation to get your project done faster and with
higher quality.

While the following list is not comprehensive, here are some topics that will not be
covered in this book:

e Multi-threading programming
e Real-time scheduling
o Differences between an MCU and a CPU

o How to work with hardware peripherals (ADC, SPI, 12C, UART,
timers, input capture, etc.)

e Hardware design

o Reading schematics

e Interrupt handling

e Math (floating point vs. integer vs. hexpoint, etc.)

o Low-power designs

CHAPTER 1 INTRODUCTION

e Cross compilers

e Optimizing for space and real-time performance
o Safety-critical applications

o IoT applications

e Watchdogs

e Networking

What You’ll Need to Know

The target audience for PIM are developers who have worked on at least one embedded
project and have experience with either C or C++. For example, this may be

o Software developers or firmware developers that have mid-level or
higher experience.

e Technical leads
e Software architects
e Development managers
Additionally, it will be helpful if you can read and follow code written in C and C++.
While this is not a strict requirement, all the sample code that is provided with this book

is written in C and C++. While in many instances I do provide detailed explanations of
the algorithms, sometimes it is just more effective to provide a snippet of code.

CHAPTER 2

Core Concepts

This chapter introduces the core concepts of PIM and explains why they matter. For each
concept discussed here, there is a corresponding chapter in the book that provides a
more detailed discussion of the material.

Software Architecture

Just like the term software engineering, the terms “software architecture” and “software
detailed design” do not have concise definitions. On many embedded project teams,
there is no distinction—or at least not one that the developers can articulate—between
the two. The tendency, then, is to define architecture and detailed design together. This
works up to a point, but teams tend to focus on the detailed design, and the architecture
essentially becomes the output of that detailed design. This leads to an architecture that
is rigid in terms of dependencies and oftentimes inconsistent with itself.

The problem with code designed without an architecture document arises when you
try to add new features that don’t quite match up with the original detailed design or when
you encounter a scenario where you're trying to shoehorn a “missed feature” into the
design. For example, I worked on one project where the team designed the HTTP request
engine to use synchronous and asynchronous inter-thread communication (ITC) to send
requests to the external cell modem driver. Later in the project, we added a watchdog
sub-system that would monitor the system for locked up threads, but we found that the
watchdog would intermittently trip on the thread running the HTTP engine. The root
cause turned out to be that, given a specific set of preconditions related to cellular network
failures, the synchronous ITC calls from the HTTP request engine would block for minutes
at a time. Nothing in the original design proscribed when synchronous ITC could (or could
not) be used. Because we did not have a written software architecture, there was nothing to
guide or constrain the design of this feature. The developer of the HTTP engine just threw
something together that reflected his minimal understanding of cell modem behavior.
Ultimately, we had to leave the watchdog sub-system out of the final product.

© John T. Taylor, Wayne T. Taylor 2021
J. T. Taylor and W. T. Taylor, Patterns in the Machine,
https://doi.org/10.1007/978-1-4842-6440-9_2

https://doi.org/10.1007/978-1-4842-6440-9_2#DOI

CHAPTER2 CORE CONCEPTS

You always want to have a detail-agnostic software architecture that the detailed
design must conform to. It’s the difference between driving a car on a paved road with
guard rails and driving through an open field. Yes, the paved road has constraints on
what and when and how vehicles and people can travel on it, whereas the open field
has none; but getting from point A to point B is a lot faster and safer on the paved road
as opposed to crossing an unbounded open field where nothing prevents you from
colliding with other vehicles or local wildlife.

Software architecture best practices are strategic in nature. Define your project’s
software architecture first. Keep it separate from the software detailed design. There is
an implied waterfall process here, but it’s a good thing. Organically derived software
architecture is the path to the dark side; or, without the moral overtones, it is often a
quick path to “bit rot” Up-front architecture—separated from design—allows for just-in-
time design, which is what you want in a development process like Agile. For example,
if your software architecture defines the interface between the core business logic and
the user interface as model points, then any work you do on the UI stories is completely
decoupled from the business logic stories and vice versa. Only the model point instances
need to be defined up front. (A more detailed discussion of model points is provided in
Chapter 9.)

Automated Unit Testing

Unit tests are your friends; automated unit tests are your BFFs. Why? Because unit

tests are an effective and repeatable way for developers to demonstrate that their code
actually works. Manual testing may seem quicker in the moment because there is no
test code to write, but it is rarely repeatable. This may not seem like a big deal until you
have to make a change or have to fix a bug that requires regression testing. Additionally,
without unit tests, it can be difficult to quantify actual test coverage.

In my experience, the time spent writing unit tests has always been net positive
over the entire development cycle. Automated unit tests are even better because the
execution of the tests can be incorporated into the project’s continuous integration
effort, yielding continual regression testing with code coverage metrics.

Unfortunately, writing unit tests—and especially automated unit tests—is not
ingrained in the culture of embedded system development. I have no definitive
explanation as to why this is, only empirical evidence that unit testing is not mainstream
in the embedded world. My hypothesis is that because embedded development is

10

CHAPTER2 CORE CONCEPTS

tightly coupled to hardware and, consequently, bleeding-edge development, test
frameworks are not readily available on many target hardware platforms. As a result, it is
easy to rationalize that writing unit tests is not practical. Nevertheless, in my experience,
there are no technical constraints that prevent automated unit testing from becoming
the norm for embedded development. PIM’s approach to unit testing is a subset of
Test-driven development (TDD) in that it only requires three things:

o Thatyou build a unit test for each module
o Thatyou test sooner rather than later
e Thatyou build your tests incrementally

There are two principal ways to perform automated unit tests for embedded systems.
The first is to have an automated platform that can simulate the system’s environment
and interact with the software while it is running on its target hardware. There are many
advantages to this approach, but it is costly in terms of resources, money, and time.

In many ways, developing this test platform is an entire software project of its own.

The second approach is to have the automated unit tests run as terminal (or console)
applications on a computer. These tests return pass/fail. The obvious advantage here is
that there is no simulation infrastructure to build, and there are many tools available to
assist and augment the automated unit tests. The disadvantage to this approach is that it
requires that the software be developed in a way that allows it to be executed both with
the test computer’s operating system and with the target hardware.

The PIM approach to automated unit testing is to decouple the software under
development from the platform (i.e., the hardware, the OS, the compiler, etc.) so that
computer-based automated testing is practical. While not all software can be abstracted
away from the platform, in my experience, over 90% of an embedded application can be
decoupled from the target platform with minimal extra effort. Whether it is a project on
an 8-bit microcontroller or a CPU running a process-based operating system, after the
source code is decoupled from the target platform and compiler, there is no downside
to having computer-based automated unit testing. Of course, decoupling the software
from the target platform can be tricky. But in most cases, with some up-front planning—
and the discipline to follow the plan—it is a straightforward process. Furthermore,
decoupling the software from the target platform also creates other benefits like being
able to create a functional simulator.

To summarize, then, requiring unit tests and automated unit tests is a strategic best
practice. The construction of the unit tests and test frameworks are the tactical best practices.

11

CHAPTER2 CORE CONCEPTS

Functional Simulator

Just like changing requirements are a fact of life when developing software applications,
“hardware is always late” is a truism for embedded projects. I have worked on numerous
projects where software development begins before any hardware engineers or
resources were assigned to the project, so, by definition, the hardware was already late.
This creates the challenge of trying to write and test production-quality code without
target hardware and without incurring a large amount of technical debt. This is where
the advantages of having a functional simulator come in.

The goal of a functional simulator is to execute the production source code on a
platform that is not the target platform. The simulator should provide the majority of the
functionality (but not necessarily the real-time performance) of the application. In most
cases, this hardware platform is a personal computer running Windows or Linux.

I first started incorporating a functional simulator in an embedded project 20 years
ago as a direct result of target hardware not being available. And even after the hardware
became available, the functional simulator was still used as the principal development
platform. In fact, the only developer testing done on the actual target hardware were
hardware-specific tests of real-time features. This was due to the fact that developing, and
then executing, code on a PC was simply easier and Faster than on the target hardware
where you had to cross-compile, program the Flash in the target microcontroller, and
then debug the result on the target hardware. While the tools available for many target
hardware platforms have improved greatly over the last two decades, developing code on
a functional simulator is still easier and faster than using actual hardware.

While including a functional simulator in the project development cycle does require
additional effort and planning, the complexity of that effort will vary by the nature of
the project and target platforms. By starting with a minimal simulator and only then
extending its capabilities on a case-by-case basis, the extra effort is minimized. The point
to be emphasized here is that the effort to create a minimal functional simulator is close
to free because the design work and planning that go into creating automated unit tests
are 80% of the effort that is required to build the simulator.

When I first started building functional simulators, I had to convince management
that constructing a functional simulator would be a net positive effort for the project.
Today, I just pitch the concept of automated unit testing to management which is an
easy sell. And lately I don’t even have to pitch anything because management has

12

CHAPTER2 CORE CONCEPTS

already bought into automated unit testing. But after automated unit testing is part of
the development process, constructing a minimal functional simulator becomes an
uncontested line item in the schedule because the effort is small enough to be “lost in
the noise.”

The decision to include a functional simulator on a project is a strategic best
practice. The use of the functional simulator as a substitute for the target hardware
platform is a tactical best practice.

Continuous Integration

In PIM, the decision to include continuous integration (CI) on a project is a strategic
best practice. As the concept of CI has been around since the 1990s, many of you have
already accomplished the tactical objective of creating an automated build system for
your embedded projects. Nevertheless, it is still important to articulate and define the
strategic rules that govern the creation and ongoing maintenance of the CI for your
project.

Martin Fowler provides this succinct definition of CI:

Continuous Integration is a software development practice where members
of a team integrate their work frequently, usually each person integrates at
least daily—leading to multiple integrations per day. Each integration is
verified by an automated build (including test) to detect integration errors
as quickly as possible.

—Martin Fowler (1 May 2006). “Continuous Integration.”
martinfowler.com. Retrieved 9 January 2014.

In the context of PIM, that yields the following strategic objectives:

e Build all work that is checked into the software configuration
management (SCM) system. This should be done before—that is,
separate and apart from—the work of merging all of the checked-in
work to a mainline or otherwise stable branch of the code.

o Use the same build server for compiling daily check-ins as well as for
creating formal builds from stable branches in the SCM repository.

13

CHAPTER2 CORE CONCEPTS

o Execute the automated unit testing from the build server, and have
the build fail if one or more automated unit tests fail.

e Build everything all the time

Setting up a CI process is nontrivial. Make sure that you include stories or tasks in
your schedule to get the build server and CI process up and running. Also, periodic
maintenance and support for the CI process should be included in your schedule as well.

So, how costly is it to add CI to a project? The short answer is: it depends. Here are
some considerations that can complicate the CI process:

e Your experience with automation tools—There are numerous
commercial and open source tools for automating builds and
executing unit tests. These tools require a certain level of expertise to
properly configure and use them.

e Your SCM tools—There are two primary issues here:

1) Defining a branching or workflow strategy that explicitly
incorporates CI. There needs to be steps in the workflow that
prevent merging source code changes to stable branches
until the CI server has successfully built and verified the
changes.

2) Defining the source code and repository organization
such that it integrates with the automation tools (e.g., job
construction in Jenkins is simpler when there is only one
SCM repository involved as opposed to many).

e Your host build tools and environments—All of the tools used to
build an embedded project must be installed on the build server (or
a slave server). This also includes having compiler and tool licenses
for the build server or build servers. Having build tools that execute
on different operating systems further complicates the build server
configuration and job construction.

e Your build engine or make files—The project’s build process needs
to support building the released application as well as building the
automated unit tests. Depending on a project’s constraints and
requirements, the time and effort to define and implement this can
vary greatly.

14

CHAPTER2 CORE CONCEPTS

e The maintenance of the build server—Whether your build server
is a physical machine or a virtual machine, you need to follow
IT best practices in maintaining and backing up the platforms.
The automation tools themselves will need a certain amount of

maintenance as you add or update existing automated jobs.

e The build times—The amount of code that is built, and the number
of unit tests that are executed, increases over time. In a perfect world,
the build and test cycle for CI would be seconds. In my experience,
however, for embedded projects, the reality is that the build times are
minutes to hours. A general rule of thumb for build server hardware
is that you can never have too much disk space, too much RAM, or
too many cores because, inevitably, reducing CI build times becomes

an issue.

Asyou can see, Cl is not a simple or free addition to a project. So why do it? Going
back to Martin Fowler’s definition of CI, the reason to do it is to detect integration errors
as quickly as possible. On the surface, this may not sound like a huge win, but CI is a
significant net positive when it comes to maintaining stable branches in your SCM. For
me, the best argument for detecting integration errors as quickly as possible is to avoid
the pain I experienced living through broken builds that were required to be stable at all
times and getting bogged down in “merge hell.” I have worked with really big companies
that dreaded pulling formal releases together because the build process was anything
but integrated, and it had to account for a myriad of dependencies on other projects. In
these environments, it could often take a week to release the project, and, in the end, I
had the nagging sense that what we finally pulled together was very fragile.

This brings us to a final strategic objective for CI: build everything all the time. It is
not uncommon for a project to be defined something like this: (1) release the project
on ABC hardware; (2) a month later, release the software on XYZ hardware; (3) a month
later, release localized versions of the software on both hardware platforms. In cases like
this, it is important not to postpone the building of the XYZ project because “it hasn’t
really started” or to put off building the localized versions because “we haven’t even sent
the text off for translation.” Rather, from the beginning, you should establish jobs in your
CI process where all the artifacts for all the platforms and languages get built. Even if
originally the jobs for the anticipated hardware start out as a lot of “stubbed” code and
the localized versions only have one or two words translated, it is a net win to have these
jobs building artifacts with every automated build.

15

