Don McColl

Australia's Little Space Travellers

Australia's Little Space Travellers

Artist's impression of a falling tektite. Nearing the end of its ablationary heating stage. It has developed into the form of the classical flanged button, and shortly it will have decelerated to the point where heating stops, and it falls the rest of the way as a cold piece of black glass

Don McColl

Australia's Little Space Travellers

The Flight Shaped Tektites of Australia

Don McColl Glenside, SA Australia

ISBN 978-3-319-46051-2 ISBN 978-3-319-46052-9 (eBook) DOI 10.1007/978-3-319-46052-9

Library of Congress Control Number: 2016951654

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Cover Credit: Chantal Vizcaino © Thachan.cat.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To the late Dr. George Baker of Melbourne, who correctly deduced the history of the remarkably shaped tektites of Australia, and stood by his interpretation in a time of considerable controversy.

Foreword

It has been said that geological studies have found more mysteries in the history of the Earth than they have solved, and among these one of the most profound are the tektites. Tektites are naturally occurring silicate glass bodies found over large areas of the Earth's surface called strewn fields. Their origin was the subject of controversy for over a century. Most researchers now agree that tektites were formed when large extraterrestrial bodies collided with the Earth producing an impact crater and a large volume of melted surface sediment or rock, which was ejected or thrown great distances over the Earth's surface, cooled, and then rained back down to Earth as tektites. The Australasian tektite strewn field (or Southeast Asian strewn field as McColl calls it) is the largest and the youngest known (~0.8 million years). This book is primarily about tektites found in Australia, which are called australites. Much of the terminology and discussion about the origin of the many different shapes of the australites is based on the research and publications of George Baker, an Australian who studied tektites between the late 1930s and the late 1960s; indeed, this book is dedicated in his memory.

The australites are of great interest because they are the only group of tektites that clearly exhibit evidence of having been thrown out of the atmosphere and reentering at high enough velocity to be partially remelted. NASA scientists studied these objects to better understand the temperatures and pressures a spacecraft would undergo during re-entry.

McColl has been collecting and observing australites intermittently, throughout his entire career. This book includes a large number of photographs (~80) of australites having various forms and shapes. Regrettably few books have shown photographs of the amazing assortment of shapes adopted by australites, and in this regard this book is something of a first. McColl has included a lot of nice photographs of whole, perfectly symmetrical, ablated australites, but of more interest to me are the numerous

viii Foreword

photographs of fragmented and oddly shaped australites which may give us additional information regarding the flight and re-entry of these interesting glass bodies.

Another unusual kind of tektite is that which McColl calls minitektites, which are pancake shaped and appear to be mostly flange. They are so thin that they are translucent instead of black opaque like the larger tektites. Minitektites have also been found in the central Indian Ocean, but they are millimetre-sized spheres and rotational forms (teardrops, dumbbells) without any evidence of atmospheric ablation. McColl proposes that the mini-australites were formed from molten material that was stripped off of larger tektites during ablation. He posited that they would continue to be heated and shaped by ablation, thus producing tiny flanged button shapes with very little or no unmelted glass in the core. This is an interesting idea; however, I favour an alternative hypothesis, which is that they may be the remains of tektites that were nearly ablated away. Regardless of how they might have formed, they represent, at least to me, a new form of ablated tektites that merits ongoing study.

Another unusual kind of australites is those which McColl calls asymmetric flanged forms. These are centimetre- or more-sized tektites which have peculiar primary shapes and which have experienced melting/ablation with little or no flange formation. McColl suggests that they might be fragments of tektites that broke up prior to or during atmospheric re-entry either due to stress or collision. This seems to be a reasonable explanation for these unusual tektites.

In the book, McColl points out that by chance a large number of very tiny tektites have also recently been discovered in semi-desert sand dune country south of Kalgoorlie in Western Australia. This is a fascinating discovery, of which I have become aware only recently. After the discovery of microtektites in deep-sea sediments, it appeared that there was a size gap between the smallest tektite and the largest microtektite. Most australites are centimetre in size and the smallest known australites were ~4–5 mm (average dimension) in size; the largest microtektite, found in deep-sea sediments adjacent to Australia, were ~1 mm in diameter. Thus, there appeared to be a gap in size between the smallest australite (found on land) and the largest microtektite (found in ocean floor sediments) of a few millimetres. The discovery of the very tiny 'tektites' found in Western Australia helps to fill in the size gap and demonstrates that, as was expected, microtektites fell on land as well as in the oceans

As previously mentioned, tektites are believed to have formed as melt that was produced and ejected over large areas of the Earth's surface during the impact of extraterrestrial bodies. The source craters for three of the tektite strewn fields have been found, but the source crater for the Australian strewn field, which is