#makers

Peter A. Henning

SMART HOME **MIT FHEM**

Individuelle und flexible **Open-Source-Hausautomatisierung**

Inklusive Tablet Interface

Und Sprachsteuerung

Henning

Smart Home mit FHEM

BLEIBEN SIE AUF DEM LAUFENDEN!

Hanser Newsletter informieren Sie regelmäßig über neue Bücher und Termine aus den verschiedenen Bereichen der Technik. Profitieren Sie auch von Gewinnspielen und exklusiven Leseproben. Gleich anmelden unter

WWW.HANSER-FACHBUCH.DE/NEWSLETTER

HANSER

Alles für Maker

Hüwe IoT at Home ISBN 978-3-446-45661-7

Pomaska **3D-Fotos und -Videos** ISBN 978-3-446-45630-3

Jänisch, Donges Mach was mit Arduino! ISBN 978-3-446-45128-5

Regele

Mach was mit 3D-Druck! ISBN 978-3-446-44781-3

Kehrer, Philipp, Rens Lasercutting ISBN 978-3-446-45039-4

Rother

3D-Drucken ... und dann? ISBN 978-3-446-45062-2

Steck CNC-Fräsen für Maker ISBN 978-3-446-45491-0

Steck CAD für Maker ISBN 978-3-446-45681-5

Bartmann, Donges Open Robots für Maker 978-3-446-45489-7

Hüwe Raspberry Pi für Windows 10 IoT Core ISBN 978-3-446-44719-6

Bertko, Weber Home, Smart Home ISBN 978-3-446-45061-5

Schmidt Raspberry Pi programmieren mit C/C++ und Bash ISBN 978-3-446-45342-5

Weitere Infos unter www.hanser-fachbuch.de/maker

Peter A. Henning

Smart Home mit FHEM

Individuelle und flexible Open-Source-Hausautomatisierung

HANSER

Der Autor: Peter A. Henning, Weingarten

Alle in diesem Buch enthaltenen Informationen wurden nach bestem Wissen zusammengestellt und mit Sorgfalt geprüft und getestet. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem Grund sind die im vorliegenden Buch enthaltenen Informationen mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autor und Verlag übernehmen infolgedessen keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Art aus der Benutzung dieser Informationen – oder Teilen davon – entsteht. Ebenso wenig übernehmen Autor und Verlag die Gewähr dafür, dass beschriebene Verfahren usw. frei von Schutzrechten Dritter sind. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder ein anderes Verfahren) – auch nicht für Zwecke der Unterrichtsgestaltung – reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

© 2019 Carl Hanser Verlag München www.hanser-fachbuch.de Lektorat: Julia Stepp Herstellung: Björn Gallinge Titelmotiv: © Sebastian Völkel, unter Verwendung von Grafiken von © istockphoto.com/Andrey Suslov Coverrealisation: Max Kostopoulos Satz: Kösel Media GmbH, Krugzell Druck und Bindung: NEOGRAFIA, a.s., Martin-Priekopa (Slowakei) Printed in Slovakia

 Print-ISBN:
 978-3-446-45873-4

 E-Book-ISBN:
 978-3-446-46098-0

 E-Pub-ISBN:
 978-3-446-46247-2

Inhalt

1	Rea	d me first!	1
	1.1	Über FHEM1.1.1Ein paar technische Details1.1.2Andere Systeme1.1.3Wie einsteigen?1.1.4Internet of Things	2 3 3 4 5
	1.2	Hinweise für den häuslichen Frieden1.2.1Anleitung für nicht gesetzestreue Bürger1.2.2Immer noch vom WAF	6 7 8
	1.3	Über dieses und andere Bücher1.3.1Weitere Quellen1.3.2Konventionen für dieses Buch	9 9 9
2	Eins	stieg in FHEM 1	11
	2.1	Vorbereitende Arbeiten	12
	2.2	Installation von FHEM	15
	2.3	Devices2.3.1Anwesenheit feststellen mit PRESENCE2.3.2dummy-Device für eine Leuchte2.3.3Nützliche Befehle für Devices	18 18 21 25
	2.4	Events	26 28 29 31 33
	2.5	Wie findet man Hilfe, wenn es nicht funktioniert?	35

3	Gerä	ite hinzufügen	37
	3.1	SmartHome über LAN und WLAN3.1.1Shelly-Schaltaktoren und Dimmer3.1.2Anbindung einer FritzBox3.1.3Wenn das WLAN nicht reicht	38 39 48 50
	3.2	Funksysteme für das SmartHome3.2.1HomeMatic3.2.2ZigBee3.2.3mySensors – ein Funksystem für Arduinos	51 52 57 62
	3.3	Drahtgebundene Interfaces 3.3.1 1-Wire Bus und FHEM 3.3.2 Arduino mit ConfigurableFirmata	63 64 68
	3.4		70
4	FHE	M als Server	75
	4.1	Server-Pflege4.1.1Update von FHEM4.1.2Server-Update4.1.3Backup4.1.4Mitschrift im Logfile	77 77 78 79 80
	4.2	 FHEM über das Netz steuern	82 82 84 85
	4.3	SmartHome-Sicherheit4.3.1Cloud oder nicht Cloud – das ist hier die Frage4.3.2FHEM grundlegend absichern4.3.3HTTPS und SSL für FHEM4.3.4Schutz gegen Cross-Site-Request-Forgery	85 86 87 88 89
	4.4	Kommunikationsserver4.4.1FHEM24.4.2Server für das MQTT-Protokoll4.4.3Nachrichten als Mail versenden4.4.4Instant Messenger Telegram	90 90 92 93 95
	4.5	Ordnung muss sein4.5.1Räume4.5.2Gruppen in Räumen4.5.3Gruppierung mit readingsGroup4.5.4Gruppierung mit structure4.5.5Auswahl mehrerer Devices	98 98 100 101 102 104

	Licht	 4.6.1 Die Konfigurationsdatei 4.6.2 Das Modul <i>ConfigDB</i> 4.6.3 FHEM selbst erweitern 	106 107 110
	Lich	4.6.2 Das Modul <i>ConfigDB</i>4.6.3 FHEM selbst erweitern	107 110
	Licht	4.6.3 FHEM selbst erweitern	110
	Licht		
5		t und Schatten	113
	5.1	Lichtsteuerung	113
		5.1.1 Gruppierung von Leuchten mit <i>LightScene</i>	114
		5.1.2 Licht als Zustandsautomat	116
		5.1.3 Bewegtes Licht	118
	5.2	Farbspiele	119
		5.2.1 Farbtemperatur	119
		5.2.2 Farbfunktionen	120
		5.2.3 Farbauswahl	123
		5.2.4 Farbschemata	127
	5.3	Rollläden steuern	128
		5.3.1 Zeitschaltung mit Wochenprogramm	129
		5.3.2 Beschattungssteuerung	131
	5.4	Noch smarter mit ASC	134
		5.4.1 Attribute des ASC-Devices	136
		5.4.2 Readings und Attribute für Rollläden	136
6	Kom	fortabel bedienen	141
	6.1	Eingabe in <i>FHEMWEB</i>	142
		6.1.1 Icons für Geräte und Räume	142
		6.1.2 Stilangaben mit CSS	142
	6.2	Widgets zur Eingabe	143
		6.2.1 Überschreiben von Widgets	143
		6.2.2 Einfache Widgets	145
		6.2.3 Drehknopf und DateTimePicker	147
		6.2.4 Icon-Widgets	148
		6.2.5 LCARS-Panel mit SVG	149
1	6.3	Styles	151
		6.3.1 Fertige Stilarten	152
		6.3.2 Analyse der Stilarten	155
		6.3.3 Umbau der Stilart <i>dark</i>	160

7	Mit	Daten	steuern	163
	7.1	Einzele 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	daten aus SensorenTemperatur und FeuchteRate und SummeGleitender MittelwertWerte überwachen mit THRESHOLDSmarte Zirkulationspumpensteuerung	163 165 166 168 169 170
	7.2	Device 7.2.1 7.2.2 7.2.3	s für Wetterdaten Open Data des Deutschen Wetterdienstes Wetterdaten von <i>PROPLANTA</i> Wetterdaten von DarkSky	172 173 174 176
	7.3	Daten 7.3.1 7.3.2 7.3.3	aus Webseiten abgreifen Rheinpegel anzeigen Gamma-Ortsdosisleistung messen Verkehrslage auf dem Weg zur Arbeit	177 177 182 184
	7.4	Astron 7.4.1 7.4.2	omiedaten mit Astro Grundlegende Definition Der Sonne Lauf	185 186 188
8	Visu	alisier	ung mit FHEM	191
	8.1	Darste 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	llung von Einzelwerten Werte als Icons SVG-Basics SVG-Farben SVG-Widgets in FHEM nutzen Verbrauchswerte als Säule	191 192 193 196 198 200
	8.2	Zeitrei 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5	hen Feinheiten von Logdateien Einfache Plots Bedienung und Optionen von Plots Gplot-Dateien Plot-Tricks für Fortgeschrittene	202 203 206 208 210 212
	8.3	logPro 8.3.1 8.3.2	xy Mittelwerte einblenden Wellnessanzeige	215 216 217

9	Zeit-	und Er	innerungssteuerung	219
	9.1	Digitale 9.1.1 9.1.2	e Kalender mit FHEM nutzen <i>Calendar</i> - und <i>CALVIEW</i> -Device Kalenderdateien selbst erzeugen	219 221 223
	9.2	Listenve 9.2.1 9.2.2 9.2.3 9.2.4	erwaltungKonfiguration von PostMeAnzeige von ListenVerteilung von ListenListenverwaltung über Telegram	225 225 228 230 232
	9.3	Automa 9.3.1 9.3.2 9.3.3 9.3.4	ttisierung mit YAAHM Modus, Sicherheitszustand und Tagestyp Tagesprofile Geräte-Aktionen Wochenprofile	233 234 236 238 238
	9.4	Weitere 9.4.1 9.4.2 9.4.3	AblaufsystemeAutomatisierung mit HOMEMODEWecker in FHEMAlarmanlage in FHEM	240 240 240 242
10	Ande	ere Fror	ntends	243
	10.1	Bedienu	Ing mit Dashboard	243
	10.2	Bedienu	Ing mit <i>FLOORPLAN</i>	246
	10.3	Steueru	ng mit Telegram	249
	10.4	Tablet-U 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5	JI Installation und erste Schritte Anwendungsbeispiel Sportplatzampel Eigenes Widget executor Eigenes Widget bar Anordnungsschemata	253 254 256 260 263 267
11	Table	ets, TV	und Audiosysteme	269
	11.1	Android 11.1.1 11.1.2 11.1.3 11.1.4	I-Tablet fernsteuern Tablet mit AMAD einrichten Automagic Flows Fully Webbrowser Altgeräte	269 270 272 273 274
	11.2	Unterha 11.2.1 11.2.2	altungselektronik Universelle Fernbedienungen Audiowecker	274 275 276

	11.3	Sprach	ausgabe mit FHEM	278
		11.3.1	Android-Geräte	279
		11.3.2	Ausgabe mit Audiosystemen	281
		11.3.3	MP3-Datei zur Sprachausgabe erzeugen	283
		11.3.4	Routine zur Sprachausgabe	285
12	Sprie	ch mit	FHEM	289
	12.1	Sprach	erkennung STT	290
		12.1.1	STT mit Android-Geräten	290
		12.1.2	Weitergabe von Texten zur Steuerung	291
	12.2	Sprach	steuerung mit <i>Talk2Fhem</i>	292
		12.2.1	Konfiguration	293
		12.2.2	Zeit- und Ereignisspezifikationen	296
	12.3	Sprach	steuerung mit <i>Babble</i>	296
		12.3.1	Geräte mit Babble steuern	298
		12.3.2	Worte für das SmartHome	301
		12.3.3	Temperatur ansagen lassen	303
		12.3.4	Hauszustand und Hausmodus steuern	304
	12.4	ChatBo	t mit RiveScript	306
		12.4.1	RiveScript zur ChatBot-Programmierung	307
		12.4.2	Notruf in FHEM	308
		12.4.3	ChatBot und Babble	311
	12.5	Alexa,	Assistant und andere	312
13	Perl	und Mo	odule verstehen	315
	13.1	Perl-Gr	undlagen	315
		13.1.1	Variablen, Arrays und Hashes	316
		13.1.2	Anweisungen	318
		13.1.3	Prozedurale Aspekte	319
		13.1.4	Objektorientierte Aspekte	320
		13.1.5	Eingebaute Funktionen	321
		13.1.6	Comprehensive Perl ArchiveNetwork CPAN	322
	13.2	Perl un	d FHEM	322
		13.2.1	Funktionen und Variablen	323
		13.2.2	Gliederung von Modulen	324
		13.2.3	Modulfunktionen	325
Inde	x			327

Read me first!

Egal, ob man die Zeitung liest, im Internet surft oder fernsieht: Überall begegnet einem der Begriff SmartHome. Das mit digitalen Geräten vollgepflasterte *Intelligente Heim* (oder wörtlich übersetzt das *Schlaue Heim*) soll irgendwie komfortabler sein als das normale Heim. Meine klare Aussage dazu: Das stimmt, wenn man es richtig macht. Wenn nicht, dann nervt es nur.

Doch wie geht "richtig"? Darauf hat nun leider jeder Hersteller eine andere Antwort, die natürlich immer das eigene Geräteprogramm in den Mittelpunkt stellt. Der eine Hersteller bietet nur Leuchten und seltsam aussehende batteriebetriebene Schalter an, der zweite setzt auf hässliche Zwischenstecker und fast jeder liefert dazu noch eine eigene "App", die angeblich ganz intuitiv zu bedienen ist, aber mit den Geräten der Konkurrenz nicht umgehen kann.

Nur sehr wenige Hersteller wagen sich über Systemgrenzen hinaus. In der Regel bleibt dies Fachbetrieben überlassen, die oft vertraglich gebunden sind. Will man also die gesamte Bandbreite der modernen Technik für sein SmartHome nutzen, bleibt – von Ausnahmen abgesehen – nur ein Weg: selbst Hand anzulegen. Damit ist nicht gemeint, elektronische Geräte selbst zu bauen. Das kann man zwar, muss es aber nicht tun. Ebenso wenig heißt dies, dass man programmieren lernen muss, um sein SmartHome zu realisieren. Man muss auch nicht Tausende von Euro an Kosten einplanen, um durch ein wenig Digitalisierung das eigene Heim komfortabler zu machen.

Die ersten Schritte lassen sich vielmehr mit einem normalen Computer (Desktop oder Laptop) vollziehen, den fast jede Frau und jeder Mann sowieso besitzen. Etwas logisches Denken hinzugenommen – und schon kann es losgehen, etwa mit der täglichen Verkehrsmeldung entlang der Fahrtroute zum Arbeitsplatz oder der Erinnerung, dass übermorgen die Restmülltonne herausgestellt werden muss. Die Einrichtung eines SmartHome ist also eines ganz sicher: ein Prozess, bei dem wir neue Werkzeuge ausprobieren, um unser Heim zu verbessern.

Die Menschheitsgeschichte ist voll mit Beispielen dafür, wie der Gebrauch neuer Werkzeuge unsere Lebensumstände und letztlich auch uns selbst verändert hat. Das ist beim Thema SmartHome nicht anders. Dieses Buch führt deshalb im Laufe der Kapitel immer weiter von der einfachen Lichtfernbedienung weg, bis das SmartHome in Kapitel 12 schließlich mit Technologien ausgestattet wird, die wir heute unter dem Begriff *Künstliche Intelligenz (KI)* zusammenfassen.

Þ

Mein erster Tipp: Planen Sie nicht Ihr komplettes SmartHome auf einmal, sondern gehen Sie schrittweise vor. Die Ideen für Anwendungsfälle (Use Cases) kommen erst mit der Nutzung.

Wichtig ist deshalb, von Anfang an ein System zu verwenden, das als Universalwerkzeug gelten und immer wieder neue Anwendungsfälle integrieren kann. Das SmartHome-System FHEM, das Schweizer Taschenmesser unter den Hausautomatisierungslösungen, bietet genau diese Vorzüge.

1.1 Über FHEM

Ich erspare mir, eine eigene Kurzbeschreibung von FHEM zu erfinden, sondern zitiere die offizielle FHEM-Website (*http://www.fhem.de*):

"FHEM ist ein in Perl geschriebener, GPL lizensierter Server für die Heimautomatisierung. Man kann mit FHEM häufig auftretende Aufgaben automatisieren, wie z.Bsp. Leuchten / Rollladen / Heizung / usw. schalten, oder Ereignisse wie Temperatur / Feuchtigkeit / Stromverbrauch protokollieren und visualisieren. (...) Ausgesprochen wird es ohne h, wie bei feminin."

Die Besonderheit von FHEM ist, dass es buchstäblich hunderte verschiedener Gerätetypen in eine gemeinsame Anwendung einbinden und diese mit einer gemeinsamen Oberfläche steuern kann. Mit FHEM als SmartHome-Zentrale kann der Bewegungsmelder des Herstellers X die Leuchten der Herstellers Y steuern und gleichzeitig auch noch eine Sprachnachricht an das Smartphone der Marke Z senden.

FHEM ist also nicht deshalb so gut, weil es das schnellste oder modernste System zur Hausautomatisierung ist, sondern weil es durch eine Vielzahl von Modulen und Interfaces mit nahezu allen anderen SmartHome-Systemen interagieren kann. Eine im Wesentlichen deutsche Nutzergemeinschaft von etwa 20000 Usern entwickelt FHEM stetig weiter.

FHEM ist ursprünglich einmal die Abkürzung für "Freundliche Hausautomatisierung und Energiemessung" gewesen, davon hat sich das System jedoch weit entfernt. Wir verdanken FHEM den Ideen und dem Engagement von Rudolf König, der auch heute noch eine wesentliche Rolle bei der Weiterentwicklung spielt und dem ich hiermit für seine Arbeit danken möchte.

Zum Abschluss dieser einleitenden Bemerkungen möchte ich noch auf die Gralshüter von FHEM hinweisen: Seit Mitte 2016 gibt es den eingetragenen Verein FHEM e.V., der nur

sehr wenige Mitglieder hat. Das sind im Wesentlichen die Betreiber der Webseiten, Foren und Software-Repositorien. Hinzu kommt noch eine etwas größere Zahl von Fördermitgliedern, die dem Verein Mittel zur Verfügung stellen, sich aber aus Richtlinien etc. heraushalten. Wer sich länger mit der Open Source-Szene beschäftigt, wird schnell verstehen, dass diese eher wenig demokratische Struktur ein Garant für langfristige Verfügbarkeit, Pflege und Weiterentwicklung von FHEM ist.

1.1.1 Ein paar technische Details

FHEM wird auf einem Computer installiert, der unter Ihrer eigenen Kontrolle steht. Es ist in der Regel Cloud-frei, kommt ohne spezialisierte "App" daher und bedarf keiner besonderen Benutzungsoberfläche (was aber nicht heißt, dass es diese nicht als kostenlosen Zusatz gibt). Perl (nicht: Pearl), die Sprache, in der FHEM geschrieben wurde, ist eine schon etwas ältere Programmiersprache, die 1987 von Larry Wall entworfen wurde (siehe dazu Kapitel 13). *GPL* ist die Abkürzung für die *Gnu Public License*, unter der die Bestandteile von FHEM veröffentlicht und frei genutzt werden können.

Zu Bedienung von FHEM benötigt man lediglich eine so genannte Laufzeitumgebung für Perl und einen Webbrowser. Die meisten Definitionen und Befehle in FHEM lassen sich in einer einfachen Skriptsprache verfassen, die weitgehend selbsterklärend ist. Erst wenn man tiefer einsteigen möchte, ergibt sich das Erlernen einiger Elemente der Sprache Perl sozusagen nebenbei und fast wie von selbst.

Die Einfachheit des zentralen Konzeptes von FHEM und seine leicht erlernbare Bedienung erlauben es, mal schnell zwischen Abendessen und Tagesschau etwas an der Steuerung zu ändern, um etwas Neues auszuprobieren (es sei zur Wahrung des häuslichen Friedens aber von dieser Vorgehensweise abgeraten).

Kinderleicht? Warum Iernen dann nicht schon Kinder das algorithmische Denken mit FHEM? Das ist in der Tat eine gute Frage. Seit etwa zwei Jahren verfolge ich als nebenläufiges Projekt den Bau eines Demonstrationsmodells für ein FHEM-SmartHome, das in Schulklassen zur Verfügung gestellt werden kann. Voraussichtlich im Sommer 2019 soll es fertiggestellt und auf der LEARNTEC, an deren Organisation ich mitwirke, ausgestellt werden.

1.1.2 Andere Systeme

Bevor ich mehr über FHEM schreibe, will ich es in Relation zu anderen SmartHome-Servern setzen, die ich persönlich für die besten Systeme halte (siehe Tabelle 1.1). Diese SmartHome-Server unterscheiden sich stark in der Optik und Usability. Auch können sie mit unterschiedlichen Frontends zur Bedienung und Visualisierung ausgestattet werden. Diese Vielfalt und die Unterschiede zwischen den Systemen sollen in diesem Buch nicht beschrieben oder bewertet werden. Zu stark spielen dabei persönliche Vorlieben eine Rolle. Von der Bedienbarkeit der jeweiligen Frontends sollte man sich besser selbst einen Eindruck verschaffen. Eine interessante Möglichkeit ist ferner, ein solches anderes System als Frontend zu verwenden und FHEM als universelles Backend einzusetzen. Eine Kommunikation ist beispielsweise über das MOTT-Protokoll möglich (siehe Abschnitt 4.4.2).

System/URL	Lizenz/Sprache	Bemerkungen
FHEM http://www.fhem.de	Open Source-Server; geschrie- ben in Perl; leicht erweiterbar; deutsches System	Universell; Interfaces für nahezu alle gängigen SmartHome-Sys- teme vorhanden; mit 20000 Teil- nehmern sehr große deutsch- sprachige Community; tiefe Eingriffsmöglichkeiten für Benutzer
OpenHAB https://www.openhab.org	Open Source-Server; geschrie- ben in Java; Erweiterung eher komplex	Universell; Interfaces für nahezu alle gängigen SmartHome-Sys- teme vorhanden; kaum Konfigu- rationsmöglichkeit auf der Weboberfläche, aber schnelle Resultate
Domoticz http://www.domoticz.com	Open Source-Server; geschrie- ben in C++; Erweiterung in Blockly, Lua, Python oder Bash	Universell; Interfaces für einige SmartHome-Systeme vorhanden
IP Symcon https://www.symcon.de	Kommerziell; deutsches Sys- tem; Basisversion ca. 100 €, Vollversion ca. 500 €; mit dezidierter Serverhardware: 250 – 750 €	Viele Interfaces für SmartHome- Systeme
Loxone http://www.loxone.com	Kommerziell, sog. Miniserver ca. 400 €, Erweiterungen jeweils ca. 100 – 500 €	Hardware und Software = kom- plette SmartHome-Zentrale Viele Erweiterungen für SmartHome-Systeme, jeweils spezielle Hardware

Tabelle 1.1	SmartHome-Sv	ystemsoftware	im Ver	gleich

1.1.3 Wie einsteigen?

Mein eigener Einstieg in das Thema SmartHome ergab sich, als wir bei der Modernisierung unseres Wohnzimmers den Schalter einer Deckenleuchte an anderer Stelle haben wollten. Meine Vorstellungen, wo welche Wände für das Kabel aufzustemmen waren, trafen bei meiner Frau auf schieres Entsetzen. Also sah ich mich nach einem einfachen Funkschaltsystem um und stieß auf das inzwischen vollkommen veraltete System FS20 und seine Einbindung in FHEM. Das ist nur wenige Jahre her. Inzwischen braucht meine Frau nur zu sagen: "Schalte die Bewässerung an", und ein Bewässerungszyklus des Gartens wird gestartet. Oder: "Stelle den Rollladen an der Terrasse auf 70%", und das Ding fährt herunter. Kurz gesagt: Inzwischen haben wir ein SmartHome, in dem eine Vielzahl von hochmodernen intelligenten Geräten, etwa elektronische Heizkörperthermostate, mit ferngesteuerten unintelligenten Geräten, wie etwa einer motorisierten Wandhalterung für den Fernseher, oder gar alter Technologie, wie dem Teewasserkocher in der Küche, interagieren und ein (meist) harmonisches Ganzes bilden.

Heutzutage ist der Markt so dynamisch, dass fast jede Woche ein neues System auf den Markt kommt und auch schnell wieder verschwinden kann. Deshalb folgt nun ein zweiter wichtiger Tipp zum Einstieg: Kaufen Sie nicht erst Hardware, die Ihnen im Baumarkt oder im Fernsehen gut gefallen hat, und fragen hinterher: "Wie binde ich das in FHEM ein?" Oder: "Hat nicht jemand Lust, mir ein Modul dafür zu schreiben?" Besser probieren Sie FHEM erst einmal ohne zusätzliche Hardware aus, so wie dies in Kapitel 2 schrittweise erklärt wird. In Abschnitt 2.5 werden die verfügbaren Hilfsangebote und Informationsquellen aufgeführt. Informieren Sie sich dort, ob das von Ihnen gewünschte Gerät bereits von FHEM unterstützt wird.

1.1.4 Internet of Things

Die Integration verschiedenster Sensoren, Aktoren und Geräte in eine gemeinsame Anwendungslogik macht das SmartHome zu einem Bestandteil des Internet of Things (IoT), des weltweiten Internet der Dinge. Diese "digitale Ökologie" habe ich schon 2000 in der ersten Auflage des *Taschenbuch Multimedia* vorhergesagt (siehe Abschnitt 1.3): Das IoT wird die fünfte Generation (5G) in der Digitalisierung der Welt sein. Netze der vierten Generation stellen uns heute größenordnungsmäßig schon eine Milliarde Knoten bereit: Im Januar 2019 waren 1 Milliarde Computer im Domain Name Service (DNS) registriert, und 2018 gab es rund 4 Milliarden Nutzer fester Internetzugänge sowie 3 Milliarden Nutzer von Smartphones. Ein 5G-Netz aber hat zur Folge, dass wir es bald mit 500 Milliarden digitalen Endgeräten zu tun bekommen, die miteinander kommunizieren können. Das ist die Zukunft, mit Sicherheit.

Allerdings darf die Zukunft nicht darin bestehen, dass jeder Hersteller eines smarten Gerätes dieses auch mit einer "App" ausstattet, die mit den Servern des Herstellers irgendwo in der Cloud kommuniziert und Daten sammelt. Sie darf auch nicht darin bestehen, ihre SmartHome-Zentrale permanent mit dem Internet kommunizieren zu lassen, denn das verlangt einen Durchgriff durch die eigene Firewall ins Internet, entweder indem die App von außen Daten durch die Firewall senden darf (sehr gefährlich!) oder indem eine interne Komponente (Gateway) von innen Kontakt mit einem Server des Herstellers hält und mit diesem Daten austauscht. Auch das ist gefährlich und datenschutzrechtlich sehr bedenklich. Vor allem wegen der oft grottenschlechten Qualität der mitgelieferten, billig produzierten Apps ist das ein Risiko, dem ich mein Heim nicht aussetzen will.

Auch aus prinzipiellen Gründen bin ich dagegen, dass kommerzielle Anbieter mit ihren Servern das Internet of Things kontrollieren oder dass die Logik meines SmartHome davon abhängt, ob ein weit entfernter Dienst wie IFTTT (If-This-Then-That) meine Skripte ausführt. Bevor Sie Ihr SmartHome für die Cloud öffnen, sollten Sie Abschnitt 4.3 lesen.

1.2 Hinweise für den häuslichen Frieden

Aus gutem Grund gibt es in Europa (und natürlich ganz besonders in Deutschland) eine Vielzahl von gesetzlichen Regelungen für das Errichten und Betreiben elektrischer Anlagen. Wer diese Anlagen nämlich ohne erforderliche Fachkenntnisse errichtet oder verändert, kann nicht nur sein eigenes Leben, sondern auch das aller anderen Nutzer der Anlage gefährden.

Die "Zweite Durchführungsverordnung zum Energiewirtschaftsgesetz" aus dem Jahr 1987 legt fest, dass bei der Errichtung und Unterhaltung von Anlagen zur Erzeugung, Fortleitung und Abgabe von Elektrizität die "allgemein anerkannten Regeln der Technik" zu beachten sind. Nach herrschender Rechtsauffassung ist der Errichter und Betreiber für die Einhaltung dieser Regeln selbst verantwortlich. Wer sich dabei nach den DIN-VDE-Bestimmungen richtet, liegt auf der sicheren Seite. Die für die Elektroinstallation wichtigsten Regeln sind in der DIN VDE 0100 "Bestimmungen für das Errichten von Starkstromanlagen mit Nennspannungen bis 1000 V" niedergelegt.

In der "Verordnung über Allgemeine Bedingungen für den Netzanschluss und dessen Nutzung für die Elektrizitätsversorgung in Niederspannung" (NAV) aus dem Jahr 2006 ist ferner festgelegt, dass elektrische Anlagen nur durch einen eingetragenen Elektroinstallateur errichtet, erweitert, verändert und unterhalten werden dürfen.

Schließlich gibt es auch noch die Vorschriften des VdS (früher "Verband deutscher Sachversicherer", heute "VdS Schadenverhütungs GmbH"), deren Beachtung unter Umständen nötig ist, um den Versicherungsschutz für Objekte zu erhalten.

Die gesetzliche Lage hat zur Folge, dass eigentlich auch zum Austausch eines defekten Lichtschalters ein Eintrag in die Handwerksrolle nötig ist. Dementsprechend rate ich zu Beginn dieses Buches ganz eindringlich: Lassen Sie Arbeiten an elektrischen Anlagen, die an das Stromnetz angeschlossen sind und mit Netzspannung arbeiten, nur von eingetragenen Elektroinstallateuren ausführen.

Allerdings hinken diese gesetzlichen Regelungen der Realität hinterher. Denn einerseits gibt es heute auch im Niedervoltbereich elektrische Anlagen, mit denen man Leib und

Leben gefährden kann. Die Energiedichte eines normalen Smartphone-Akkus ist beispielsweise so groß, dass eine kleine mechanische Beschädigung zu einem Brand oder gar zu einer Explosion führen kann (**nicht** ausprobieren!). Andererseits kann mir niemand erzählen, dass die Vielzahl von Lichtschaltern und anderen elektrischen Bauteilen, die an einem normalen Samstag im Baumarkt verkauft werden, von eingetragenen Elektroinstallateuren eingebaut und angeschlossen wird.

Gegen diese gesetzlichen Regelungen wird also laufend verstoßen. Wir haben unter unseren Mitbürgern im Baumarkt offenbar eine große Zahl von nicht ganz gesetzestreuen Menschen. Neben dem vollkommen berechtigten Zweck des Schutzes von Leib und Leben anderer Nutzer haben diese gesetzlichen Regelungen daher vor allem einen Sinn: Verantwortung zu verschieben, beispielsweise zu verhindern, dass irgendjemand, der sein Haus durch einen selbst eingebauten Schalter abgefackelt hat, hinterher dafür Geld von der Versicherung bekommt.

Darum folgt jetzt der zweite wichtige Hinweis zu diesem Buch: Falls Sie in Ihrem SmartHome wirklich selbst Hand anlegen, tun Sie dies bitte nur, wenn Sie bereit sind, den Pfad der Tugend zumindest ein klein wenig zu verlassen. Und bedenken Sie: Was immer Sie tun, Sie selbst tragen die Verantwortung dafür.

Ach ja: Wenn eine extrem wohlmeinende Bundesregierung (oder EU-Kommission) auf den Gedanken käme, den Verkauf von Lichtschaltern in Baumärkten zu verbieten, dann werde ich auswandern (vorzugsweise auf den Mars).

1.2.1 Anleitung für nicht gesetzestreue Bürger

Wenn Sie also – mit einem leichten und durchaus angenehmen Gruseln, weil Sie das eigentlich nicht dürfen – den Schraubenzieher ansetzen, um einen Lichtschalter auszutauschen oder ähnliche Arbeiten durchzuführen, beachten Sie unbedingt die folgenden fünf Sicherheitsregeln:

- 1. Freischalten: Schalten Sie immer die Sicherung ab, bevor Sie an spannungsführenden Teilen arbeiten.
- 2. Gegen Wiedereinschalten sichern: Kennzeichnen Sie die abgeschaltete Sicherung eindeutig, und sorgen Sie dafür, dass niemand sie "aus Versehen" wieder einschaltet, während Sie gerade die Hand am Draht haben.
- 3. **Spannungsfreiheit feststellen:** Prüfen Sie unbedingt (z.B. mit einem Phasenprüfer, von dem Sie genau wissen, dass er funktioniert), ob Ihr unmittelbarer Arbeitsbereich wirklich spannungsfrei ist.
- 4. Erden und kurzschließen: Sorgen Sie als zusätzlichen Schutz dafür, dass Ihr unmittelbarer Arbeitsbereich mit einem Schutzleiter (Erder) verbunden ist.
- 5. Benachbarte spannungsführende Bereiche abdecken

Arbeiten Sie darüber hinaus immer mit geeigneten Werkzeugen, beispielsweise mit Schraubenziehern, die eine isolierte Klinge haben.

Das Anziehen – auch dünnster – Kunststoffhandschuhe ist ein nützlicher Schutz vor Stromschlägen.

1.2.2 Immer noch vom WAF

Mein Buch *SmartHome Hacks* enthält einen Abschnitt, der diesem ähnelt und in dem ich vorsichtig und zur erheblichen Belustigung vieler Frauen in meiner Bekanntschaft darauf hingewiesen habe, dass Frauen und Männer beim Thema SmartHome unterschiedliche Herangehensweisen haben. Nach einiger Zeit erhielten der Verlag und ich ein paar vor Wut geifernde Mails von Menschen, die offensichtlich das Buch zwar nicht gelesen hatten, aber dennoch geschlechterneutrale Darstellung verlangten. Auch wenn das nur ein lauer Wind war und kein regelrechter Shitstorm, werde ich dem nicht nachgeben. Ganz politisch unkorrekt beharre ich aus jahrzehntelanger Erfahrung mit der Technologie-akzeptanz von Menschen darauf, dass Frauen und Männer in der überwiegenden Mehrheit unterschiedlich sind.

Die meisten Männer werden sich freuen, wenn der neue SmartHome-Server in einem selbst gebauten Gehäuse mit blinkenden LEDs und vielen Kabeln im Bücherregal vor sich hin schnurrt. Die meisten Frauen werden das nur in Ausnahmefällen ertragen.

Die meisten Frauen werden die Wände hochgehen, wenn die selbst installierte Funkalarmanlage sich nicht auf einfachste Weise ausschalten lässt. Die meisten Männer hingegen werden hingegen das Gehäuse öffnen und die richtigen Kontakte überbrücken.

Das ist keine Wertung, sondern das Ergebnis von 200000 Jahren menschlicher Geschichte, wie auch andere für das SmartHome wichtige Aspekte (siehe Abschnitt 5.2.1).

Die Bevorzugung von Technik, die erstens unsichtbar ist oder zumindest gut aussieht und zweitens ohne spezielle Eingriffe funktioniert, nenne ich aus historischen Gründen den Woman Acceptance Factor (WAF). Behalten Sie angesichts des WAF bei der Realisierung von SmartHome-Projekten stets den Komfort und die Bedenken Ihrer Partnerin oder Ihres Partners im Auge.

Von nun an kann es mit geschlechterneutralen Hinweisen weitergehen:

- Sorgen Sie dafür, dass man auch in Ihrer Abwesenheit die Systeme wieder in einen definierten Zustand zurückführen kann.
- Sorgen Sie dafür, dass kritische Systeme auch dann autonom laufen, wenn Ihre selbst entworfene Lösung abgestürzt ist.

1.3 Über dieses und andere Bücher

Dieses Buch ist eine praxisorientierte FHEM-Anleitung, die Anfängern den leichten Einstieg ermöglicht und schnelle Resultate erbringt. Dem fortgeschrittenen FHEM-Anwender sollen mit dem Buch neue Ideen vermittelt werden, von denen viele nicht von mir stammen, sondern aus der Experten-Community. Ich versuche, möglichst häufig zwischen praktischen Beispielen und generellen Erklärungen zu wechseln.

1.3.1 Weitere Quellen

Zwei weitere Bücher werde ich von Zeit zu Zeit zitieren, weil ich sie selbst geschrieben habe und am besten kenne. Zum einen ist dies das *Taschenbuch Multimedia*, das 2007 in vierter Auflage bei Hanser erschienen ist (nur noch als E-Book lieferbar, ISBN 978-3-446-41156-2). Olle Kamellen? Nein, denn mein damaliges Ziel, eine Vielzahl von Anwendungen ganz knapp formuliert und nahezu nebeneinander in einem Buch zu vereinen, überzeugt mich auch heute noch. Und tatsächlich dienen mir manche Kapitel aus dem Buch – sei es über HTML oder über SVG – auch heute noch als rasches Nachschlagewerk.

Das zweite Buch, auf das ich von Zeit zu Zeit verweisen werde, ist *SmartHome Hacks* (ISBN 978-3-96009-012-0), das 2016 bei O'Reilly erschienen ist. Im Gegensatz zu diesem Buch, das sich auf Softwareprojekte mit FHEM beschränkt, enthält es auch viele Ideen für neue und spannende Hardware.

1.3.2 Konventionen für dieses Buch

Bestimmte Bestandteile aus FHEM werden immer *kursiv* gesetzt, nämlich die *Devicenamen* und die dazugehörigen *Module*.

```
Codezeilen haben eine andere Schriftart, ein solches Zeichen \
am Ende einer Zeile soll bedeuten, dass diese Zeile \
ohne die Eingabe eines Zeilenumbruches fortgesetzt \
werden muss. Dabei tauchen <Parameter>, die durch \
einen tatsächlichen Wert ersetzt werden müssen, \
in spitzen Klammern auf.
```

Dieselbe Schriftart wird für Code im Text verwendet, hingegen sind anklickbare Befehle als KAPITÄLCHEN formatiert.

Alle Programmbeispiele sind getestet, allerdings übernehmen weder der Verlag noch ich irgendwelche Garantien und haften auch nicht für Schäden, die sich mittelbar oder unmittelbar aus der Befolgung der Tipps und Beispiele ergeben.

Einstieg in FHEM

Für eine Probeinstallation von FHEM benötigt man einen internetfähigen Computer unter eigener Kontrolle. Die meisten Menschen verwenden Windows als Betriebssystem – und ja, auch darauf kann man FHEM installieren, ebenso wie auf Apple-Computern. Empfehlen will ich es allerdings nicht, weil dabei eine Vielzahl unterschiedlicher Programme aus unterschiedlichen Quellen benötigt wird. Wie man weiß, kann eine solche Installation den eigenen Computer manchmal in einen nicht mehr kontrollierbaren Zustand versetzen.

Stattdessen rate ich dazu, zum Ausprobieren von FHEM auf einem Windows- oder Apple-Computer eine so genannte virtuelle Maschine (Virtual Machine, VM) einzurichten. Diese VM stellt einen komplett vom Hauptsystem getrennten virtuellen Computer dar, auf dem man eine echte Linux-Umgebung mit FHEM einrichten kann. Das kann man übrigens auch dann machen, wenn man bereits ein Linux-System benutzt, dieses aber nicht durch FHEM und seine Bestandteile verändern möchte. Zwei wichtige Vorteile dieser Herangehensweise sind:

- Das FHEM-System und alle seine Komponenten können wirklich restlos vom "echten" Computer entfernt werden.
- Die Schritte zur Installation und zum Betrieb von FHEM auf einer VM sind dieselben, die man (vielleicht später) auf einem dezidierten Linux-Computer oder einem Raspberry Pi vollziehen muss.

Als Alternative bietet sich an, für wenig Geld einen Raspberry Pi zu kaufen und darauf Linux nach einer der vielen Anleitungen zu installieren. Wenn Sie diesen Weg gehen wollen, springen Sie bitte gleich zu Abschnitt 2.2.

Eine gute Anleitung zur Erstkonfiguration eines neuen Raspberry Pi finden Sie z. B. unter https://www.joerg-lohrer.de/2018/05/24/einrichtung-eines-neuen-raspberry-piheadless. Wollen Sie dabeibleiben, können Sie auch noch allerhand Optimierungen vornehmen, etwa nach dieser Anleitung: https://www.elektronik-kompendium.de/sites/ raspberry-pi/2002251.htm. Nach der Erstinstallation werden die grundlegenden Konzepte von FHEM eingeführt: Devices, Events und die logische Verknüpfung derselben über verschiedene Bedingungen. Spezielle Hardware benötigen Sie dafür noch nicht, lediglich etwas Fantasie.

2.1 Vorbereitende Arbeiten

Für die Installation von FHEM auf Ihrem "normalen" Computer, der damit zum Hostcomputer wird, laden Sie sich zuerst die kostenlose Software VirtualBox in der zu Ihrem Betriebssystem passenden Version unter *https://www.virtualbox.org/wiki/Downloads* herunter und installieren diese. Das dauert gar nicht lange, denn es handelt sich "nur" um ca. 70–110 Mbyte. Im nächsten Schritt sollten Sie gleich das Oracle VM VirtualBox Extension Pack installieren, das wie VirtualBox selbst von dem Branchenriesen Oracle gepflegt und auf derselben Webseite zur Verfügung gestellt wird. Im dritten Schritt besorgen Sie sich die VBox Guest Additions, z.B. unter *https://download.virtualbox.org/virtualbox/ 5.2.16/VBoxGuestAdditions_5.2.16.iso* (natürlich in der zur VirtualBox passenden Version). Dabei handelt es sich um das Abbild einer DVD, die spezielle Programme für das Gastbetriebssystem enthält.

Nach dem Start des Programms VirtualBox präsentiert sich eine zunächst leere Liste von virtuellen Maschinen. Hier fügen Sie eine solche VM durch das Anklicken von NEU hinzu. Dabei müssen Sie wenige Parameter eingeben. Wir wählen als Namen der VM natürlich *FHEM*, als Betriebssystem *Linux* und als Version ein *Ubuntu (32-bit)* (siehe Bild 2.1).

Bild 2.1 Anlegen einer neuen virtuellen Maschine in VirtualBox

Das Betriebssystem Linux müssen Sie natürlich erst beschaffen – und wählen dazu eine so genannte Mini-Version von Ubuntu 18.04 Bionic Beaver, die mit 57 Mbyte ebenfalls recht klein ist. Das zugehörige DVD-Abbild finden Sie z. B. unter *http://de.archive.ubuntu.com/ubuntu/dists/bionic/main/installer-i386/current/images/netboot/mini.iso*.

Diese Datei wird heruntergeladen und idealerweise an der gleichen Stelle wie die .iso-Datei mit den *Guest Additions* gespeichert. Dann erst klicken Sie im VirtualBox-Fenster auf WEITER. VirtualBox wird nun Vorschläge machen – etwa zur Größe des Arbeitsspeichers (1024 Mbyte) und zur virtuellen Festplatte (10 GByte). All diese Vorschläge können problemlos und ohne Änderung übernommen werden. Nach dem letzten Schritt wird die neue VM mit dem Namen *FHEM* im VirtualBox-Fenster angezeigt. Sie ist noch ausgeschaltet. Entweder durch den Button ÄNDERN in der Hauptmenüleiste oder durch Aufruf des Kontextmenüs mit der rechten Maustaste ändern Sie jetzt noch den Netzwerktyp auf Netzwerkbrücke, bestätigen mit OK und starten diese VM (siehe Bild 2.2).

	∛ ⊀	Orac	le VM VirtualBox Ma	nager	~ ~ 😣
-	Datei Maschine Hilfe	Starten	-ID and		VM-Tools Globale Tools
	ausgeschaltet	Der linke Teil dieses Fenste Maschinen auf Ihrem Com p>Die rechte Seite des Fen ausgewählte virtuelle Masr Werkzeuge lässt sich mit d Toolbar am oberen Rand d werden in zukünftigen Ver Die Taste F1 öffnet das Hilf Produktinformationen aus www.virtualbox.org.	Allgemein System Anzeige Anzeige Anzeige Assenspeicher Audio Netzwerk Serielle Schnittstellen US8 Gemeinsame Ordner Benutzerschnittstelle	PiEM - Einstellungen Netzwerk Adapter 1 Adapter 2 Adapter 3 Adapter 3 Masses Name: Wp4s0 Erweitert	? ∨ ∧ ♥ Adapter 4
					OK Abbrechen

Bild 2.2 Konfigurieren der neuen virtuellen Maschine

Damit greift die VM über den Hostcomputer auf das Netzwerk zu und wird als eigenständiger Computer erkannt. Das bedeutet: Im Netzwerk muss ein so genannter DHCP-Server laufen, der dieser neuen VM eine lokale Internet-Adresse zuteilt. Bei den meisten LANund WLAN-Systemen ist das der Fall. Man möchte sich schließlich mit einem neuen Computer im Netzwerk anmelden können. WLAN-Passwörter werden dabei nicht benötigt, denn der Hostcomputer ist ja schon im WLAN angemeldet.

Das System wird danach zuerst nach einer DVD verlangen. Deren Abbild ist genau die bereits heruntergeladene mini.iso, die man in das entsprechende Textfeld eintragen muss. Ein Klick auf STARTEN führt zum Startbildschirm des Ubuntu-Installers, den man mit einem einfachen ENTER in Gang setzt (siehe Bild 2.3).

Bild 2.3 Start-DVD festlegen und Installation starten

Bei den nun folgenden Installationsschritten sind nur wenige Angaben zu machen. Alle Abfragen sind mit ENTER zu bestätigen. Folgende Punkte werden abgefragt:

- die Systemsprache (German)
- der Rechnername im Netzwerk, sagen wir FHEM
- die Größe der virtuellen Festplatte (10 Gbyte), welche einfach bestätigt werden kann (bei der Frage nach der Formatierung muss man manuell JA auswählen)
- der Klarname, der Benutzername und das Passwort des menschlichen Benutzers: Hier sollte man nicht *fhem* als Benutzernamen wählen, denn unter diesem Benutzernamen wird FHEM später laufen,
- das zu installierende Softwaresystem: Damit ist die Auswahl der zu installierenden Pakete gemeint. Hier wählt man den untersten Menüpunkt *Minimal Ubuntu Server*.

Das neue Ubuntu-Linux wird all diese Pakete aus dem Internet holen und installieren. Am Ende wird gefragt, ob das neue System gestartet werden soll. Das sollte man **nicht** tun, weil man sonst ruckzuck wieder von der virtuellen Installations-DVD bootet. Natürlich ließe sich auch ganz schnell *F12* auf dem Boot-Screen (siehe Bild 2.4) drücken und als Boot-Device die Festplatte auswählen, doch wer möchte das schon jedes Mal tun ...

Schalten Sie also bitte erst die VM aus: Betätigen Sie die rechte Maustaste im VirtualBox-Fenster, wählen Sie im Kontextmenü Schliessen \rightarrow Ausschalten aus und warten Sie, bis das Konsolenfenster sich geschlossen hat. Entfernen Sie danach mit Ändern \rightarrow Massenspeicher den Anschluss mini.iso aus dem virtuellen DVD-Laufwerk. Starten Sie dann die VM neu.

Ergebnis ist zuerst der Boot-Screen und dann eine Konsolenabfrage von Benutzername und Passwort. Gibt man diese ein (für das Beispiel habe ich, naheliegenderweise, den Benutzernamen *phenning* gewählt), werden ein paar Systeminformationen und danach der Kommandozeilenprompt phenning@FHEM:~\$ angezeigt (Bild 2.4).

Bild 2.4 Boot-Screen und Konsolenansicht des neuen Ubuntu-Servers

Um sich später eventuell Tipparbeit zu ersparen, kann man die VM noch so konfigurieren, dass sie auch Copy-and-Paste-Befehle annimmt. Dafür wird die vorangehend heruntergeladene Datei mit den *GuestAdditions* benötigt. Eine Anleitung dafür findet man unter *https://www.techrepublic.com/article/how-to-enable-copy-and-paste-in-virtual box.* Insgesamt ist es für eine Probeinstallation einfacher, die Befehle von Hand einzutippen, als den Aufwand zur Installation von Copy-and-Paste auf sich zu nehmen.

2.2 Installation von FHEM

Unabhängig davon, ob es sich um eine VM oder um einen Raspberry Pi handelt, ist das System jetzt so weit, dass Sie FHEM installieren können. Melden Sie sich also auf der Linux-Konsole an. Nutzer von Windows oder Apple-Systemen oder durch Tablet und Smartphone verwöhnte Mitbürger werden sich bei einer solchen Bedienung auf der Konsole möglicherweise unwohl fühlen. Sie sollten jedoch bedenken, dass Sie hier ein Server-System installieren, dessen kostbare Systemressourcen nicht durch eine grafische Benutzungsoberfläche verschwendet werden sollen. Sie erschaffen sozusagen einen dienstbaren Geist, der unsichtbar irgendwo im Hintergrund werkeln soll.

Zunächst müssen ein paar Pakete zur Erweiterung geholt werden, indem Sie folgende Zeilen in die Linux-Kommandozeile eintippen und mit ENTER abschließen:

```
sudo apt-get update
sudo apt-get install perl libdevice-serialport-perl \
    libio-socket-multicast-perl
sudo apt-get install libio-socket-ssl-perl libwww-perl \
    libjson-perl
sudo apt-get install libdbd-sqlite3-perl libdbi-perl \
    libtext-diff-perl sqlite3
sudo apt-get install libxml-parser-perl libxml-xpath-perl
sudo apt-get install libxml-treebuilder-perl \
```

```
libhtml-treebuilder-xpath-perl
sudo apt-get install libxml-simple-perl libsoap-lite-perl
sudo apt-get install libcgi-pm-perl openssh-server
```

Für diejenigen, die sich noch nie mit Linux befasst haben, sei noch kurz auf die verwendeten Befehle eingegangen. sudo weist das Linux-System an, den nachfolgenden Befehl als "Superuser" (*root* genannt) auszuführen, also als Systemadministrator. Dafür wird beim ersten sudo in einer Sitzung jeweils das Passwort des Benutzers abgefragt. Der ausgeführte Befehl lautet apt-get install. Er holt die nachfolgend benannten Softwarepakete aus den Linux-Respositorien und installiert sie. apt-get update aktualisiert die im System vorhandenen Softwarepakete. In Zukunft wird die Installation übrigens deutlich einfacher sein, denn ein im Frühjahr 2019 in Arbeit befindliches FHEM-Modul *Installer* erlaubt die Verwaltung der Zusatzpakete per Mausklick.

Im nächsten Schritt holen Sie das FHEM-Softwarepaket und installieren es wie folgt:

```
wget fhem.de/fhem-5.9.deb
sudo dpkg -install fhem-5.9.deb
```

Fertig! Damit haben Sie ein lauffähiges FHEM-System. Doch wie finden Sie dieses System? Geben Sie dazu Folgendes in der Kommandozeile ein:

sudo ifconfig

In der Antwort auf diesen Befehl taucht eine Zeile ähnlich dieser auf:

inet:192.168.0.57 netmask:255.255.255.0 broadcast:192.168.0.254

Die erste Adresse 192.168.0.57 ist die lokale Internet-Adresse, die bei Ihnen vielleicht etwas anders aussehen wird. Wenn im Folgenden die Abkürzung <fhem-ip> verwendet wird, ist damit diese Zahlenkombination gemeint, die Sie anstelle der Abkürzung verwenden müssen.

Offnen Sie jetzt auf dem Hostcomputer einen Webbrowser, und tippen Sie Folgendes in die Adresszeile ein:

http://<fhem-ip>:8083/fhem

Dann bekommen Sie die Hauptseite der frischen FHEM-Installation zu sehen (siehe Bild 2.5).

Save config ? Unsorted Commandref Remote doc Edit files Select style	SecurityCheck: WEBphone is not password protected WEBtablet is not password protected WEB is not password protected telnetPort is not password protected Protect this FHEM installation by defining an allowed device with define allowed allowed You can disable this message with attr global motd none
Event monitor	

Bild 2.5 Die Hauptseite einer frischen FHEM-Installation

Über die Farbwahl und das Icon will ich an dieser Stelle noch kein Wort verlieren. Das folgt später. Auch die Meldung *Security Check* braucht im Moment nicht beachtet zu werden. Sie bedeutet nur, dass noch kein Passwort für FHEM festgelegt wurde. Vier Bereiche müssen aber erläutert werden (siehe Bild 2.5):

Das leere Textfeld oben rechts neben dem FHEM-Icon ("das grinsende Haus") ist die FHEM-Kommandozeile. Hier werden FHEM-Befehle direkt eingetippt und verarbeitet. Sie können die Kommandozeile z. B. verwenden, um die Meldung Security Check loszuwerden, indem Sie darin folgenden Befehl eintippen und mit ENTER bestätigen:

attr global motd none

- Der oberste Menüblock unter dem FHEM-Icon enthält den Link SAVE CONFIG. Klickt man ihn an, wird die gegenwärtige Konfiguration in die FHEM-Konfigurationsdatei übernommen und steht dann beim nächsten Systemstart automatisch zur Verfügung. Ändert man an der vorhandenen Konfiguration etwas, wird der Text mit einem zusätzlichen roten Fragezeichen verziert, um auf die Änderung der Konfiguration hinzuweisen.
- Der mittlere Menüblock enthält die *Räume* von FHEM. Das sind entweder wirkliche Räume des SmartHome oder Funktionsgruppen, die gemeinsam auf einer Webseite angezeigt werden sollen. Voreingestellt sind nur die Räume *Unsorted* (für allerhand nützliche Geräte und Funktionen) und *Everything*, in dem alle Definitionen zu sehen sind (sehr unübersichtlich). Mehr zu den Räumen von FHEM finden Sie in Abschnitt 4.5.1.
- Der unterste Menüblock enthält Links zu nützlichen Systemwerkzeugen. Beispielsweise schreibt FHEM (mit verschiedenen wählbaren Detailtiefen) alle Systemmeldungen in eine Log-Datei, die mit dem Link LoGFILE angezeigt wird. Klicken Sie in diesem Menüblock auf SELECT STYLE und wählen Sie auf der nachfolgend angezeigten Seite (siehe Bild 2.6) *default* aus. Das ist der (alte) Standardstil für die Anzeige in FHEM, der zur Klarheit der Darstellung für die meisten Screenshots in diesem Buch verwendet wurde. Selbstverständlich können Sie hier auch schon mit den anderen Stilarten experimentieren. Systematisch werden sie aber erst in Abschnitt 6.3 behandelt.

	Styles
Save config ?	bright
Unsorted	darksmallscreen
S Everything	dark
Logfile	darktouchpad
Commandref	f18
Remote doc	ios6
Edit files	ios6touchpad
Select style	ios7smallscreen
Event monitor	ios7
Event monitor	ios7touchpad
	smallscreen
	default
	touchpad

Detailinformationen zum untersten Menüblock findet man in folgenden Abschnitten:

- Abschnitt 4.14: LOGFILE
- Abschnitt 2.3.1: Commandref und Remote doc
- Abschnitt 4.5: EDIT FILES
- Abschnitt 6.3: Select style
- Abschnitt 2.4: Event monitor

In den folgenden Screenshots wird das Hauptmenü der Übersichtlichkeit halber meist weggelassen.

2.3 Devices

Logischerweise wollen Sie mit FHEM Geräte steuern. FHEM arbeitet jedoch mit einem allgemeineren Konzept, das mit dem englischen Wort *Devices* bezeichnet wird. Devices sind logische Geräte, die nicht unbedingt als echte Hardware vorhanden sein müssen. Zur Einstimmung auf dieses Konzept soll zuerst ein Device erstellt werden, das überprüft, ob ein Bewohner anwesend ist oder nicht. Im zweiten Beispiel wird dann ein Device für eine Leuchte erstellt, wobei man für Testzwecke auch dabei ohne die entsprechende Hardware auskommen kann.

2.3.1 Anwesenheit feststellen mit PRESENCE

Wir nehmen an, dass der Bewohner über ein Smartphone verfügt, dessen WLAN-Schnittstelle eingeschaltet ist. Ich habe dieses Beispiel seiner Einfachheit wegen ausgewählt. Falls Sie kein Smartphone oder kein WLAN haben, sollten Sie das etwas kompliziertere Beispiel aus Abschnitt 2.3.2 in Betracht ziehen.

Betritt der Eigentümer des Smartphones das SmartHome, wird sich das Smartphone mit dem eigenen WLAN verbinden und in der Regel eine immer gleiche Internet-Adresse (IP-Adresse) zugeteilt bekommen. Diese kann man im Einstellungsbereich des Smartphones unter den Geräteinformationen finden, sagen wir, diese Adresse sei 192.168.0.55.

Die Anwesenheit des Eigentümers kann festgestellt werden, indem man ein Device mit dem Namen *Owner* erschafft. Devices werden in FHEM durch den Befehl define angelegt. Also wird in die FHEM-Kommandozeile folgender Befehl eingegeben:

define Owner PRESENCE lan-ping 192.168.0.55 60

Der Devicename ist frei wählbar. Sie sollten ihn an Ihre persönlichen Vorlieben anpassen. Der erste Parameter PRESENCE ist der Typ des Device, vereinfacht gesagt handelt es sich also bei *Owner* um ein *PRESENCE*-Device. Der Parameter lan-ping legt fest, mit welchem Verfahren die Anwesenheit geprüft wird. Die IP-Adresse muss natürlich durch Ihre eigene Adresse ersetzt werden. Der Parameter 60 (Sekunden) steht für das Intervall, in dem das Device die Erreichbarkeit des Smartphones prüft, indem ein "Ping" im WLAN abgesendet wird.

Ein Druck auf die ENTER-Taste schickt den define-Befehl ab und FHEM wechselt zur Detailansicht des Device, das nun fleißig mit dem Datensammeln beginnt. FHEM registriert, dass die Konfiguration geändert wurde, und zeigt in dieser Ansicht ein Fragezeichen im SAVE CONFIG-Menüpunkt (so wie in Bild 2.6 zu sehen). Klickt man darauf, wird das momentan nur flüchtig definierte Device Owner fest in die Konfiguration übernommen.

In der Detailansicht (siehe Bild 2.7) ist oben im ersten Block noch einmal der Name des Device zu sehen, gefolgt vom so genannten *state*. Hierbei handelt es sich um eine kurze Zusammenfassung der wichtigsten Device-Daten, im Folgenden auch als *Status* bezeichnet. In unserem Fall nimmt der Status die Werte absent oder present an.

Unterhalb dieses Blocks wird in der Detailansicht eine Zeile mit dem Button SET, dem Devicenamen, einem Auswahlfeld und einem Textfeld gezeigt (siehe Bild 2.7). Damit stellt FHEM verschiedene Befehle an das Device zur Verfügung, die durch einfache Bedienung mit der Maus abgesetzt werden können. Für manche dieser Befehle ist die Funktion offensichtlich. set Owner overrideInterval <Wert> überschreibt z. B. die Intervallfestlegung aus der Definition des Device. Wichtig ist, dass diese Befehle auch direkt als Text in die ganz oben stehende FHEM-Kommandozeile eingegeben werden können. Die Eingabe des Befehls

set Owner overrideInterval 10

in der FHEM-Kommandozeile löst dasselbe aus wie die Mausbedienung des SET-Buttons. Das Textfeld hinter dem Button kann natürlich beliebige Eingaben annehmen, auch solche, die sinnlos wären. Im Modul wird das (hoffentlich) abgefangen. Mit etwas Geschick