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Preface

Cellular automata constitute a mathematical model that has been used in computer
science since the 1940s. A cellular automaton consists of many identical simple processing
units (or cells), arranged as a regular lattice, that interact with each other in a local
way and in discrete time. Cellular automata have been applied to a wide variety of
tasks such as modeling, simulation, visualization, or pseudo-random number generation,
among many others. Due to the growing interest of the scienti�c community in cellular
automata, a good number of relevant journals and conferences are dedicated to their study
and development.

One of the main characteristics of cellular automata is their simplicity, which makes
them relatively easy to program. Nonetheless, despite their simplicity, cellular automata
are able to generate complex results in many domains, even in the context of arti�cial
life. Another remarkable characteristic of cellular automata is that they are suitable for
parallel implementation.

The present book deals with the fundamentals of cellular automata. Additionally, a
new approach to extending cellular automata with the use of message passing is intro-
duced. Each of the seven chapters of this book includes a number of �gures, bibliographic
references, and exercises of interest to the reader. The book o�ers students, practitioners
and researchers a concise but broad coverage of the main aspects of cellular automata.

Chapter 1 �Introduction to Cellular Automata� includes a review of the history
of cellular automata from their creation in the 1940s. Additionally, a de�niton of �cellular
automaton� is provided, along with a description of its main components. The novel idea
of �probabilistic neighborhood� is introduced. This type of neighborhood generalizes the
classical von Neumann and Moore neighborhoods. The chapter ends with a de�niton of
second-order cellular automata.

Chapter 2 �One-Dimensional Classical Cellular Automata� reviews cellular
automata in one dimension de�ned over binary, ternary and continuous alphabets. Spe-
cial attention is given to elementary cellular automata, which adopt binary states. The
four classes of behavior identi�ed by Stephen Wolfram in elementary CA are illustrated:
homogeneous, periodic, chaotic, and complex.

Chapter 3 �One-Dimensional Message Passing Cellular Automata� intro-
duces the novel concept of �message passing cellular automaton� and de�nes its four
phases. Message passing cellular automata extend classical cellular automata by using
message passing to communicate information between neighboring cells. One-dimensional

ix
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message passing cellular automata are described in detail for binary, ternary, and contin-
uous alphabets. Elementary message passing cellular automata are illustrated and several
theorems are provided for them.

Chapter 4 �Two-Dimensional Classical Cellular Automata� explains some
important classical cellular automata in two dimensions. Several relevant rules for de�ning
two-dimensional cellular automata are studied such as majority, parity, and the Game of
Life. Due to its impact on the �eld of cellular automata, the characteristics of the Game of
Life are described in detail. Special attention is paid to the complex structures generated
in the Game of Life, which make this cellular automaton so appealing.

Chapter 5 �Two-Dimensional Message Passing Cellular Automata� presents
how message passing cellular automata can be implemented in two dimensions. The
di�erent two-dimensional message passing cellular automata are classi�ed according to
how the messages are calculated: �xed messages, sender-dependent messages, receiver
dependent-messages, link-dependent messages, and neighborhood dependent messages.
In each case, some interesting examples are illustrated from the huge set of possibilities
that exist. Additionally, like in the previous chapter, several speci�c relevant rules are
studied: rotation messages, re�ection messages, majority messages, parity messages, and
two extensions of the classical Game of Life.

Chapter 6 �Applications of Classical Cellular Automata� reviews a broad set
of cellular automata applications in physics, excitable media, biology, social science, and
mathematics. Each application is illustrated through simulated examples.

Finally, Chapter 7 �Applications of Message Passing Cellular Automata�
introduces some novel applications of message passing cellular automata in domains such
as di�usion of innovations, Schelling segregation model, cellular evolutionary algorithms,
graph layout, and fractals.

The author of this book is an associate professor in the Department of Arti�cial Intel-
ligence at UNED (Spanish Open University). Since the middle 1990s, he has performed
teaching and research activities within the �eld of arti�cial intelligence, mainly in the
areas of Bayesian networks and evolutionary computation. The present book is the result
of a long journey that started when the author became interested in NetLogo [Wilensky,
1999]. NetLogo is an agent-based programming environment well suited for modeling and
inspecting complex systems developing over time.

Severino Fernández Galán

Madrid, May 2020
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Chapter 1

Introduction to Cellular

Automata

A cellular automaton (CA) [von Neumann, 1966, To�oli & Margolus, 1987, Wolfram,
2002] is formed by a regular lattice of cells where each cell adopts one of a set of states.
The cells are updated according to a transition function de�ned locally in the lattice.

The three essential characteristics of CA are that they consist of many identical sim-
ple processing cells, that interactions between cells take place in a small neighborhood
compared to the lattice size, and that discrete time is used. The rest of characteristics
can be extended in order to apply CA to a wide range of processes: (1) the alphabet
for the cell states can be Boolean, integer, real, or symbolic, (2) the transition function
can be deterministic or probabilistic, and (3) the updating scheme can be synchronous or
asynchronous.

1.1 History of Cellular Automata

The concept of CA was originally de�ned by John von Neumann along with his friend
Stanislaw Ulam while working at Los Alamos National Laboratory in the 1940s. At that
time, Ulam was interested in the growth of crystals, and von Neumann was studying
self-replicating machines. In order to de�ne his self-replicating machine, von Neumann
suggested the use of a CA. As explained in [von Neumann, 1966], von Neumann's self-
replicating machine was embedded in a two-dimensional cellular lattice of around two
hundred thousand cells in which each cell had twenty-nine states and a �ve-cell neigh-
borhood (today called �von Neumann neighborhood�). Interestingly, this self-replicating
machine was designed without employing a computer. After von Neumann's death in
1957, Ulam continued working on several simpler CA and the results were published
during the early 1960s.

The next important event in CA history took place in 1970. A divulgation article
authored by Martin Gardner and published in Scienti�c American [Gardner, 1970] helped

1
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2 Chapter 1. Introduction to Cellular Automata

to popularize John H. Conway's Game of Life. The Game of Life, created by the British
mathematician John H. Conway, is a CA whose rules allow simple patterns to change
and give rise to di�erent structures. Despite its simple rules, the Game of Life exhibits a
complex behavior that has attracted the attention of many researchers.

In the early 1980s, Stephen Wolfram developed the �rst serious and exhaustive study
of elementary CA, which provided a number of iconic images. Stephen Wolfram's work
on CA initially gave rise to several seminal manuscripts [Wolfram, 1983, Wolfram, 1986]
and culminated in 2002 with the publication of his comprehensive milestone book in the
�eld A New Kind of Science [Wolfram, 2002]. Wolfram established four basic classes
into which CA can be qualitatively classi�ed in terms of their behavior: homogeneous,
periodic, chaotic, and complex.

An excellent pioneering work on CA developed by Tommaso To�oli and Norman Mar-
golus at MIT can be found in the book Cellular Automata Machines: A New Environment
for Modeling [To�oli & Margolus, 1987]. The book by Andrew Ilachinski entitled Cel-
lular Automata: A Discrete Universe [Ilachinski, 2001] o�ers an advanced mathematical
treatment of CA.

1.2 Components of a Cellular Automaton

The present section describes the main components of a CA. Speci�cally, the following
four components are dealt with: (1) the regular lattice of cells, (2) the set of states that
the cells can adopt, (3) the local transition function that updates the state of each cell,
and (4) the scheme that determines the order in which the cells are updated.

1.2.1 Lattice of Cells

The cells of a CA, denoted as C, are locally interconnected and arranged as a regular
d-dimensional lattice. As shown in Figure 1.1a, in the one-dimensional case each cell is
usually represented as a square and connected to its left and right neighbors. For two-
dimensional CA, the most important lattice types are the square, the hexagonal, and the
triangular (see Figures 1.1b, 1.1c, and 1.1d respectively).

In a two-dimensional square lattice, the von Neumann neighborhood is formed by
a cell and its vertical and horizontal neighbors (see Figure 1.2a), whereas the Moore
neighborhood incorporates the diagonal neighbors (see Figure 1.2b). The probabilistic
neighborhood of a cell c ∈ C, denoted as Nθ(c) with θ ∈ [0, 1], was introduced in [Galán,
2019]. A cell c′ ∈ C is included in Nθ(c) with a probability de�ned by the following
expression:

P (c′ ∈ Nθ(c)) =

 0 if c′ /∈ NM(c)
1 if c′ ∈ NN(c)
θ if c′ ∈ NM(c)−NN(c)

,

where NM(c) and NN(c) represent the Moore and von Neumann neighborhoods of c
respectively. Note that Nθ is a generalization of NN and NM, since Nθ ≡ NN if θ = 0
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Figure 1.1 Examples of a one-dimensional lattice (a), a two-dimensional square lattice (b),
a two-dimensional hexagonal lattice (c), and a two-dimensional triangular lattice (d).
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4 Chapter 1. Introduction to Cellular Automata

(a) von Neumann neighborhood (b) Moore neighborhood
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Figure 1.2 Examples in two dimensions of a von Neumann neighborhood (a) and a Moore
neighborhood (b).

and Nθ ≡ NM if θ = 1. Figure 1.3 contains several examples of wavefront generated by
applying Nθ to an initial cell for one hundred iterations and θ ∈ {0, 0.1, . . . , 0.9, 1}.

In the formal de�nition of a CA, the lattice of cells is usually considered as in�nite.
However, boundary conditions have to be established when simulating a CA lattice in
the limited memory of a computer. As an example, Figure 1.4a shows the boundary cells
of a �nite two-dimensional CA. In order for the boundary cells to operate, the states of
their neighboring cells need to be set up through any of the following types of boundary
conditions:

1. Periodic: Opposite boundary cells are connected along each axis direction (see
Figure 1.4b).

2. Re�ecting : The boundary acts like a mirror that re�ects the states of the boundary
cells (see Figure 1.4c).

3. Fixed : The same arbitrary state is assigned to all the boundary cells (see Figure
1.4d).

The most widespread are the periodic boundary conditions, which simulate an in�nite
lattice by using a �nite one. The periodic boundary conditions are implemented as a ring
in one dimension and as a torus in two dimensions.

In the rest of this book, both the one-dimensional and the two-dimensional square
lattices will be extensively used. The cells in these two lattices will be referred to as
ci and cij respectively, where i, j ∈ Z. Additionally, unless otherwise speci�ed, periodic
boundary conditions will be employed for the cells.
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θ = 0 θ = 0.1 θ = 0.2 θ = 0.3

θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

θ = 0.8 θ = 0.9 θ = 1

Figure 1.3 Examples of wavefront generated through Nθ for θ ∈ {0, 0.1, . . . , 0.9, 1}. Each
wavefront corresponds to one hundred iterations using a 201x201 grid.

1.2.2 States of Cells

Each cell of a CA adopts a state σ belonging to its local state space Σ. In this way, the
whole CA has a global state space formed by the Cartesian product of the local state
spaces. Usually, all the cells have the same local state space, which consists of a �nite
number of states Σ = {σ1, σ2, . . . , σk−1, σk} with k ≥ 2.

CA can be extended so that the valid states that a cell can take on are de�ned in a
continuous interval. In this book, the state of cell c ∈ C at time t will be denoted as c(t)
unless otherwise speci�ed.

1.2.3 Transition Function

CA use discrete time t ∈ {0, 1, 2 . . .} such that the initial time instant t = 0 corresponds
to the situation where no change of the cells' states has taken place yet. A local transition
function f governs how each cell alters its own state from the present instant t to the next
instant t + 1. This function takes as arguments the cell's current state and the current
states of its neighboring cells. The transition function of a CA can operate either in a
deterministic or in a probabilistic way.

Among all the possible transition functions that can be de�ned in CA, an interesting
subset is formed by the so-called totalistic transition functions, which are de�ned as a
function of the sum of their arguments. Another interesting subset is composed by the
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6 Chapter 1. Introduction to Cellular Automata

(a) Boundary cells (in gray) (b) Periodic boundary conditions
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(c) Re�ecting boundary conditions (d) Fixed boundary conditions
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Figure 1.4 Boundary cells of a 5x5 square lattice (a) and three di�erent boundary condi-
tions for this lattice: periodic (b), re�ecting (c), and �xed (d).
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outer totalistic transition functions, in which the value of the central cell at the next time
step depends on its current value and the sum of the values of its neighbors. The Game
of Life (see Section 4.4) is a famous example of CA applying an outer totalistic transition
function.

1.2.4 Updating Scheme

In a CA, the updating scheme of the cells' states can be performed in the following two
ways:

1. Synchronously : All the cells update their states simultaneously at an externally
provided clock step. This method is the most widely used in CA applications.

2. Asynchronously : The cells update their states sequentially in a random order. This
process is repeated for each discrete time instant t.

A particular assignment of states to the cells of a CA is named con�guration. Among
all the possible con�gurations, the ones called �Garden of Eden� are those that are un-
reachable from any initial con�guration or, in other words, those with no predecessor
con�guration. When every con�guration of a CA has a unique predecessor, the CA is
called reversible. Some problems in physics, such as the motion of particles in an ideal
gas (see Section 6.1.2.1 on the lattice gas model) or the Ising model of alignment of mag-
netic charges (see Section 6.1.3), can be simulated by reversible CA. Given the transition
function of a CA, whereas the question of reversibility is decidable in the one-dimensional
case [Amoroso & Patt, 1972], it is undecidable for two-dimensional CA [Kari, 1990].

1.3 Second-Order Cellular Automata

As explained in Section 1.2.3, the transition function f of a CA takes as arguments the
current state of a cell and the current states of its neighboring cells in the lattice. This
can be expressed mathematically in the following way:

c(t+ 1) = f
(
cN (c)(t)

)
,

where N (c), the neighborhood of c ∈ C, represents the set of cells formed by c and
its neighboring cells. This de�nition corresponds to the so-called �rst-order CA, which
constitute the ordinary CA in the literature.

Second-order CA extend �rst-order CA by allowing the transition function f to be
also dependent on the states of cells at time t− 1. This is formalized as follows:

c(t+ 1) = f
(
cN (c)(t), c(t− 1)

)
,

which means that the next state of a cell c ∈ C depends on the current states of the
cells in its neighborhood N (c) and on the previous state of c. An interesting example
of second-order CA can be found in Section 6.1.1.3 in the context of wave propagation
modeling through the wave equation.


