EEREEXXX "

oo 0 6.6 ¢
0600060660066 6060¢
DS 0000066066060 02
ROS 60000045

00606600

Docker
Management
Design Patterns

Swarm Mode on Amazon Web Services

Deepak Vohra

Apress’

Docker Management
Design Patterns

Deepak Vohra

Apress-

Docker Management Design Patterns: Swarm Mode on Amazon Web Services

Deepak Vohra
White Rock, British Columbia, Canada

ISBN-13 (pbk): 978-1-4842-2972-9 ISBN-13 (electronic): 978-1-4842-2973-6
https://doi.org/10.1007/978-1-4842-2973-6

Library of Congress Control Number: 2017955383
Copyright © 2017 by Deepak Vohra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www. freepik.com)

Managing Director: Welmoed Spahr

Editorial Director: Todd Green

Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Technical Reviewers: Michael Irwin and Massimo Nardone
Coordinating Editor: Mark Powers

Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC

and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484229729. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-2973-6
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484229729
http://www.apress.com/source-code

Contents at a Glance

About the AUtROrccvverimmmis s ———————————— Xiii
About the Technical REVIEWET'Sccusssssssssmssssssssssssssssssmssssssssssssssssssssssssssssssnsssannns Xv
INtroduction........cccuvcsnismnss i ——————————————_ Xvii
Chapter 1: Getting Started with DOCKET.......c.occmrrmssnnnnmmssssnnnsnssssnsnssssssnssssssssnsssssns 1
Chapter 2: Using Docker in Swarm Mode.........ccoussaemmsssnsssssnsssssnsssssnsssssnsssssasssssanss 9
Chapter 3: Using Docker for AWS to Create a Multi-Zone Swarmccccevevsinnns 31
Chapter 4: DOCKEr SeIVICESuuuuissssrsrsssssnnssssssnnssssssssnnsssssssnssssssssnssssssssnnssssssnnnnss 55
Chapter 5: SCaling SErViCeSccuussesmsssanssssanssssanssssanssssannsssansssssnnssssnnssssnnssssnnnsssns 85
Chapter 6: Using Mountscccccussemmmmmssssmnmmmsssssnmmsssssssmssssssssssssssssssssssssnsnsssssnnnnns 97
Chapter 7: Configuring RESOUICES.......ucccurrrssssnnnmmssssnnsssssssnnsssssssnnnssssssnnnsssssnnnnss 115
Chapter 8: Schedulingcocusesmsssanmsssssssssssssssanssssansssssnsssssnsssssnsssssnsssssnnssssnnssss 131
Chapter 9: Rolling Updates.......c.ccccmmmmssmmnmmssssnsnmmssssssnssssssssnssssssssnssssssnnssssssnnnnns 155
Chapter 10: Networkingcccvusssesnmmssssssnmmssssssnsssssssssssssssssssssssssssssssssnsnssssssnnnss 179
Chapter 11: Logging and Monitoringcccccusssesnmmssssnsnsssssssssssssssssssssssssnnssssssnnnns 201
Chapter 12: Load BalanCingccccssrsssssssmssnssssssssnnnss 219
Chapter 13: Developing a Highly Available Websitecccunneemnmnssssnnnnnsssnnnns 241
Chapter 14: Using Swarm Mode in Docker Cloud.........coccmmmmmnmmnssssssssnsnnsnsssssssnns 271
Chapter 15: Using Service Stackscccusmmmssmmmsssnsmsssssmsssssssssssssssssssssssssssnnsnss 297
INdeX.ciiiiiimiin e —————————_—————_—=—_———_ 317

iii

Contents

About the AULNOFcccceiiiiiemmnmmissssnmssssssnrssss s ass s s sannnessssnnnnesssnnnnnnsssnnns Xiii
About the Technical REVIEWEI'Scuuiesssssssssssanssssansssssnssssanssssansssssnsssssnsssssnnssssnnssssns XV
1L L0 LT T | Xvii
Chapter 1: Getting Started with DOCKET.......c.occmrrmssnnnnmmssssnnnsnssssnsnssssssnssssssssnsssssns 1
Setting the ENVIFONMENL...........coo e sn e sn e snenn 1
Running a Docker APpliCAtioncccvverrernennensenresser e sn s 3
1T RO RSS 7
Chapter 2: Using Docker in SwWarm Mode........ccciruussmmnnmmssssnsnsssssssssssssssnssssssssnsssssss 9
B LJN od (0] 0]< 9
THE SOIULION ... r e sn e sn e n e nnennnnn 10
Docker SWarm MOcoouceierrrerresrsesssse e sse e s se s sss e s sns e sse e s sss s snesenseens 10
NOUES.....vvesereessersseesssesssseessssnessseesssseesssessssesssseessssessssesssssesssseessssessssesssssessssanssssessssesssssesssssnssssessssnssane 10
L= PP 11
Desired State 0f @ SEIVICE ... e 11
Manager Node and Raft CONSENSUSceccererererererereressersesersesessesessesssessesesssssssessssesassessesessssssassanaens 11
WOTKEE NOUES .vvvvvvvrereesseeessseessssessseesssessssnssssmssssssssssesssssesssssssssessssnssssessssesssssesssssnssssesssssnssssessssnssssnes 12
000 T 12
Setting the ENVIFONMENT............ccoriiecrcecc e se s ene e 14
Initializing the Docker SWarm MOdecccooeeeeececccere e 14
Joining Nodes 10 the SWarm ... 18
Testing the SWarm ... 20
Promoting a Worker Node t0 Managerc.ccocvvrvriernennessenses s sss s ses e s ssssnssssens 24
Demoting a Manager Node t0 WOIKEFccccevverrerrersersessessenses s sessesses e sessessssssssasssssens 25

vi

CONTENTS

Making a Worker Node Leave the SWarm...........cccvcennnennncnssnssssssessssssessssessssessenns 25
Making a Manager Node Leave the SWarmccccveveverernnesssses s s e e sessesens 26
Reinitializing @ CIUSTET..........c.ccocrircrrrr s e 28
Modifying Node Availabilitycoceeriernniiennsenesnessse e s sessens 28
RemOVING @ NOUEcocirecir e n e s ne e ne s n e ene 30
SUMMANY ...ttt sr s r s r e n e r s sa e e r s n e en e r e e e nn e e e e e e e n e nnenn e s e nnennnnnnnns 30
Chapter 3: Using Docker for AWS to Create a Multi-Zone Swarmccccvssneennns 31
LT3N (010 = 31
THE SOIULION ...t sne s en e nns 32
Setting the ENVIFONMENT..........cooevrircrr s sa e sn e sn s 33
Creating a AWS CloudFormation Stack for Docker Swarm..........ccccccvvevirrcrsenscensennaen, 34
Connecting with the Swarm Manager ... 49
USING the SWaIM........co e sa s ne e 49
Deleting @ SWarM........cccociciirr s sr e r e nr e nenan 51
1111 1P S 53
Chapter 4: DOCKEr SerVICeSccuussmemmrssssnnnssssssnnnnsssssnnnssssssnnssssssssnnsssssssnnnsssssnnnnss 55
THE PrODIBM ...ttt 55
THE SOIULION ...t a s san s 55
Setting the ENVIFONMENL..........c.ooeoececeere s e 57
The docker Service COMMANGS..........ccccrriermrernenererese e snsnenens 59
TYPES Of SEIVICESeeeercreeirerir e a e a e n e s n e s 60
Crealing @ SEIVICEcvvevereree e s a e a e sa e r e a e s r e n e n e n e sn e sn e nnennenan 60
Listing the Tasks Of @ SEIVICE........cvcererererr e sa s sassn e 61
Invoking a Hello World Service Task on the Command Line...........cceoveernvniernscrcnenens 62
Getting Detailed Information ADOUL @ SEIVICEccccrueemrerrsererissese s snesesnens 63
Invoking the Hello World Service in @ BrOWSETcccoeevevvrevnnnesses s sesssssessenens 65
Creating a Service for a MySQL Database...........ccccererererenesesese s ses s ssssessnssnenas 67
SCAlING @ SEIVICE......cceieeererresrierrsse e sre s sr s re e s sas s sn s enssr s e snnnnnennnnnas 68

CONTENTS

LiSting SErviCe TaSKS.......ccoueererersmrereseressssesesse e sse s s s sss s ssssss s ssesessesssssnsens 68
Accessing a MySQL Database in a Docker CONtainer............ccceevveveensesesesesessessesessens 70
UPAAting @ SEIVICEc.coeeeeeeerreree e sse e sse e resse e saesnesaesaesa e sn e s r e nn e nesnssnsnnennennennas 73

Updating the REPlCaAS.........ccoiiecre et e e nn e 74

Updating the Docker IMage Tag........cccuevrernncrnnresinessse e se e s s e se e sesnssnnnens 75

Updating the Placement CONSEIaintsccocccoeciinnicnnsc e sn s snnnens 79

Updating Environment Variabl@s...........ccocoienic st se e sessssnnnens 80

Updating the DOCKEr IMAGEccceeirerircrrcreriresir e e a e e snn e 81

Updating the Container LADEIScccccererecirecrcsness e sn e s sesnesesnssannens 82

Updating ReSOUICES SEHHNGSccouruiiiirereeecririsec e 82
REMOVING @ SEIVICEccvreereeireeriscre s ns 83
Creating @ GIODAI SEIVICEcccvvereererrererieree e ra e e sae e sa e e sa e sassassn s sa e saesnenes 83
BT 141 1= SRS 84
Chapter 5: Scaling ServiCescccuseermmmsssssnmmssssnnsssssssnnsessssssssssssssnssssssssnsssssssnnnnss 85
LT3N 010 = 85
THE SOIULION ...t sae s nn e 86
Setting the ENVIFONMENT..........cooeiriercrr s sa e sa s sn e sn s 87
Creating a Replicated SErviCe........ccverererererercre e snesn e sne s 87
SCAlNG UP @ SEIVICEcovrerrerierissessessssesssssssessssesss e e sss e ssssssesssssssssssssssssssssssssssssnsanens 88
SCaliNg DOWN @ SEIVICEceevererierrerrer s e e e e s sassas s e e sassassassassassasssssnssnssnsnes 91
REMOVING @ SEIVICEcceceririrer st n s nn e n s nn e n e n s 92
Global Services Cannot Be SCaled ... 92
Scaling Multiple Services Using the Same Commandc.ccoovcvieenicnennsesnsesesenens 93
Service Tasks Replacement on a Node Leaving the Swarmcccoccevvercrcrceecennne, 95
1111 1P 2SS 96
Chapter 6: Using Mountsccccueemmmmisssmnmmmssssmmmmssssssmmsssssssmssssssssssssssssssssssnnsnns 97
THE PrODIBM ...t 97
THE SOIULION ...t a e nan e 97

vii

CONTENTS

VOIUME MOUNTS......ceeeeeeeeee e nean 97
BiNd MOUNTES ...t 98
Setting the ENVIFONMENL...........coo e s 99
Creating @ Named VOIUME ..o e ss s sns s sn s s 100
Using @ Volume MOUNL...........co i e e s sn e e s ne e 102
RemOVING @ VOIUME..........coeiecere ettt sa e s sae s sa e s sn e 112
Creating and Using @ Bind Mount...........ccoriciinnincnrcrs e 112
R3]0 1] 1 TP 114
Chapter 7: Configuring ReSOUrCeS......uusurmssesmsssanssssansssssnsssssnsssssnsssssnsssssnnnsssnnnss 115
THE PrODIEM ... 115
THE SOIULION ... 116
Setting the ENVIFONMENL..........coco i snesrennens 118
Creating a Service Without Resource Specificationc.c.ccoceerverresnsesnsenesesessnens 119
RESErviNg RESOUICES.......cceereerrrrerresresiesssssessessessessessessessessessesssssessessessssnessessssnsssessessens 120
Setting Resource LIMILS ..o sse e ssessssassnessesanns 120
Creating a Service with Resource Specificationcccccovvrreeniniesnscsnscsecesecneens 121
Scaling and RESOUICES.........ccccererererereresesessesessesse e ssessessessessessessssnesnesssssssnssssssens 121
Reserved Resources Must Not Be More Than Resource Limitsc.ccccocvvrercrenencnnns 122
Rolling Update to Modify Resource Limits and Reserves..........cccccvvvrvrrercernessensaennns 124
Resource Usage and Node CapaCityccererererrerrrsessesssssessessessessessessessessssssssssssssens 125

SCaling Up the STACKccccceieeiirncrr st s sn e s a e s n s nnne 127
10T 111 0T TSRS 130
Chapter 8: Schedulingccccusrunimrmnienmnssesmmisessessssse s ss s sansesaneas 131
THE ProbIem ... s 131
LI T= 2010 0o 132
Setting the ENVIFONMENL...........coo e sne e nennens 135
Creating and Scheduling a Service: The Spread Scheduling..........ccccoveerveereresiernennnn 136
Desired State RECONCIlIAtioNccoceuvceeriiererrcse e 138

viii

CONTENTS

Scheduling Tasks Limited by Node Resource Capacity.........cccceeevrrverrerrersersersessensennens 141
Adding Service Scheduling Constraintsccccveevvrrvensnsss s 145

Scheduling on @ SPECIfIC NOGE.......ccvcerrerereerererererererseserseseree s e resersesessesessesesaesessesasessssessssassesanaens 146

Adding Multiple Scheduling CONSIIAINTS.........cccccvererererererrereerere s seseressersesesassessesessessssessssessssssaes 148

Adding Node Labels for SCheAUIING.........cccvrrererererererereresseressersesersesessesasessssessssesssssssessssessssessssssaes 150

Adding, Updating, and Removing Service Scheduling Constraints..........cccecvvvrrerrerrcenenrerenereenennns 151
Spread Scheduling and Global SErviCes..........cccvrrrrrrsrsssss s 153
SUMMEANY ...ttt r s s ae e s e re e s a e e s ne e nnennnnnn s 154
Chapter 9: Rolling Updates.......c.ccccmmmssmmmmmmsssnsnmmssssssnssssssssnssssssssnssssssnsnsssssnnnnss 155
THE ProbIem ... 155
TRE SOIULION ...t 155
Setting the ENVIFONMENL...........c.ooe e n s 157
Creating a Service with a Rolling Update POliCYcccoeerriernnmiiennsesesnssesssesesensenns 157
Rolling Update to Increase the Number of Replicas.........c.cccecvvrrirvrnsnsensenseessensennnes 158
Rolling Update to a Different Image Tag..........coeveerrrrrserssssssss s ses s sss s sssses s snssnsnnns 161
Rolling Update to Add and Remove Environment Variablesc.ccocvvvvrvrvrcercennnnns 162
Rolling Update to Set CPU and Memory Limits and ReServe.........ccocecvverrerverrersensennenns 164
Rolling Update to a Different IMageccccvvreercrcersscs e 167
ROIliNG RESTAM.......c.crireririrr st se s sa s n e sa s sn e sn e n s 171
Rolling Update to Add and Remove Mountscccceeeeersnsensessessssssssessesssssssssssssssnsenns 172
Rolling Update Failure ACHONcocvcrcrcrr e nns 173
Roll Back to Previous SPecCifiCation.........ccccververierreriennensessesssesesssesessssssessssssesssssns 175
Rolling Update on a Global SErviceccceevrierncrecnicrs e snseenes 176
1111 112 2SS 178
Chapter 10: NetWOrkingccccvssssesnsmssssssssmssnnssssssnnnnss 179
LTI (010 T PSP R 179
THE SOIULION ...t 180

THE INGrESS NELWOIKcoveererircr et s e s a e e s e s s p e e ae e nns 180

Custom OVErlay NEIWOIKSccoceerereeerirresesesssss e se s e e ss s sss s e ssssssssesasssssnsnnns 181

CONTENTS

The docker_gwbridge NETWOIKccuciviirrininrnsirserses s ses s sesssssessasssssasssssssssssassassassassens 181

The Bridge NETWOIK.......ccvverirrirrierirrer s se s e e s ss s s s s s s e s s st s sn e st s s e e s sa s s e sassassassnnnas 181
Setting the ENVIFONMENL..........coooeeecececece e 182
Networking in SWarm MOdE..........coccvvririrnnrrrer e sa e sa s sne e 183
Using the Default Bridge Network to Create a Service..........ccooeevveerieveseniesnsesesenaens 186
Creating a Service in the Ingress Network..........cccoevererenenesese s sne e 187
Creating a Custom Overlay NEtWOrKcccccevererenerenes e sssssssessssssssessessessassssssssenns 191
Using a Custom Overlay Network to Create @ Serviceccoceverrrrrrsersensessensensensenns 194
Creating an Internal Overlay NEtworKcccooeeeeeierenese s snesneens 195
Deleting @ NEtWOIK........ccocrververiererersereres e se e e e e sn s sn s sa s sn e sn s snenns 198
B30 P2 T 199
Chapter 11: Logging and Monitoringccccusssesssmssssnsnssssssssnsssssssssssssssssssssssnnnnss 201
T30 0] T 201
THE SOIULION ...t 201
Setting the ENVIFONMENT..........ccocevevirrr e n s 202
Creating @ SPM AppliCationccoecverninc s 203
Creating a Logsene AppliCatioN...........ccovcreniccrsniniennss s 205
Connecting the SPM and LOGSENE APPS.....ceerrreererreersrrsssnns 208
Deploying the Sematext Docker Agent as @ SErviCecccvevvrersersersessnssessessessennnnns 209
Creating a MySQL Database Service on a Docker Swarmcceeeeevereversensensennenns 212
Monitoring the Docker SWarm MELriCScccvvrrerrrrrsr s seeseseens 213
Getting Docker Swarm Logs iN LOGSENEccceeeeeererereesseseessesseseessssessnsssssnssnssssssnnnns 214
SUMMEAIY ...t r s a s a s s re e e r e e s an e s ae e nsnnnnnnnnas 217
Chapter 12: Load BalanCingccccccemrrrrssssssssssssnssmesssssssssssssssssssssssssssssnsssssssssnns 219
SEIVICE DISCOVEIY.....ccvierrerrrerrsersessssesssssssesss s sse s s e sss s e sss e sss s s s ssessssesssnssssssssssansanens 219
(T3 (0111 IS T 1T [0 1T SR 219
Ingress Load BalanCing.........cccceeeeeerersenessessessessessessessesssssssssssessssssssssssssssssssssssssansnns 219
THE PrODIBM ..ottt 219

0TS 10 220

CONTENTS

Setting the ENVIFONMENT...........ccoeeiiercrrcrn e 221
Creating @ Hello WOrld SErVICE.........ccverereereereereereessessessssasssssasssssasssssassassssssssssssssssnnns 222
Invoking the Hello WOorld SErvice.........cooeeeeeneccse e ses e ses s s e s s snsnnns 224
Creating an External Elastic Load BalancCercccoouvrennsennnniesnsesessssessssessesensens 227
Load Balancing in DOCKEr fOr AWS. ..o e see s ssssssssssssssssessassassassssssssssenns 234
1111 112 SRS 239
Chapter 13: Developing a Highly Available Websitecccennsemmnmnssssnnnsssssnnnns 241
B T0N £0]0] 241
THE SOIULION ...t r e n e nn e n s 242
Setting the ENVIFONMENT..........ccoce v sn s sn s sn e sa s sn e 243
Creating Multiple DOCKEr SWArMS.........cccceeerereressersesse e sssssessesssssssssssssssssssssssssssnsnns 243
Deploying @ DOCKEr SWarm SEIVICE.......c.ccuvrverrerversersersessesssssessessesssssessssssssesssssssssssnns 246
Creating an Amazon ROULE B3........ccveivierricrn e 251

Creating @ HOSTEA ZONEcoeeveerereerererereresersesesseserassessesessessesessesessesessssassesassessssesassesassassesassesssnenes 252

CoNfigUriNG NAME SEIVEIS......ccceerereererrerereresersesersesesssssssessssessssessessssesssssssssessssessesessssssssssssesassesseneres 254

Creating ResSoUrce RECOIT SEIS........cccvererrererrererersesersesersesesersssessesessesessessssessssessssesssssssssassesassesssnenes 256
Testing High Availabilitycccoorerinsnsnserses e 263
Deleting @ HOSTEA ZONEeeeeeeeeeeeececerere e sa e sn s sn e snenns 266
RS0 2 269
Chapter 14: Using Swarm Mode in Docker Cloud.........cccuccmmmmsssnnnnmnssssnnnssssssnnnns 271
BTN 0] = 27
THE SOIULION ... 27
Setting the ENVIFONMENT...........ccoeeiierrsirern e 272
Creating an IAM ROIE.........cccverererrereereeseeressaesaesasssssaesaesassassassasssssssssssassassssssssassasssnnsnns 272
Creating a Docker Swarm in DOCKer Cloudccoeeererereecnesee e ses e ssesessns s ssennnns 280
Connecting to the Docker Swarm from a Docker HOSt.........cccccoevrvervrsrnnsessessen s 289
Connecting to the Docker Swarm from a Swarm Manager...........ccooveevreeriernsesnesensenns 292
Bringing a Swarm into Docker Cloudccocvvrcercrcrcr s 294
1111 P2 7SSOSR 296

CONTENTS

Chapter 15: Using Service Stacksccucccnmmmmsmmmmmssssnsnmmssssssnmsssssssssssssssssssssssnnns 297
T30 0] T 297
THE SOIULION ...t s sr e 297
Setting the ENVIFONMENT..........ccocivrrrrrrrrr s 299
Configuring @ Service StacK.........ccccverrirernicrnsne e e 303
Creating @ STACK.........cccvvcrririerinere e 304
Y T] 7 T 6 SR 305
LiStING SEIVICES....cueieerereerrerresrersessessessessessessessessessessessessesaesressssresrssnesassnesnesnssnesnessnnnans 306
Listing DOCKEr CONTAINEISccuceeeerrierennesesssessessssessssesss s ssssssssssssessssssssssssssssssssens 307
USINg the SErviCe STACKcccvereerererersrrree e sse s ses e see e saesassassassassassaesasnnns 308
ReMOVING @ STACKccecercerircerser s sn s sn s sn s sn s sn s sn e nnenn 314
SUMMEAIY ...t r s a s e a s s ae e s e r e e s e a e e s aenrnnnnnnnnnas 315
INO@X . ueeeiiienssssnnnsssnnssssnnssssansssssnsssssnnnssan s ssssn s ssssnnansnnnansnnnnnsannan s snnn s nnnn s nnnnnnnnnnnnnnnss 317

xii

About the Author

Deepak Vohra is an Oracle certified Java programmer and web
component developer. Deepak has published in several journals,
including Oracle Magazine, OTN, IBM developerWorks, ONJava,
DevSource, WebLogic Developer’s Journal, XML Journal, Java Developer’s
Journal, FTPOnline, and devx. Deepak has published three other books on
Docker, and a dozen other books on other topics. Deepak is also a Docker
Mentor.

xiii

About the Technical Reviewers

Michael Irwin is an Application Architect at Virginia Tech (Go Hokies!) where he’s both a developer and
evangelist for cutting-edge technologies. He is helping Virginia Tech adopt Docker, cloud services, single-page
applications, CI/CD pipelines, and other current development practices. As a Docker Captain and a local
meetup organizer, he is very active in the Docker community giving presentations and trainings to help others
learn how to best utilize Docker in their organizations. Find him on Twitter at @mikesir87.

Massimo Nardone has more than 23 years of experience in security,
web/mobile development, and cloud and IT architecture. His true IT
passions are security and Android systems.

He has been programming and teaching people how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for more
than 20 years.

He holds a Master’s of Science degree in Computing Science from the
University of Salerno, Italy.

He worked as a project manager, software engineer, research
engineer, chief security architect, information security manager,
PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect
for many years.

His technical skills include security, Android, cloud, Java, MySQL,
Drupal, Cobol, Perl, web and mobile development, MongoDB, D3, Joomla,
Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, Scratch, and more.

He worked as a visiting lecturer and supervisor for exercises at the Networking Laboratory of the
Helsinki University of Technology (Aalto University). He holds four international patents (in the PKI, SIP,
SAML, and Proxy areas).

He currently works as the Chief Information Security Office (CISO) for Cargotec Oyj and is a member of
ISACA, Finland Chapter Board.

Massimo has reviewed more than 40 IT books for different publishers and he is the coauthor of
Pro Android Games (Apress, 2015).

XV

Introduction

Docker, made available as open source in March 2013, has become the de facto containerization platform.
The Docker Engine by itself does not provide functionality to create a distributed Docker container cluster

or the ability to scale a cluster of containers, schedule containers on specific nodes, or mount a volume. The
book is about orchestrating Docker containers with the Docker-native Swarm mode, which was introduced
July 2016 with Docker 1.12. Docker Swarm mode should not be confused with the legacy standalone Docker
Swarm, which is not discussed in the book. The book discusses all aspects of orchestrating/managing Docker,
including creating a Swarm, using mounts, scheduling, scaling, resource management, rolling updates, load
balancing, high availability, logging and monitoring, using multiple zones, and networking. The book also
discusses the managed services for Docker Swarm: Docker for AWS and Docker Cloud Swarm mode.

Docker Swarm Design Patterns

“A software design pattern is a general reusable solution to a commonly occurring problem within a given
context in software design.” (Wikipedia)

Docker Swarm mode provides several features that are general-purpose solutions to issues inherent in
a single Docker Engine. Each chapter starting with Chapter 2 introduces a problem and discusses a design
pattern as a solution to the problem.

Why Docker Swarm Mode?

Why use the Docker Swarm mode when several container cluster managers are available? Docker Swarm
mode is Docker-native and does not require the complex installation that some of the other orchestration
frameworks do. A managed service Docker for AWS is available for Docker Swarm to provision a Swarm
on production-ready AWS EC2 nodes. Docker Cloud may be linked to Docker for AWS to provision a

new Swarm or connect to an existing Swarm. Docker 1.13 includes support for deploying a Docker Stack
(collection of services) on Docker Swarm with Docker Compose.

What the Book Covers

Chapter 1 introduces running a Docker standalone container on CoreOS Linux. The chapter establishes the
basis of the book and subsequent chapters discuss how the management design patterns provided by the
Swarm mode solve problems inherent in a standalone Docker Engine.

Chapter 2 introduces the Swarm mode, including initializing a Swarm and joining worker nodes to
the Swarm. Chapter 2 includes promoting/demoting a node, making a node (manager or worker) leave a
Swarm, reinitializing a Swarm, and modifying node availability.

xvii

http://dx.doi.org/10.1007/978-1-4842-2973-6_2
http://dx.doi.org/10.1007/978-1-4842-2973-6_1
http://dx.doi.org/10.1007/978-1-4842-2973-6_2
http://dx.doi.org/10.1007/978-1-4842-2973-6_2

INTRODUCTION

Chapter 3 discusses the managed service Docker for AWS, which provisions a Docker Swarm by
supplying the Swarm parameters, including the number of managers and workers and the type of EC2
instances to use. AWS uses an AWS CloudFormation to create the resources for a Swarm. Docker for AWS
makes it feasible to create a Swarm across multiple AWS zones.

Chapter 4 is about Docker services. Two types of services are defined—replicated and global. Chapter 4
discusses creating a service (replicated and global), scaling a replicated service, listing service tasks, and
updating a service.

Chapter 5 discusses scaling replicated services in more detail, including scaling multiple services
simultaneously. Global services are not scalable.

In Chapter 6, two types of mounts are defined: a bind mount and volume mount. This chapter discusses
creating and using each type of mount.

Chapter 7 is about configuring and using resources in a Swarm. Two types of resources are supported
for configuration: memory and CPU. Two types of resource configurations are defined: reserves and limits.

It discusses creating a service with and without resources specification.

Chapter 8 discusses scheduling service tasks with the default and custom scheduling. Scheduling
constraints are also discussed.

Chapter 9 discusses rolling updates, including setting a rolling update policy. Different types of rolling
updates are provisioned, including updating to a different Docker image tag, adding/removing environment
variables, updating resource limits/reserves, and updating to a different Docker image.

Chapter 10 is about networking in Swarm mode, including the built-in overlay networking called ingress
and support for creating a custom overlay network.

Chapter 11 is about logging and monitoring in a Swarm, which does not provide a built-in support for
logging and monitoring. Logging and monitoring is provided in a Swarm with a Sematext Docker agent,
which sends metrics to a SPM dashboard and logs to a Logsene user interface and Kibana.

Chapter 12 discusses load balancing across service tasks with ingress load balancing. An external AWS
elastic load balancer may also be added for distributing client requests across the EC2 instances on which a
Swarm is based.

Chapter 13 discusses developing a highly available website that uses an Amazon Route 53 to create a
hosted zone with resource record sets configured in a Primary/Secondary failover mode.

Chapter 14 discusses another managed service, Docker Cloud, which may be used to provision a
Docker Swarm or connect to an existing Swarm.

Chapter 15 discusses Docker service stacks. A stack is a collection of services that have dependencies
among them and are defined in a single configuration file for deployment.

Who this Book Is For

The primary audience of this book includes Docker admins, Docker application developers, and Container
as a Service (CaaS) admins and developers. Some knowledge of Linux and introductory knowledge of
Docker—such as using a Docker image to run a Docker container, connecting to a container using a bash
shell, and stopping and removing a Docker container—is required.

xviii

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_4
http://dx.doi.org/10.1007/978-1-4842-2973-6_4
http://dx.doi.org/10.1007/978-1-4842-2973-6_5
http://dx.doi.org/10.1007/978-1-4842-2973-6_6
http://dx.doi.org/10.1007/978-1-4842-2973-6_7
http://dx.doi.org/10.1007/978-1-4842-2973-6_8
http://dx.doi.org/10.1007/978-1-4842-2973-6_9
http://dx.doi.org/10.1007/978-1-4842-2973-6_10
http://dx.doi.org/10.1007/978-1-4842-2973-6_11
http://dx.doi.org/10.1007/978-1-4842-2973-6_12
http://dx.doi.org/10.1007/978-1-4842-2973-6_13
http://dx.doi.org/10.1007/978-1-4842-2973-6_14
http://dx.doi.org/10.1007/978-1-4842-2973-6_15

CHAPTER 1

Getting Started with Docker

Docker has become the de facto containerization platform. The main appeal of Docker over virtual
machines is that it is lightweight. Whereas a virtual machine packages a complete OS in addition to the
application binaries, a Docker container is a lightweight abstraction at the application layer, packaging
only the code and dependencies required to run an application. Multiple Docker containers run as isolated
processes on the same underlying OS kernel. Docker is supported on most commonly used OSes, including
several Linux distributions, Windows, and MacOS. Installing Docker on any of these platforms involves
running several commands and also setting a few parameters. CoreOS Linux has Docker installed out-
of-the-box. We will get started with using Docker Engine on CoreOS in this chapter. This chapter sets the
context of the subsequent chapters, which discuss design patterns for managing Docker Engine using the
Swarm mode. This chapter does not use Swarm mode and provides a contrast to using the Swarm mode.
This chapter includes the following sections:

e Setting the environment

e Running a Docker application

Setting the Environment

We will be using CoreOS on Amazon Web Services (AWS) EC2, which you can access at https://console.
aws.amazon.com/ec2/v2/home?region=us-east-1#. Click on Launch Instance to lauch an EC2 instance.
Next, choose an Amazon Machine Image (AMI) for CoreOS. Click on AWS Marketplace to find a CoreOS
AML. Type CoreOS in the search field to find a CoreOS AMI. Select the Container Linux by CoreOS (Stable),
as shown in the EC2 wizard in Figure 1-1, to launch an instance.

1. Choose AMI 2. Choose Instance Type Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group
. ; Cancel and Exit
Step 1: Choose an Amazon Machine Image (AMI)
An AMI is a template that contains the software configuration (operating system, application server, and applications) required to launch your instance. You can select an AMI
provided by AWS, our user community, or the AWS Marketplace; or you can select one of your own AMIS.

Quick Start 1 to 6 of 6 Products
Q, coreos x

My AMIS
= container linux Container Linux by CoreOS (Stable)

AWS Marketplace
wrdekd (0)] 12 versions | Soid by CoreQ5

Community AMIs $0.00/hr for software

LinunAUnix, Other 1 | 84-b Amazon Machine Image (AMI) | Updated: 2817
¥ Categories Core0S Container Linux automat tware updates to ensure better security and reliability of machines

and containers running on large-si lusters. Operating system updates

All Categories
More info
Software Infrastructure (&)

Figure 1-1. Selecting an AMI for CoreOS Linux

© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_1

https://doi.org/10.1007/978-1-4842-2973-6_1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1

CHAPTER 1 * GETTING STARTED WITH DOCKER

From Choose an Instance Type, choose the t2.micro Type and click on Next. In Configure Instance
Details, specify the number of instances as 1. Select a network or click on Create New VPC to create a new
VPC. Select a subnet or click on Create New Subnet to create a new subnet. Select Enable for Auto-Assign
Public IP. Click on Next.

From Add Storage, select the default settings and click on Next. In Add Tags, no tags need to be added.
Click on Next. From Configure Security Group, add a security group to allow all traffic of any protocol in all
port ranges from any source (0.0.0.0/0). Click on Review and Launch and subsequently click on Launch.

Select a key pair and click on Launch Instances in the Select an Existing Key Pair or Create a New Key
Pair dialog, as shown in Figure 1-2.

Select an existing key pair or create a new key pair X

A key pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

Choose an existing key pair v
Select a key pair
coreos v

¢/ | acknowledge that | have access to the selected private key file (coreos.pem), and that

without this file, | won't be able to log into my instance.
Cancel Launch Instances

Figure 1-2. Launch instances

CHAPTER 1 © GETTING STARTED WITH DOCKER

An EC2 instance with CoreOS is launched. Obtain the public DNS or IPv4 public IP address of the EC2
instance from the EC2 Console, as shown in Figure 1-3, to SSH login into the instance.

i Connect Actions ¥ o % @
Q) | search : i-09dd4e6018d232147 Add filter (2] 1to10f1
[] Name = Instance ID - | Type - Availability Zone ~ State - Staws Checks - Alarm Status Public DNS (IPv4)
B CoreQS i-09dd4e6018d2321 12.micro us-gast-le @ running & 22checks ... Nene %6 ©c2-54-198-51-20.com..

Instance: | i-09dd4e6018d232147 (CoreOS) Public DN§: ec2-54-186-51-20.compute-1.amazenaws.com

Description Status Checks Monitoring Tags Usage Instructions
Instance 1D -09dd4eS018d232147 Public DNS {IPv4)
Instance stale running P, IPvd Puble IP
Instance type t2.micro IPvE IPs

Figure 1-3. Public DNS and public IPv4

SSH login into the EC2 instance as user “core’.

ssh -i "coreos.pem" core@<public ip>

Running a Docker Application

As mentioned earlier, Docker is pre-installed on CoreOS. Run the docker command to list its usage, as
shown in the following bash shell:

core@ip-172-30-4-75 ~ $ docker
Usage: docker [OPTIONS] COMMAND [arg...]

docker [--help | -v | --version]
A self-sufficient runtime for containers.
Options:
--config="/.docker Location of client config files
-D, --debug Enable debug mode
-H, --host=[] Daemon socket(s) to connect to
-h, --help Print usage
-1, --log-level=info Set the logging level
--tls Use TLS; implied by --tlsverify

--tlscacert="/.docker/ca.pem
--tlscert="/.docker/cert.pem
--tlskey="/.docker/key.pem
--tlsverify

-v, --version

Commands:
attach

Trust certs signed only by this CA
Path to TLS certificate file

Path to TLS key file

Use TLS and verify the remote
Print version information and quit

Attach to a running container
Build an image from a Dockerfile
Create a new image from a container's changes

build
commit

CHAPTER 1 * GETTING STARTED WITH DOCKER

cp Copy files/folders between a container and the local filesystem
create Create a new container
diff Inspect changes on a container's filesystem

Output the Docker version using the docker version command. For native Docker Swarm support, the
Docker version must be 1.12 or later as listed in the bash shell output.

core@ip-172-30-4-75 ~ $ docker version
Client:

Version: 1.12.6

API version: 1.24

Go version: gol.7.5

Git commit: a82d3s5e

Built: Mon Jun 19 23:04:34 2017
0S/Arch: linux/amd64
Server:

Version: 1.12.6

API version: 1.24

Go version: gol.7.5

Git commit: a82d35e

Built: Mon Jun 19 23:04:34 2017
0S/Arch: linux/amd64

Run a Hello World app with the tutum/hello-world Docker image.
docker run -d -p 8080:80 --name helloapp tutum/hello-world
The Docker image is pulled and a Docker container is created, as shown in the following listing.

core@ip-172-30-4-75 ~ $ docker run -d -p 8080:80 --name helloapp tutum/hello-world
Unable to find image 'tutum/hello-world:latest' locally

latest: Pulling from tutum/hello-world

658bc4dc7069: Pull complete

a3ed95caeb02: Pull complete

af3cc4bo2afal: Pull complete

doo34177ece9: Pull complete

983d35417974: Pull complete

Digest: sha256:0d57def8055178aath4c7669cbc25ec17f0acdab97cc587130150802da818d85
Status: Downloaded newer image for tutum/hello-world:latest
1b7a85df6006b41ea1260b5ab957113c9505521cc8732010d663a5€236097502

List the Docker container using the docker ps command.

core@ip-172-30-4-75 ~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

1b7a85df6006 tutum/hello-world "/bin/sh -c 'php-fpm " 19 minutes ago Up 19 minutes
0.0.0.0:8080->80/tcp helloapp

CHAPTER 1 © GETTING STARTED WITH DOCKER

The port mapping for the Docker container is also listed using the docker ps command, but it may also
be obtained using the docker port <container> command.

core@ip-172-30-4-75 ~ $ docker port helloapp
80/tcp -> 0.0.0.0:8080

Using the 8080 port and localhost, invoke the Hello World application with curl.
curl localhost:8080
The HTML markup for the Hello World application is output, as listed shown here.

core@ip-172-30-4-75 ~ $ curl localhost:8080
<html>
<head>
<title>Hello world!</title>
<link href="http://fonts.googleapis.com/css?family=0pen+Sans:400,700"
rel="stylesheet' type="text/css'>
<style>
body {
background-color: white;
text-align: center;
padding: 50px;
font-family: "Open Sans","Helvetica Neue",Helvetica,Arial,sans-serif;
}
#logo {
margin-bottom: 40px;
}

</style>
</head>
<body>

<h1>Hello world!</h1>
<h3>My hostname is 1b7a85df6006</h3>
</body>
</html>

Using the public DNS for the EC2 instance, the Hello World application may also be invoked in a
browser. This is shown in the web browser in Figure 1-4.

CHAPTER 1 * GETTING STARTED WITH DOCKER

mbtutum

Hello world!

My hostname is 1b7a85df6006

Figure 1-4. Invoking the Hello World application in a web browser

The docker stop <container> command stops a Docker container. The docker rm <container>
command removes a Docker container. You can list Docker images using the docker images command.
A Docker image may be removed using the docker rmi <image> command.

core@ip-172-30-4-75 ~ $ docker stop helloapp

helloapp

core@ip-172-30-4-75 ~ $ docker rm helloapp

helloapp

core@ip-172-30-4-75 ~ $ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
tutum/hello-world latest 31e17b0746e4 19 months ago 17.79 MB

core@ip-172-30-4-75 ~ $ docker rmi tutum/hello-world

Untagged: tutum/hello-world:latest

Untagged: tutum/hello-world@sha256:0d57def8055178aath4c7669cbc25ec17f0acdab97cc587130150802da818d85
Deleted: sha256:31e17b0746€48958b27f1d3dd4fe179fbba7e8efel4ad7a51€964181a92847a6
Deleted: sha256:e1bc9d364d30cd2530cb673004dbcdfieae0286e41a0fb217dd14397bf9debc8
Deleted: sha256:a1f3077d3071bd3eed5bbe5c9c036f15ce3f6b4b36bdd77601F8b8f03c61874F
Deleted: sha256:ff7802c271f507dd79ad5661ef0e8c7321947c145f1e3cd434621fa869fa648d
Deleted: sha256:e38b71a2478cad712590a0eace1e08f100a293ee19a181d5f5d5a3cdb0663646
Deleted: sha256:5f27c27ccc6daedbcbee055621961719d7f0bb38d8e95b1c123bb9696d39916
Deleted: sha256:fab20b60d8503ff0bc94ac3d25910d4a10f366d6dalf69eas53a05bdef469426b
Deleted: sha256:a58990fe25749e088fd9a9d2999c9a17b51921eb3{7df925a00205207a172b08
core@ip-172-30-4-75 ~ $

CHAPTER 1 © GETTING STARTED WITH DOCKER

Summary

This chapter sets the basis for subsequent chapters by using a single Docker Engine on CoreOS. Subsequent
chapters explore the different design patterns for managing distributed Docker applications in a cluster. The
next chapter introduces the Docker Swarm mode.

CHAPTER 2

Using Docker in Swarm Mode -

The Docker Engine is a containerization platform for running Docker containers. Multiple Docker
containers run in isolation on the same underlying operating system kernel, with each container having its
own network and filesystem. Each Docker container is an encapsulation of the software and dependencies
required for an application and does not incur the overhead of packaging a complete OS, which could

be several GB. Docker applications are run from Docker images in Docker containers, with each Docker
image being specific to a particular application or software. A Docker image is built from a Dockerfile, with
a Dockerfile defining the instruction set to be used to download and install software, set environment
variables, and run commands.

The Problem

While the Docker Engine pre-1.12 (without native Swarm mode) is well designed for running applications in
lightweight containers, it lacks some features, the following being the main ones.

e Nodistributed computing—No distributed computing is provided, as a Docker
Engine is installed and runs on a single node or OS instance.

e No fault tolerance—As shown in the diagram in Figure 2-1, if the single node on
which a Docker Engine is running fails, the Docker applications running on the
Docker Engine fail as well.

TN
(e

X Docker Engine

Figure 2-1. Single node Docker cluster

© Deepak Vohra 2017 9
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_2

https://doi.org/10.1007/978-1-4842-2973-6_2

CHAPTER 2 * USING DOCKER IN SWARM MODE

The Solution

With Docker Engine version 1.12 onward, Docker container orchestration is built into the Docker Engine

in Swarm mode and is native to the Docker Engine. Using the Swarm mode, a swarm (or cluster) of nodes
distributed across multiple machines (OS instances) may be run in a master/worker/ pattern. Docker Swarm
mode is not enabled in the Docker Engine by default and has to be initialized using a docker command.
Next, as an introduction to the Docker Swarm mode, we introduce some terminology.

Docker Swarm Mode

Docker Swarm is a cluster of Docker hosts connected by an overlay networking for service discovery.

A Docker Swarm includes one or more manager nodes and one or more worker nodes, as shown in

Figure 2-2. In the Swarm mode, a Docker service is the unit of Docker containerization. Docker containers
for a service created from a Manager node are deployed or scheduled across the cluster and the Swarm
includes a built-in load balancing for scaling the services. The expected state for a service is declared on
the manager, which then schedules the task to be run on a node. However, the worker node itself still pulls
the image and starts the container.

Docker
Swarm

Mode
Node Node Node
Docker Docker Docker
Engine Engine Engine

Node
Docker
Engine

Node
Docker
Engine

Node
Docker
Engine

.

Figure 2-2. Docker Swarm mode cluster

%

Nodes

An instance of a Docker host (a Docker Engine) is called a node. Two types of node roles are provided:
manager nodes and worker nodes.

10

CHAPTER 2 * USING DOCKER IN SWARM MODE

Service

A service is an abstraction for a collection of tasks (also called replicas or replica tasks) distributed across

a Swarm. As an example, a service could be running three replicas of an Nginx server. Default scheduling,
which is discussed in Chapter 7, uses the “spread” scheduling strategy, which spreads the tasks across

the nodes of the cluster based on a computed node rank. A service consists of one or more tasks that run
independent of each other, implying that stopping a task or starting a new task does not affect running other
tasks. The Nginx service running on three nodes could consist of three replica tasks. Each task runs a Docker
container for the service. One node could be running multiple tasks for a service. A task is an abstraction for
the atomic unit of scheduling, a “slot” for the scheduler to run a Docker container.

Desired State of a Service

The “desired state” of a service refers to the service state as defined in the service definition when creating
the service. As an example, a service definition could define a service as consisting of three replicas of an
Nginx server.

Manager Node and Raft Consensus

When the Swarm is first created, the current node becomes the first manager node. By default, all manager
nodes are also workers. The manager node performs the cluster orchestration and manages the Swarm,
including the initial scheduling of service tasks and subsequent reconciliation, if any, between the desired
state and the actual state of services. As an example, for a service definition consisting of three replicas of an
Nginx server, the manager node would create three tasks and schedule the tasks on Swarm worker nodes in the
Swarm. Subsequently, if a node running a task were to fail, the Swarm manager would start a new replacement
task on the worker nodes still in the Swarm. The Swarm manager accepts the service definition when a service
is created and schedules the service on one or more worker nodes as service tasks. The Swarm manager node
also manages the scaling of service by adding/removing service tasks. The Swarm manager assigns each service
a unique DNS name and starts Docker containers via service replica tasks. The manager node monitors the
cluster state. The Swarm manager is also a worker node by default, which is discussed in the next section.

To refer to “the manager node” is actually a simplification of the Swarm Manager, as a Swarm may
consist of one or more manager nodes. Each manager node keeps the complete cluster state data, including
which service replica tasks are running on which node and the node roles, and participates in Swarm
management for the Raft consensus. The Raft consensus is merely an algorithm to create decisions/
agreements (consensus) within a group in a distributed fashion. Swarm uses it to make decisions such
as leader elections, cluster membership, service changes, etc. In the Swarm mode, Raft consensus is
an agreement among the manager nodes for a global cluster state parameter such as about the state
of data value stored in a database. Swarm managers share data using Raft. Raft consensus is a protocol
for implementing distributed consensus among all the reachable manager nodes in a Swarm. The Raft
Consensus Algorithm has several implementations and its implementation in the Swarm mode has the
properties typically found in distributed systems, such as the following:

e Agreement of values for fault tolerance
¢ Cluster membership management
e Leader election using mutual exclusion

Only one manager node, called the leader, performs all the cluster orchestration and management. Only
the leader node performs the service scheduling, scaling, and restarting of service tasks. The other manager
nodes are for the fault tolerance of Swarm manager, which implies that if the leader node were to fail, one of
the other manager nodes would be elected as the new leader and take over the cluster management. Leader
election is performed by a consensus from the majority of the manager nodes.

11

http://dx.doi.org/10.1007/978-1-4842-2973-6_7

CHAPTER 2 * USING DOCKER IN SWARM MODE

Worker Nodes

A worker node actually runs the service replica tasks and the associated Docker containers. The
differentiation between node roles as manager nodes and worker nodes is not handled at service
deployment time but is handled at runtime, as node roles may be promoted/demoted. Promoting/demoting
anode is discussed in a later section. Worker nodes do not affect the manager Raft consensus. Worker

nodes only increase the capacity of the Swarm to run service replica tasks. The worker nodes themselves do
not contribute to the voting and state held in the raft, but the fact that they are worker nodes is held within
the raft. As running a service task requires resources (CPU and memory) and a node has a certain fixed
allocatable resources, the capacity of a Swarm is limited by the number of worker nodes in the Swarm.

Quorum

A quorum refers to agreement among the majority of Swarm manager nodes or managers. If a Swarm loses
quorum it cannot perform any management or orchestration functions. The service tasks already scheduled
are not affected and continue to run. The new service tasks are not scheduled and other management
decisions requiring a consensus, such as adding or removing a node, are not performed. All Swarm
managers are counted toward determining majority consensus for fault tolerance. For leader election only
the reachable manager nodes are included for Raft consensus. Any Swarm update, such as the addition or
removal of a node or the election of a new leader, requires a quorum. Raft consensus and quorum are the
same. For high availability, three to five Swarm managers are recommended in production. An odd number
of Swarm managers is recommended in general. Fault tolerance refers to the tolerance for failure of Swarm
manager nodes or the number of Swarm managers that may fail without making a Swarm unavailable.
Mathematically, “majority” refers to more than half, but for the Swarm mode Raft consensus algorithm, Raft
tolerates (N-1)/2 failures and a majority for Raft consensus is determined by (N/2)+1. N refers to the Swarm
size or the number of manager nodes in the Swarm.

Swarm Size = Majority + Fault Tolerance

As an example, Swarm sizes of 1 and 2 each have a fault tolerance of 0, as Raft consensus cannot be
reached for the Swarm size if any of the Swarm managers were to fail. More manager nodes increase fault
tolerance. For an odd number N, the fault tolerance is the same for a Swarm size N and N+1.

As an example, a Swarm with three managers has a fault tolerance of 1, as shown in Figure 2-3. Fault
tolerance and Raft consensus do not apply to worker nodes, as Swarm capacity is based only on the worker
nodes. Even if two of the three worker nodes were to fail, one Worker node, even if the manager nodes are
manager-only nodes, would keep the Swarm available though a reduction in Swarm capacity and could
transition some of the running tasks to non-running state.

12

Figure 2-3. Fault tolerance for a Swarm

CHAPTER 2 * USING DOCKER IN SWARM MODE

Node
Docker
Engine

Docker

Engine

Docker
Swarm
Mode

Node
Docker
Engine

Docker
Engine

Node
Docker
Engine

Docker
Engine

This section covers the following topics:

Setting the environment

Initializing the Docker Swarm mode

Joining nodes to the Swarm cluster

Testing the Swarm cluster

Promoting a worker node to manager

Demoting a manager node to worker

Making a worker node leave the Swarm cluster

Making A worker node rejoin the Swarm cluster

Making a manager node leave the Swarm cluster

Reinitializing a Swarm

Modifying node availability

Removing a node

13

CHAPTER 2 * USING DOCKER IN SWARM MODE

Setting the Environment

This chapter shows you how to create a three-node Swarm consisting of one manager node and two worker
nodes. Create three Amazon EC2 instances using CoreOS Stable AMI, as shown in the EC2 console in
Figure 2-4. Enable all traffic between the EC2 instances when configuring the security group for the EC2
instances. Obtain the IP address of the EC2 instance started for the Swarm manager.

(=L -L L Connect Actions v
‘ o 8 0

Q. | Instance State : Running Add filter -] 1todofta
Name = Instance ID = Instance Type - Availability Zone -~ Instance State - Status Checks ~ Alarm Status Public DNS (IPvd)

@ SwarmManager i-01b12315¢b7c833be 12.micro us-gast-1f @ running & 272 checks None Y& c2-34-204-168-217 co.
SwarmWorker i-053336322e12698 2 micre us-east-1f @ running & 212 chacks Nane %% 2c2-34-204-199-45co
SwarmWarker 10894 3beeated3ld 12 micro us-east-1f @ running @ 212 checks Nane % 2c2-34-231.70-10.com.

li-01b123 TcB33be (Swar ger) Public DNS: ec2-34-204-168-217.compute-1.amazonaws.com [_B-R=l
Description Slatus Checks Manitoring Tags Usage Instructions
Instance ID i-01b12315¢bTc833be Public DNS (IPvd)
Instance stale running IPv4 Public IP
Instance type 12 micro ! P IPs
Elaslic IPs Privale DNS ip-172-30-5-70.ec 2 internal
Availabilty zone us-east-1f Private IPs 17230570

Security groups Container Lina
0-AutogenBy

05 -Stable—1409-7- Secondary private IPs
-1. view inbound rules

Scheduled events Mo scheduled events VPCID wvpe-doObGbas

Figure 2-4. EC2 instances

Initializing the Docker Swarm Mode

Docker Swarm mode is not enabled by default and needs to be enabled. SSH login to the EC2 instance
started for the Swarm manager using the public IP address.

ssh -i "coreos.pem" core@34.204.168.217

Docker Swarm mode is available starting with Docker version 1.12. Verify that the Docker version is at
least 1.12 using the docker --version command.

[root@localhost ~]# ssh -i "coreos.pem" core@34.204.168.217
Container Linux by Core0S stable (1409.7.0)
core@ip-172-30-5-70 ~ $ docker --version

Docker version 1.12.6, build a82d35e

To initialize the Swarm, use the docker swarm init options command. Some of the options the
command supports are listed in Table 2-1.

14

CHAPTER 2 * USING DOCKER IN SWARM MODE

Table 2-1. Command Swarm init Options

Option

Description Default Value

--advertise-addr

--availability

--force-new-cluster

--listen-addr

Advertised address in the format <ip|interface>[:port].
The advertised address is the IP address at which other nodes
may access the Swarm. If an IP address is not specified, the
Docker ascertains if the system has a single IP address and,

if it does, the IP address and port 2337 is used. If the system
has multiple IP addresses, the --advertise-addr must be
specified for inter-manager communication and overlay
networking.

Availability of the node. Should be one of active
active/pause/drain.

Whether to force create a new cluster from the current state. ~ false
We discuss why it may be required to force create and use the
option in this chapter.

Listen address in the format <ip|interface>[:port]. 0.0.0.0:2377

Use the default values for all options except the --advertise-addr for which a default value is not
provided. Use the private address for the advertised address, which may be obtained from the EC2 console,
as shown in Figure 2-5. If the EC2 instances on AWS were in different regions, the external public IP address
should be used to access the manager node, which may also be obtained from the EC2 console.

i (=L -D L Connect Actions v o 8 @

C} ' Instance State : Running Add filter (=] 1to3of3
Name = Instance ID = Instance Type - Availability Zone -~ Instance State -~ Status Checks ~ Alarm Status Public DNS [IPv4)

@ SwarmManager i-01b12315cbTc833be 12 micro us-east-1f @ running @ 212 checks Naone Yo ec2-34-204-1658-217 co
SwarmWorker i-053336322e12658 2 micro us-east-1f @ running & 212 checks Nane YN ec2-34-204-199-45.co
SwarmWorker 1-08943beeateddld L2 micre us-east-1f @ running & 212 checks Nane %% 2c2-34-231.70-10.com.

| i-01b12315¢b7c833be (

Description Status Checks
Instance ID

Instance state
Instance type
Elastic IPs
Availability zone

Security groups

Scheduled events

Figure 2-5. Private IP

Public DNS: ec2-34-204-168-217.compute-1.amazonaws.com _B-N=l

ger)

Monitoring Tags Usage Instructions

i-01b12315¢cbTcd33be Public DNS (IPvd) ec2-34-204-168-217 compute-
1.amazonaws.com
running IPvd Public IP 34 204168217
2 micro IP6 1Ps
Private DNS ip-172-30-5-T0.ec2.internal
us-gast-1f b Private IPs 172.30.5.70
Container Linux by CoreQS -Stable—-1409-7 Secondary private [Ps
O-AutogenByAWSMP-1. view inbound rules
Mo scheduled svents VPCID wvpe-deObGhbas

Run the following command to initialize Docker Swarm mode.

docker swarm init --advertise-addr 172.30.5.70

15

