
Docker
Management
Design Patterns

Swarm Mode on Amazon Web Services
—
Deepak Vohra

Docker Management
Design Patterns

Swarm Mode on Amazon Web Services

Deepak Vohra

Docker Management Design Patterns: Swarm Mode on Amazon Web Services

Deepak Vohra				
White Rock, British Columbia, Canada				

ISBN-13 (pbk): 978-1-4842-2972-9		 ISBN-13 (electronic): 978-1-4842-2973-6
https://doi.org/10.1007/978-1-4842-2973-6

Library of Congress Control Number: 2017955383

Copyright © 2017 by Deepak Vohra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewers: Michael Irwin and Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484229729. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-2973-6
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484229729
http://www.apress.com/source-code

iii

Contents at a Glance

About the Author�� xiii

About the Technical Reviewers��xv

Introduction��xvii

■■Chapter 1: Getting Started with Docker�� 1

■■Chapter 2: Using Docker in Swarm Mode��� 9

■■Chapter 3: Using Docker for AWS to Create a Multi-Zone Swarm������������������������ 31

■■Chapter 4: Docker Services�� 55

■■Chapter 5: Scaling Services��� 85

■■Chapter 6: Using Mounts�� 97

■■Chapter 7: Configuring Resources�� 115

■■Chapter 8: Scheduling�� 131

■■Chapter 9: Rolling Updates��� 155

■■Chapter 10: Networking��� 179

■■Chapter 11: Logging and Monitoring�� 201

■■Chapter 12: Load Balancing��� 219

■■Chapter 13: Developing a Highly Available Website��� 241

■■Chapter 14: Using Swarm Mode in Docker Cloud�� 271

■■Chapter 15: Using Service Stacks�� 297

Index�� 317

v

Contents

About the Author�� xiii

About the Technical Reviewers��xv

Introduction��xvii

■■Chapter 1: Getting Started with Docker�� 1

Setting the Environment�� 1

Running a Docker Application��� 3

Summary��� 7

■■Chapter 2: Using Docker in Swarm Mode��� 9

The Problem�� 9

The Solution�� 10

Docker Swarm Mode��� 10

Nodes�� 10

Service��� 11

Desired State of a Service��� 11

Manager Node and Raft Consensus�� 11

Worker Nodes�� 12

Quorum�� 12

Setting the Environment�� 14

Initializing the Docker Swarm Mode��� 14

Joining Nodes to the Swarm��� 18

Testing the Swarm�� 20

Promoting a Worker Node to Manager�� 24

Demoting a Manager Node to Worker��� 25

■ Contents

vi

Making a Worker Node Leave the Swarm��� 25

Making a Manager Node Leave the Swarm�� 26

Reinitializing a Cluster�� 28

Modifying Node Availability��� 28

Removing a Node�� 30

Summary��� 30

■■Chapter 3: Using Docker for AWS to Create a Multi-Zone Swarm������������������������ 31

The Problem�� 31

The Solution�� 32

Setting the Environment�� 33

Creating a AWS CloudFormation Stack for Docker Swarm�� 34

Connecting with the Swarm Manager��� 49

Using the Swarm��� 49

Deleting a Swarm�� 51

Summary��� 53

■■Chapter 4: Docker Services�� 55

The Problem�� 55

The Solution�� 55

Setting the Environment�� 57

The docker service Commands��� 59

Types of Services�� 60

Creating a Service��� 60

Listing the Tasks of a Service�� 61

Invoking a Hello World Service Task on the Command Line�� 62

Getting Detailed Information About a Service��� 63

Invoking the Hello World Service in a Browser��� 65

Creating a Service for a MySQL Database�� 67

Scaling a Service��� 68

■ Contents

vii

Listing Service Tasks��� 68

Accessing a MySQL Database in a Docker Container��� 70

Updating a Service�� 73

Updating the Replicas�� 74

Updating the Docker Image Tag��� 75

Updating the Placement Constraints��� 79

Updating Environment Variables�� 80

Updating the Docker Image��� 81

Updating the Container Labels�� 82

Updating Resources Settings�� 82

Removing a Service�� 83

Creating a Global Service�� 83

Summary��� 84

■■Chapter 5: Scaling Services��� 85

The Problem�� 85

The Solution�� 86

Setting the Environment�� 87

Creating a Replicated Service��� 87

Scaling Up a Service��� 88

Scaling Down a Service�� 91

Removing a Service�� 92

Global Services Cannot Be Scaled�� 92

Scaling Multiple Services Using the Same Command�� 93

Service Tasks Replacement on a Node Leaving the Swarm��� 95

Summary��� 96

■■Chapter 6: Using Mounts�� 97

The Problem�� 97

The Solution�� 97

■ Contents

viii

Volume Mounts�� 97

Bind Mounts�� 98

Setting the Environment�� 99

Creating a Named Volume��� 100

Using a Volume Mount��� 102

Removing a Volume��� 112

Creating and Using a Bind Mount�� 112

Summary��� 114

■■Chapter 7: Configuring Resources�� 115

The Problem�� 115

The Solution�� 116

Setting the Environment�� 118

Creating a Service Without Resource Specification�� 119

Reserving Resources��� 120

Setting Resource Limits�� 120

Creating a Service with Resource Specification��� 121

Scaling and Resources�� 121

Reserved Resources Must Not Be More Than Resource Limits������������������������������������ 122

Rolling Update to Modify Resource Limits and Reserves�� 124

Resource Usage and Node Capacity��� 125

Scaling Up the Stack��� 127

Summary��� 130

■■Chapter 8: Scheduling�� 131

The Problem�� 131

The Solution�� 132

Setting the Environment�� 135

Creating and Scheduling a Service: The Spread Scheduling��� 136

Desired State Reconciliation��� 138

■ Contents

ix

Scheduling Tasks Limited by Node Resource Capacity��� 141

Adding Service Scheduling Constraints�� 145

Scheduling on a Specific Node�� 146

Adding Multiple Scheduling Constraints�� 148

Adding Node Labels for Scheduling��� 150

Adding, Updating, and Removing Service Scheduling Constraints�� 151

Spread Scheduling and Global Services��� 153

Summary��� 154

■■Chapter 9: Rolling Updates��� 155

The Problem�� 155

The Solution�� 155

Setting the Environment�� 157

Creating a Service with a Rolling Update Policy��� 157

Rolling Update to Increase the Number of Replicas�� 158

Rolling Update to a Different Image Tag�� 161

Rolling Update to Add and Remove Environment Variables�� 162

Rolling Update to Set CPU and Memory Limits and Reserve�� 164

Rolling Update to a Different Image�� 167

Rolling Restart��� 171

Rolling Update to Add and Remove Mounts�� 172

Rolling Update Failure Action�� 173

Roll Back to Previous Specification��� 175

Rolling Update on a Global Service��� 176

Summary��� 178

■■Chapter 10: Networking��� 179

The Problem�� 179

The Solution�� 180

The Ingress Network��� 180

Custom Overlay Networks��� 181

■ Contents

x

The docker_gwbridge Network��� 181

The Bridge Network��� 181

Setting the Environment�� 182

Networking in Swarm Mode�� 183

Using the Default Bridge Network to Create a Service��� 186

Creating a Service in the Ingress Network�� 187

Creating a Custom Overlay Network��� 191

Using a Custom Overlay Network to Create a Service�� 194

Creating an Internal Overlay Network��� 195

Deleting a Network�� 198

Summary��� 199

■■Chapter 11: Logging and Monitoring�� 201

The Problem�� 201

The Solution�� 201

Setting the Environment�� 202

Creating a SPM Application��� 203

Creating a Logsene Application��� 205

Connecting the SPM and Logsene Apps�� 208

Deploying the Sematext Docker Agent as a Service��� 209

Creating a MySQL Database Service on a Docker Swarm�� 212

Monitoring the Docker Swarm Metrics��� 213

Getting Docker Swarm Logs in Logsene��� 214

Summary��� 217

■■Chapter 12: Load Balancing��� 219

Service Discovery�� 219

Custom Scheduling��� 219

Ingress Load Balancing��� 219

The Problem�� 219

The Solution�� 220

■ Contents

xi

Setting the Environment�� 221

Creating a Hello World Service�� 222

Invoking the Hello World Service��� 224

Creating an External Elastic Load Balancer�� 227

Load Balancing in Docker for AWS�� 234

Summary��� 239

■■Chapter 13: Developing a Highly Available Website��� 241

The Problem�� 241

The Solution�� 242

Setting the Environment�� 243

Creating Multiple Docker Swarms��� 243

Deploying a Docker Swarm Service�� 246

Creating an Amazon Route 53��� 251

Creating a Hosted Zone��� 252

Configuring Name Servers�� 254

Creating Resource Record Sets��� 256

Testing High Availability�� 263

Deleting a Hosted Zone��� 266

Summary��� 269

■■Chapter 14: Using Swarm Mode in Docker Cloud�� 271

The Problem�� 271

The Solution�� 271

Setting the Environment�� 272

Creating an IAM Role��� 272

Creating a Docker Swarm in Docker Cloud��� 280

Connecting to the Docker Swarm from a Docker Host�� 289

Connecting to the Docker Swarm from a Swarm Manager��� 292

Bringing a Swarm into Docker Cloud�� 294

Summary��� 296

■ Contents

xii

■■Chapter 15: Using Service Stacks�� 297

The Problem�� 297

The Solution�� 297

Setting the Environment�� 299

Configuring a Service Stack�� 303

Creating a Stack�� 304

Listing Stacks�� 305

Listing Services��� 306

Listing Docker Containers��� 307

Using the Service Stack�� 308

Removing a Stack��� 314

Summary��� 315

Index�� 317

xiii

About the Author

Deepak Vohra is an Oracle certified Java programmer and web
component developer. Deepak has published in several journals,
including Oracle Magazine, OTN, IBM developerWorks, ONJava,
DevSource, WebLogic Developer’s Journal, XML Journal, Java Developer’s
Journal, FTPOnline, and devx. Deepak has published three other books on
Docker, and a dozen other books on other topics. Deepak is also a Docker
Mentor.

xv

About the Technical Reviewers

Michael Irwin is an Application Architect at Virginia Tech (Go Hokies!) where he’s both a developer and
evangelist for cutting-edge technologies. He is helping Virginia Tech adopt Docker, cloud services, single-page
applications, CI/CD pipelines, and other current development practices. As a Docker Captain and a local
meetup organizer, he is very active in the Docker community giving presentations and trainings to help others
learn how to best utilize Docker in their organizations. Find him on Twitter at @mikesir87.

Massimo Nardone has more than 23 years of experience in security,
web/mobile development, and cloud and IT architecture. His true IT
passions are security and Android systems.

He has been programming and teaching people how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for more
than 20 years.

He holds a Master’s of Science degree in Computing Science from the
University of Salerno, Italy.

He worked as a project manager, software engineer, research
engineer, chief security architect, information security manager,
PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect
for many years.

His technical skills include security, Android, cloud, Java, MySQL,
Drupal, Cobol, Perl, web and mobile development, MongoDB, D3, Joomla,

Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, Scratch, and more.
He worked as a visiting lecturer and supervisor for exercises at the Networking Laboratory of the

Helsinki University of Technology (Aalto University). He holds four international patents (in the PKI, SIP,
SAML, and Proxy areas).

He currently works as the Chief Information Security Office (CISO) for Cargotec Oyj and is a member of
ISACA, Finland Chapter Board.

Massimo has reviewed more than 40 IT books for different publishers and he is the coauthor of
Pro Android Games (Apress, 2015).

xvii

Introduction

Docker, made available as open source in March 2013, has become the de facto containerization platform.
The Docker Engine by itself does not provide functionality to create a distributed Docker container cluster
or the ability to scale a cluster of containers, schedule containers on specific nodes, or mount a volume. The
book is about orchestrating Docker containers with the Docker-native Swarm mode, which was introduced
July 2016 with Docker 1.12. Docker Swarm mode should not be confused with the legacy standalone Docker
Swarm, which is not discussed in the book. The book discusses all aspects of orchestrating/managing Docker,
including creating a Swarm, using mounts, scheduling, scaling, resource management, rolling updates, load
balancing, high availability, logging and monitoring, using multiple zones, and networking. The book also
discusses the managed services for Docker Swarm: Docker for AWS and Docker Cloud Swarm mode.

Docker Swarm Design Patterns
“A software design pattern is a general reusable solution to a commonly occurring problem within a given
context in software design.” (Wikipedia)

Docker Swarm mode provides several features that are general-purpose solutions to issues inherent in
a single Docker Engine. Each chapter starting with Chapter 2 introduces a problem and discusses a design
pattern as a solution to the problem.

Why Docker Swarm Mode?
Why use the Docker Swarm mode when several container cluster managers are available? Docker Swarm
mode is Docker-native and does not require the complex installation that some of the other orchestration
frameworks do. A managed service Docker for AWS is available for Docker Swarm to provision a Swarm
on production-ready AWS EC2 nodes. Docker Cloud may be linked to Docker for AWS to provision a
new Swarm or connect to an existing Swarm. Docker 1.13 includes support for deploying a Docker Stack
(collection of services) on Docker Swarm with Docker Compose.

What the Book Covers
Chapter 1 introduces running a Docker standalone container on CoreOS Linux. The chapter establishes the
basis of the book and subsequent chapters discuss how the management design patterns provided by the
Swarm mode solve problems inherent in a standalone Docker Engine.

Chapter 2 introduces the Swarm mode, including initializing a Swarm and joining worker nodes to
the Swarm. Chapter 2 includes promoting/demoting a node, making a node (manager or worker) leave a
Swarm, reinitializing a Swarm, and modifying node availability.

http://dx.doi.org/10.1007/978-1-4842-2973-6_2
http://dx.doi.org/10.1007/978-1-4842-2973-6_1
http://dx.doi.org/10.1007/978-1-4842-2973-6_2
http://dx.doi.org/10.1007/978-1-4842-2973-6_2

■ Introduction

xviii

Chapter 3 discusses the managed service Docker for AWS, which provisions a Docker Swarm by
supplying the Swarm parameters, including the number of managers and workers and the type of EC2
instances to use. AWS uses an AWS CloudFormation to create the resources for a Swarm. Docker for AWS
makes it feasible to create a Swarm across multiple AWS zones.

Chapter 4 is about Docker services. Two types of services are defined—replicated and global. Chapter 4
discusses creating a service (replicated and global), scaling a replicated service, listing service tasks, and
updating a service.

Chapter 5 discusses scaling replicated services in more detail, including scaling multiple services
simultaneously. Global services are not scalable.

In Chapter 6, two types of mounts are defined: a bind mount and volume mount. This chapter discusses
creating and using each type of mount.

Chapter 7 is about configuring and using resources in a Swarm. Two types of resources are supported
for configuration: memory and CPU. Two types of resource configurations are defined: reserves and limits.
It discusses creating a service with and without resources specification.

Chapter 8 discusses scheduling service tasks with the default and custom scheduling. Scheduling
constraints are also discussed.

Chapter 9 discusses rolling updates, including setting a rolling update policy. Different types of rolling
updates are provisioned, including updating to a different Docker image tag, adding/removing environment
variables, updating resource limits/reserves, and updating to a different Docker image.

Chapter 10 is about networking in Swarm mode, including the built-in overlay networking called ingress
and support for creating a custom overlay network.

Chapter 11 is about logging and monitoring in a Swarm, which does not provide a built-in support for
logging and monitoring. Logging and monitoring is provided in a Swarm with a Sematext Docker agent,
which sends metrics to a SPM dashboard and logs to a Logsene user interface and Kibana.

Chapter 12 discusses load balancing across service tasks with ingress load balancing. An external AWS
elastic load balancer may also be added for distributing client requests across the EC2 instances on which a
Swarm is based.

Chapter 13 discusses developing a highly available website that uses an Amazon Route 53 to create a
hosted zone with resource record sets configured in a Primary/Secondary failover mode.

Chapter 14 discusses another managed service, Docker Cloud, which may be used to provision a
Docker Swarm or connect to an existing Swarm.

Chapter 15 discusses Docker service stacks. A stack is a collection of services that have dependencies
among them and are defined in a single configuration file for deployment.

Who this Book Is For
The primary audience of this book includes Docker admins, Docker application developers, and Container
as a Service (CaaS) admins and developers. Some knowledge of Linux and introductory knowledge of
Docker—such as using a Docker image to run a Docker container, connecting to a container using a bash
shell, and stopping and removing a Docker container—is required.

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_4
http://dx.doi.org/10.1007/978-1-4842-2973-6_4
http://dx.doi.org/10.1007/978-1-4842-2973-6_5
http://dx.doi.org/10.1007/978-1-4842-2973-6_6
http://dx.doi.org/10.1007/978-1-4842-2973-6_7
http://dx.doi.org/10.1007/978-1-4842-2973-6_8
http://dx.doi.org/10.1007/978-1-4842-2973-6_9
http://dx.doi.org/10.1007/978-1-4842-2973-6_10
http://dx.doi.org/10.1007/978-1-4842-2973-6_11
http://dx.doi.org/10.1007/978-1-4842-2973-6_12
http://dx.doi.org/10.1007/978-1-4842-2973-6_13
http://dx.doi.org/10.1007/978-1-4842-2973-6_14
http://dx.doi.org/10.1007/978-1-4842-2973-6_15

1© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_1

CHAPTER 1

Getting Started with Docker

Docker has become the de facto containerization platform. The main appeal of Docker over virtual
machines is that it is lightweight. Whereas a virtual machine packages a complete OS in addition to the
application binaries, a Docker container is a lightweight abstraction at the application layer, packaging
only the code and dependencies required to run an application. Multiple Docker containers run as isolated
processes on the same underlying OS kernel. Docker is supported on most commonly used OSes, including
several Linux distributions, Windows, and MacOS. Installing Docker on any of these platforms involves
running several commands and also setting a few parameters. CoreOS Linux has Docker installed out-
of-the-box. We will get started with using Docker Engine on CoreOS in this chapter. This chapter sets the
context of the subsequent chapters, which discuss design patterns for managing Docker Engine using the
Swarm mode. This chapter does not use Swarm mode and provides a contrast to using the Swarm mode.
This chapter includes the following sections:

•	 Setting the environment

•	 Running a Docker application

Setting the Environment
We will be using CoreOS on Amazon Web Services (AWS) EC2, which you can access at https://console.
aws.amazon.com/ec2/v2/home?region=us-east-1#. Click on Launch Instance to lauch an EC2 instance.
Next, choose an Amazon Machine Image (AMI) for CoreOS. Click on AWS Marketplace to find a CoreOS
AMI. Type CoreOS in the search field to find a CoreOS AMI. Select the Container Linux by CoreOS (Stable),
as shown in the EC2 wizard in Figure 1-1, to launch an instance.

Figure 1-1.  Selecting an AMI for CoreOS Linux

https://doi.org/10.1007/978-1-4842-2973-6_1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1

Chapter 1 ■ Getting Started with Docker

2

From Choose an Instance Type, choose the t2.micro Type and click on Next. In Configure Instance
Details, specify the number of instances as 1. Select a network or click on Create New VPC to create a new
VPC. Select a subnet or click on Create New Subnet to create a new subnet. Select Enable for Auto-Assign
Public IP. Click on Next.

From Add Storage, select the default settings and click on Next. In Add Tags, no tags need to be added.
Click on Next. From Configure Security Group, add a security group to allow all traffic of any protocol in all
port ranges from any source (0.0.0.0/0). Click on Review and Launch and subsequently click on Launch.

Select a key pair and click on Launch Instances in the Select an Existing Key Pair or Create a New Key
Pair dialog, as shown in Figure 1-2.

Figure 1-2.  Launch instances

Chapter 1 ■ Getting Started with Docker

3

An EC2 instance with CoreOS is launched. Obtain the public DNS or IPv4 public IP address of the EC2
instance from the EC2 Console, as shown in Figure 1-3, to SSH login into the instance.

SSH login into the EC2 instance as user “core”.

ssh -i "coreos.pem" core@<public ip>

Running a Docker Application
As mentioned earlier, Docker is pre-installed on CoreOS. Run the docker command to list its usage, as
shown in the following bash shell:

core@ip-172-30-4-75 ~ $ docker
Usage: docker [OPTIONS] COMMAND [arg...]
 docker [--help | -v | --version]
A self-sufficient runtime for containers.
Options:
 --config=~/.docker Location of client config files
 -D, --debug Enable debug mode
 -H, --host=[] Daemon socket(s) to connect to
 -h, --help Print usage
 -l, --log-level=info Set the logging level
 --tls Use TLS; implied by --tlsverify
 --tlscacert=~/.docker/ca.pem Trust certs signed only by this CA
 --tlscert=~/.docker/cert.pem Path to TLS certificate file
 --tlskey=~/.docker/key.pem Path to TLS key file
 --tlsverify Use TLS and verify the remote
 -v, --version Print version information and quit

Commands:
 attach Attach to a running container
 build Build an image from a Dockerfile
 commit Create a new image from a container's changes

Figure 1-3.  Public DNS and public IPv4

Chapter 1 ■ Getting Started with Docker

4

 cp Copy files/folders between a container and the local filesystem
 create Create a new container
 diff Inspect changes on a container's filesystem

Output the Docker version using the docker version command. For native Docker Swarm support, the
Docker version must be 1.12 or later as listed in the bash shell output.

core@ip-172-30-4-75 ~ $ docker version
Client:
 Version: 1.12.6
 API version: 1.24
 Go version: go1.7.5
 Git commit: a82d35e
 Built: Mon Jun 19 23:04:34 2017
 OS/Arch: linux/amd64

Server:
 Version: 1.12.6
 API version: 1.24
 Go version: go1.7.5
 Git commit: a82d35e
 Built: Mon Jun 19 23:04:34 2017
 OS/Arch: linux/amd64

Run a Hello World app with the tutum/hello-world Docker image.

docker run -d -p 8080:80 --name helloapp tutum/hello-world

The Docker image is pulled and a Docker container is created, as shown in the following listing.

core@ip-172-30-4-75 ~ $ docker run -d -p 8080:80 --name helloapp tutum/hello-world
Unable to find image 'tutum/hello-world:latest' locally
latest: Pulling from tutum/hello-world
658bc4dc7069: Pull complete
a3ed95caeb02: Pull complete
af3cc4b92fa1: Pull complete
d0034177ece9: Pull complete
983d35417974: Pull complete
Digest: sha256:0d57def8055178aafb4c7669cbc25ec17f0acdab97cc587f30150802da8f8d85
Status: Downloaded newer image for tutum/hello-world:latest
1b7a85df6006b41ea1260b5ab957113c9505521cc8732010d663a5e236097502

List the Docker container using the docker ps command.

core@ip-172-30-4-75 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
1b7a85df6006 tutum/hello-world "/bin/sh -c 'php-fpm " 19 minutes ago Up 19 minutes
0.0.0.0:8080->80/tcp helloapp

Chapter 1 ■ Getting Started with Docker

5

The port mapping for the Docker container is also listed using the docker ps command, but it may also
be obtained using the docker port <container> command.

core@ip-172-30-4-75 ~ $ docker port helloapp
80/tcp -> 0.0.0.0:8080

Using the 8080 port and localhost, invoke the Hello World application with curl.

curl localhost:8080

The HTML markup for the Hello World application is output, as listed shown here.

core@ip-172-30-4-75 ~ $ curl localhost:8080
<html>
<head>
 <title>Hello world!</title>
 <�link href='http://fonts.googleapis.com/css?family=Open+Sans:400,700'

rel='stylesheet' type='text/css'>
 <style>
 body {
 background-color: white;
 text-align: center;
 padding: 50px;
 font-family: "Open Sans","Helvetica Neue",Helvetica,Arial,sans-serif;
 }
 #logo {
 margin-bottom: 40px;
 }
 </style>
</head>
<body>

 <h1>Hello world!</h1>
 <h3>My hostname is 1b7a85df6006</h3>
</body>
</html>

Using the public DNS for the EC2 instance, the Hello World application may also be invoked in a
browser. This is shown in the web browser in Figure 1-4.

Chapter 1 ■ Getting Started with Docker

6

Figure 1-4.  Invoking the Hello World application in a web browser

The docker stop <container> command stops a Docker container. The docker rm <container>
command removes a Docker container. You can list Docker images using the docker images command.
A Docker image may be removed using the docker rmi <image> command.

core@ip-172-30-4-75 ~ $ docker stop helloapp
helloapp
core@ip-172-30-4-75 ~ $ docker rm helloapp
helloapp
core@ip-172-30-4-75 ~ $ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
tutum/hello-world latest 31e17b0746e4 19 months ago 17.79 MB
core@ip-172-30-4-75 ~ $ docker rmi tutum/hello-world
Untagged: tutum/hello-world:latest
Untagged: tutum/hello-world@sha256:0d57def8055178aafb4c7669cbc25ec17f0acdab97cc587f30150802da8f8d85
Deleted: sha256:31e17b0746e48958b27f1d3dd4fe179fbba7e8efe14ad7a51e964181a92847a6
Deleted: sha256:e1bc9d364d30cd2530cb673004dbcdf1eae0286e41a0fb217dd14397bf9debc8
Deleted: sha256:a1f3077d3071bd3eed5bbe5c9c036f15ce3f6b4b36bdd77601f8b8f03c6f874f
Deleted: sha256:ff7802c271f507dd79ad5661ef0e8c7321947c145f1e3cd434621fa869fa648d
Deleted: sha256:e38b71a2478cad712590a0eace1e08f100a293ee19a181d5f5d5a3cdb0663646
Deleted: sha256:5f27c27ccc6daedbc6ee05562f96f719d7f0bb38d8e95b1c1f23bb9696d39916
Deleted: sha256:fab20b60d8503ff0bc94ac3d25910d4a10f366d6da1f69ea53a05bdef469426b
Deleted: sha256:a58990fe25749e088fd9a9d2999c9a17b51921eb3f7df925a00205207a172b08
core@ip-172-30-4-75 ~ $

Chapter 1 ■ Getting Started with Docker

7

Summary
This chapter sets the basis for subsequent chapters by using a single Docker Engine on CoreOS. Subsequent
chapters explore the different design patterns for managing distributed Docker applications in a cluster. The
next chapter introduces the Docker Swarm mode.

9© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_2

CHAPTER 2

Using Docker in Swarm Mode

The Docker Engine is a containerization platform for running Docker containers. Multiple Docker
containers run in isolation on the same underlying operating system kernel, with each container having its
own network and filesystem. Each Docker container is an encapsulation of the software and dependencies
required for an application and does not incur the overhead of packaging a complete OS, which could
be several GB. Docker applications are run from Docker images in Docker containers, with each Docker
image being specific to a particular application or software. A Docker image is built from a Dockerfile, with
a Dockerfile defining the instruction set to be used to download and install software, set environment
variables, and run commands.

The Problem
While the Docker Engine pre-1.12 (without native Swarm mode) is well designed for running applications in
lightweight containers, it lacks some features, the following being the main ones.

•	 No distributed computing—No distributed computing is provided, as a Docker
Engine is installed and runs on a single node or OS instance.

•	 No fault tolerance—As shown in the diagram in Figure 2-1, if the single node on
which a Docker Engine is running fails, the Docker applications running on the
Docker Engine fail as well.

Docker Engine

Node

Figure 2-1.  Single node Docker cluster

https://doi.org/10.1007/978-1-4842-2973-6_2

Chapter 2 ■ Using Docker in Swarm Mode

10

The Solution
With Docker Engine version 1.12 onward, Docker container orchestration is built into the Docker Engine
in Swarm mode and is native to the Docker Engine. Using the Swarm mode, a swarm (or cluster) of nodes
distributed across multiple machines (OS instances) may be run in a master/worker/ pattern. Docker Swarm
mode is not enabled in the Docker Engine by default and has to be initialized using a docker command.
Next, as an introduction to the Docker Swarm mode, we introduce some terminology.

Docker Swarm Mode
Docker Swarm is a cluster of Docker hosts connected by an overlay networking for service discovery.
A Docker Swarm includes one or more manager nodes and one or more worker nodes, as shown in
Figure 2-2. In the Swarm mode, a Docker service is the unit of Docker containerization. Docker containers
for a service created from a Manager node are deployed or scheduled across the cluster and the Swarm
includes a built-in load balancing for scaling the services. The expected state for a service is declared on
the manager, which then schedules the task to be run on a node. However, the worker node itself still pulls
the image and starts the container.

Nodes
An instance of a Docker host (a Docker Engine) is called a node. Two types of node roles are provided:
manager nodes and worker nodes.

Docker
Swarm
Mode

Docker
Engine

Manager
Node

Docker
Engine

Manager
Node

Docker
Engine

Manager
Node

Docker
Engine

Worker
Node

Worker
Node

Worker
Node

Docker
Engine

Docker
Engine

Figure 2-2.  Docker Swarm mode cluster

Chapter 2 ■ Using Docker in Swarm Mode

11

Service
A service is an abstraction for a collection of tasks (also called replicas or replica tasks) distributed across
a Swarm. As an example, a service could be running three replicas of an Nginx server. Default scheduling,
which is discussed in Chapter 7, uses the “spread” scheduling strategy, which spreads the tasks across
the nodes of the cluster based on a computed node rank. A service consists of one or more tasks that run
independent of each other, implying that stopping a task or starting a new task does not affect running other
tasks. The Nginx service running on three nodes could consist of three replica tasks. Each task runs a Docker
container for the service. One node could be running multiple tasks for a service. A task is an abstraction for
the atomic unit of scheduling, a “slot” for the scheduler to run a Docker container.

Desired State of a Service
The “desired state” of a service refers to the service state as defined in the service definition when creating
the service. As an example, a service definition could define a service as consisting of three replicas of an
Nginx server.

Manager Node and Raft Consensus
When the Swarm is first created, the current node becomes the first manager node. By default, all manager
nodes are also workers. The manager node performs the cluster orchestration and manages the Swarm,
including the initial scheduling of service tasks and subsequent reconciliation, if any, between the desired
state and the actual state of services. As an example, for a service definition consisting of three replicas of an
Nginx server, the manager node would create three tasks and schedule the tasks on Swarm worker nodes in the
Swarm. Subsequently, if a node running a task were to fail, the Swarm manager would start a new replacement
task on the worker nodes still in the Swarm. The Swarm manager accepts the service definition when a service
is created and schedules the service on one or more worker nodes as service tasks. The Swarm manager node
also manages the scaling of service by adding/removing service tasks. The Swarm manager assigns each service
a unique DNS name and starts Docker containers via service replica tasks. The manager node monitors the
cluster state. The Swarm manager is also a worker node by default, which is discussed in the next section.

To refer to “the manager node” is actually a simplification of the Swarm Manager, as a Swarm may
consist of one or more manager nodes. Each manager node keeps the complete cluster state data, including
which service replica tasks are running on which node and the node roles, and participates in Swarm
management for the Raft consensus. The Raft consensus is merely an algorithm to create decisions/
agreements (consensus) within a group in a distributed fashion. Swarm uses it to make decisions such
as leader elections, cluster membership, service changes, etc. In the Swarm mode, Raft consensus is
an agreement among the manager nodes for a global cluster state parameter such as about the state
of data value stored in a database. Swarm managers share data using Raft. Raft consensus is a protocol
for implementing distributed consensus among all the reachable manager nodes in a Swarm. The Raft
Consensus Algorithm has several implementations and its implementation in the Swarm mode has the
properties typically found in distributed systems, such as the following:

•	 Agreement of values for fault tolerance

•	 Cluster membership management

•	 Leader election using mutual exclusion

Only one manager node, called the leader, performs all the cluster orchestration and management. Only
the leader node performs the service scheduling, scaling, and restarting of service tasks. The other manager
nodes are for the fault tolerance of Swarm manager, which implies that if the leader node were to fail, one of
the other manager nodes would be elected as the new leader and take over the cluster management. Leader
election is performed by a consensus from the majority of the manager nodes.

http://dx.doi.org/10.1007/978-1-4842-2973-6_7

Chapter 2 ■ Using Docker in Swarm Mode

12

Worker Nodes
A worker node actually runs the service replica tasks and the associated Docker containers. The
differentiation between node roles as manager nodes and worker nodes is not handled at service
deployment time but is handled at runtime, as node roles may be promoted/demoted. Promoting/demoting
a node is discussed in a later section. Worker nodes do not affect the manager Raft consensus. Worker
nodes only increase the capacity of the Swarm to run service replica tasks. The worker nodes themselves do
not contribute to the voting and state held in the raft, but the fact that they are worker nodes is held within
the raft. As running a service task requires resources (CPU and memory) and a node has a certain fixed
allocatable resources, the capacity of a Swarm is limited by the number of worker nodes in the Swarm.

Quorum
A quorum refers to agreement among the majority of Swarm manager nodes or managers. If a Swarm loses
quorum it cannot perform any management or orchestration functions. The service tasks already scheduled
are not affected and continue to run. The new service tasks are not scheduled and other management
decisions requiring a consensus, such as adding or removing a node, are not performed. All Swarm
managers are counted toward determining majority consensus for fault tolerance. For leader election only
the reachable manager nodes are included for Raft consensus. Any Swarm update, such as the addition or
removal of a node or the election of a new leader, requires a quorum. Raft consensus and quorum are the
same. For high availability, three to five Swarm managers are recommended in production. An odd number
of Swarm managers is recommended in general. Fault tolerance refers to the tolerance for failure of Swarm
manager nodes or the number of Swarm managers that may fail without making a Swarm unavailable.
Mathematically, “majority” refers to more than half, but for the Swarm mode Raft consensus algorithm, Raft
tolerates (N-1)/2 failures and a majority for Raft consensus is determined by (N/2)+1. N refers to the Swarm
size or the number of manager nodes in the Swarm.

Swarm Size = Majority + Fault Tolerance

As an example, Swarm sizes of 1 and 2 each have a fault tolerance of 0, as Raft consensus cannot be
reached for the Swarm size if any of the Swarm managers were to fail. More manager nodes increase fault
tolerance. For an odd number N, the fault tolerance is the same for a Swarm size N and N+1.

As an example, a Swarm with three managers has a fault tolerance of 1, as shown in Figure 2-3. Fault
tolerance and Raft consensus do not apply to worker nodes, as Swarm capacity is based only on the worker
nodes. Even if two of the three worker nodes were to fail, one Worker node, even if the manager nodes are
manager-only nodes, would keep the Swarm available though a reduction in Swarm capacity and could
transition some of the running tasks to non-running state.

Chapter 2 ■ Using Docker in Swarm Mode

13

This section covers the following topics:

•	 Setting the environment

•	 Initializing the Docker Swarm mode

•	 Joining nodes to the Swarm cluster

•	 Testing the Swarm cluster

•	 Promoting a worker node to manager

•	 Demoting a manager node to worker

•	 Making a worker node leave the Swarm cluster

•	 Making A worker node rejoin the Swarm cluster

•	 Making a manager node leave the Swarm cluster

•	 Reinitializing a Swarm

•	 Modifying node availability

•	 Removing a node

Docker
Swarm
Mode

Docker
Engine

Manager
Node

Docker
Engine

Manager
Node

Docker
Engine

Manager
Node

Docker
Engine

Worker
Node

Worker
Node

Docker
Engine

Docker
Engine

Worker
Node

Figure 2-3.  Fault tolerance for a Swarm

Chapter 2 ■ Using Docker in Swarm Mode

14

Setting the Environment
This chapter shows you how to create a three-node Swarm consisting of one manager node and two worker
nodes. Create three Amazon EC2 instances using CoreOS Stable AMI, as shown in the EC2 console in
Figure 2-4. Enable all traffic between the EC2 instances when configuring the security group for the EC2
instances. Obtain the IP address of the EC2 instance started for the Swarm manager.

Initializing the Docker Swarm Mode
Docker Swarm mode is not enabled by default and needs to be enabled. SSH login to the EC2 instance
started for the Swarm manager using the public IP address.

ssh -i "coreos.pem" core@34.204.168.217

Docker Swarm mode is available starting with Docker version 1.12. Verify that the Docker version is at
least 1.12 using the docker --version command.

[root@localhost ~]# ssh -i "coreos.pem" core@34.204.168.217
Container Linux by CoreOS stable (1409.7.0)
core@ip-172-30-5-70 ~ $ docker --version
Docker version 1.12.6, build a82d35e

To initialize the Swarm, use the docker swarm init options command. Some of the options the
command supports are listed in Table 2-1.

Figure 2-4.  EC2 instances

Chapter 2 ■ Using Docker in Swarm Mode

15

Use the default values for all options except the --advertise-addr for which a default value is not
provided. Use the private address for the advertised address, which may be obtained from the EC2 console,
as shown in Figure 2-5. If the EC2 instances on AWS were in different regions, the external public IP address
should be used to access the manager node, which may also be obtained from the EC2 console.

Run the following command to initialize Docker Swarm mode.

docker swarm init --advertise-addr 172.30.5.70

Table 2-1.  Command Swarm init Options

Option Description Default Value

--advertise-addr Advertised address in the format <ip|interface>[:port].
The advertised address is the IP address at which other nodes
may access the Swarm. If an IP address is not specified, the
Docker ascertains if the system has a single IP address and,
if it does, the IP address and port 2337 is used. If the system
has multiple IP addresses, the --advertise-addr must be
specified for inter-manager communication and overlay
networking.

--availability Availability of the node. Should be one of
active/pause/drain.

active

--force-new-cluster Whether to force create a new cluster from the current state.
We discuss why it may be required to force create and use the
option in this chapter.

false

--listen-addr Listen address in the format <ip|interface>[:port]. 0.0.0.0:2377

Figure 2-5.  Private IP

