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Introduction

Welcome to Metaprogramming in R. 1 am writing this book, and my books on

R programming in general, to help make more advanced teaching material
available beyond the typical introductory level most textbooks on R have. This
book covers some of the more advanced techniques used in R programming
such as fully exploiting functional programming, writing metaprograms (code
for actually manipulating the language structures), and writing domain-specific
languages to embed in R.

This book introduces metaprogramming. Metaprogramming is when you
write programs that manipulate other programs; in other words, you treat code
as data that you can generate, analyze, or modify. R is a very high-level language
where all operations are functions, and all functions are data that you can
manipulate.

There is great flexibility in how function calls and expressions are evaluated.
The lazy evaluation semantics of R mean that arguments to functions are passed
as unevaluated expressions, and these expressions can be modified before they
are evaluated, or they can be evaluated in other environments than the context
where a function is defined. This can be exploited to create small domain-
specific languages and is a fundamental component in the “tidy verse” in
packages such as dplyr or ggplot2 where expressions are evaluated in contexts
defined by data frames.

There is some danger in modifying how the language evaluates function
calls and expressions, of course. It makes it harder to reason about code. On
the other hand, adding small embedded languages for dealing with everyday
programming tasks adds expressiveness to the language that far outweighs the
risks of programming confusion, as long as such metaprogramming is used
sparingly and in well-understood (and well-documented) frameworks.

In this book, you will learn how to manipulate functions and expressions
and how to evaluate expressions in nonstandard ways. Prerequisites for reading
this book are familiarity with functional programming, at least familiarity with
higher-order functions, that is, functions that take other functions as an input or
that return functions.
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CHAPTER 1

Anatomy of a Function )

Everything you do in R involves defining functions or calling functions. You cannot
do any action without evaluating some function or other. Even assigning values to
variables or subscripting vectors or lists involves evaluating functions. But functions
are more than just recipes for how to perform different actions; they are also data
objects in themselves, and there are ways of probing and modifying them.

Manipulating Functions

If you define a simple function like the following, you can examine the
components it consists of:

f <- function(x) x

There are three parts to a function: its formal parameters, its body, and the
environment it is defined in. The functions formals, body, and environment give
you these:

formals(f)

## $x

body ()

## X

environment(f)

## <environment: R_GlobalEnv>

Formals

The formal parameters are given as a list where element names are the
parameter names and values are default parameters.
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CHAPTER 1 "/ ANATOMY OF A FUNCTION

g <- function(x = 1, y =2, z=3) x+y +z
parameters <- formals(g)
for (param in names(parameters)) {

cat(param, "=>", parameters[[param]], "\n")

}

##fx => 1
#Hy =2
#z =>3

Strictly speaking, it is a so-called pairlist, but that is an implementation
detail that has no bearing on how you treat it. You can treat it as if itis a 1ist.

g <- function(x = 1, y =2, z=3) x+y +z
parameters <- formals(g)
for (param in names(parameters)) {

cat(param, " => ", '"', parameters[[param]], '"', "\n", sep = "")
}
## X => ||1u
## y => n 2 n
## z => n 3 n

For variables in this list that do not have default values, the list represents
the values as the empty name. This is a special symbol that you cannot assign to,
so it cannot be confused with a real value. You cannot use the missing function
to check for a missing value in a formals function (that function is useful only
inside a function call, and in any case there is a difference between a missing
parameter and one that doesn’t have a default value), but you can always check
whether the value is the empty symbol.

g <- function(x, y, z=3) x +y + 2
parameters <- formals(g)
for (param in names(parameters)) {

cat(param, " => ", , parameters[[param]], ,
" (", class(parameters[[param]]), ")\n", sep = "")
}

## x => "" (name)
##y => "" (name)
## z => "3" (numeric)

Primitive functions (those that call into the runtime system, such as "+ ) do
not have formals. Only functions that are defined in R.

formals("+)
## NULL



