Metaprogramming
InR

Advanced Statistical Programming
for Data Science, Analysis and Finance

Thomas Mailund

ApPress’

Metaprogramming
in R

Thomas Mailund

Apress-

Metaprogramming in R: Advanced Statistical Programming for Data Science,
Analysis and Finance

Thomas Mailund
Aarhus N, Denmark

ISBN-13 (pbk): 978-1-4842-2880-7 ISBN-13 (electronic): 978-1-4842-2881-4
DOI110.1007/978-1-4842-2881-4

Library of Congress Control Number: 2017943347
Copyright © 2017 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether

the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms
or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit waw.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apzress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http: //www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in
this book is available to readers on GitHub via the book’s product page, located at
www.apress.com/9781484228807. For more detailed information, please visit
www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484228807
http://www.apress.com/source-code

Contents at a Glance

About the Authorcccnvsmmmmis s —————— vii
About the Technical ReVIEWErcuccusssmmsessmsmsmsssssmsssssssssnsssmssssnsnss iX
Introduction........cccvsmmnmmismmimmm s ——————— Xi
Chapter 1: Anatomy of a Function..........cccccsnemmmmnmssemnmnnsssessmnssssnnn 1
Chapter 2: Inside a Function Call............ccccunisnemnmnnsssenssnsssssnssnnnns 17
Chapter 3: Expressions and Environments.......cccccemnnmnssssssssnnsnnnn 35
Chapter 4: Manipulating EXpressions.......ccccuusseesmsssssensmsssssasssnssnns 57
Chapter 5: Working with Substitutionsccccinnineennnnissennnnnn. 77
1= 99
11 - 101

iii

Contents

About the AUthOrccsccemmsssmnmssssnmsssssnssssnsssssssssssnsssssnsssssnnssssnnsnsns vii
About the Technical REVIEWETcccssssmsmssmsmsssmsssssnsssssnsssssnsssssnnss ix
Introduction........cccuccennmmimmmenmnes s —————— Xi
Chapter 1: Anatomy of a Function...........ccccusnmmmmmnnnnnnssssssssssssnnnnns 1
Manipulating FUNCHIONS........cccvcrvrrrrr e 1
FOMMAIS......cc e e r e s a e a e s r e s a e r e s r e sr e nn e nr e nrenas 1
FUNCHON BOGIESo.vcveeressersscssssssnsssssssss st sssssssnes 3
FUNCtion ENVIFONMENTS........cccoceeccccccese e 6
Calling @ FUNCLION........coceerecccrc e 6
Modifying FUNCLIONS ..o 9
Constructing FUNCHIONS ... 13
Chapter 2: Inside a Function Call.............ccooorvemmmmmnnnnnnssssssssssnnnnns 17
Getting the Components of the Current Function..........cccceevvvvvrernee 17
Accessing Actual Function Parameters..........ccccceveeerenesssnesnsssnsessennns 20
Accessing the Calling SCOPEccceeeeererererre e 28
Chapter 3: Expressions and Environments.........ccuseennmsssssnnnnsssnns 35
EXPrESSIONSoiereririr st sn e sn s e nn s 35
Chains of Linked Environments..........ccoovoernnenernnesenssesesssesessesesessenes 36
Environments and Function Calls...........cccoeecerrvennsscnenssenesssesesnneens 44
Manipulating Environments...........cccvcvvrvnnnsssscs s sees 48

CONTENTS

Explicitly Creating Environments...........ccocvvvvrvrvrvnsenses e 51
Environments and Expression Evaluationcccceevercrcrcnscnccnene, 54

Chapter 4: Manipulating EXpressions........ccuusssessmssssssssssssssssssssssss 37

The Basics 0f EXPreSSiONS.........ccveerrerrersmssessessessessessessessessessessssssssenses 58
Accessing and Manipulating Control Structuresc.couovvevnnniesnnniesesenennsenens 58
Accessing and Manipulating Function Calls........cc.ccoeecrieenicnnscnnsnesesesessessseenas 60

Expression Simplification...........cccceeeeevrercssrcsce e 62

Automatic Differentiationcocooeeererrrencrnerreerere e 69

Chapter 5: Working with Substitutionsccccuseemmnnssennnnsisnnn 77

A Little More on QUOLES........c.coueeeereecrerieereree e 77

Parsing and Deparsing..........cccceeeereeseessnnes 78

SUDSTIIULION ... s 79
Substituting Expressions Held in Variablesccccovrnernnnsenenrsnsesesesesesesenenns 81
Substituting FUNCLION ArgUMENTScccoverriecrerr e 83

Nonstandard Evaluationcccerernenrnnncnssssersese s 85
Nonstandard Evaluation from Inside FUNCLIONSccocennmnmncnnnninncssnsnnnnnscsssnnns 87
Writing Macros With NSE..........covnmn s 88
Modifying Environments in Evaluations..........ccccuecvvveverereseresesveresseressesessessesesenes 92

Accessing Promises Using the pryr Package..........cccceveereersersersessennns 93

N (] T 1 Y |

vi

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus
University, Denmark. His background is in math and computer science, but for
the last decade his main focus has been on genetics and evolutionary studies,
particularly comparative genomics, speciation, and gene flow between emerging
species.

vii

About the Technical
Reviewer

/

Massimo Nardone has more than 22 years of
experience in security, web/mobile development,
the cloud, and IT architecture. His true IT
passions are security and Android.

He has been programming and teaching how
to program with Android, Perl, PHP, Java, VB,
Python, C/C++, and MySQL for more than 20 years.

He holds a master of science degree in
computing science from the University of Salerno,
Italy.

He has worked as a project manager, software
engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor,
and senior lead IT security/cloud/SCADA architect for many years.

He currently works as a chief information security officer (CISO) for
Cargotec Oyj.

He was a visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University), and he
holds four international patents (PKI, SIP, SAML, and proxy areas).

Massimo has reviewed more than 40 IT books for different publishing
companies, and he is the coauthor of Pro Android Games (Apress, 2015).

ix

Introduction

Welcome to Metaprogramming in R. 1 am writing this book, and my books on

R programming in general, to help make more advanced teaching material
available beyond the typical introductory level most textbooks on R have. This
book covers some of the more advanced techniques used in R programming
such as fully exploiting functional programming, writing metaprograms (code
for actually manipulating the language structures), and writing domain-specific
languages to embed in R.

This book introduces metaprogramming. Metaprogramming is when you
write programs that manipulate other programs; in other words, you treat code
as data that you can generate, analyze, or modify. R is a very high-level language
where all operations are functions, and all functions are data that you can
manipulate.

There is great flexibility in how function calls and expressions are evaluated.
The lazy evaluation semantics of R mean that arguments to functions are passed
as unevaluated expressions, and these expressions can be modified before they
are evaluated, or they can be evaluated in other environments than the context
where a function is defined. This can be exploited to create small domain-
specific languages and is a fundamental component in the “tidy verse” in
packages such as dplyr or ggplot2 where expressions are evaluated in contexts
defined by data frames.

There is some danger in modifying how the language evaluates function
calls and expressions, of course. It makes it harder to reason about code. On
the other hand, adding small embedded languages for dealing with everyday
programming tasks adds expressiveness to the language that far outweighs the
risks of programming confusion, as long as such metaprogramming is used
sparingly and in well-understood (and well-documented) frameworks.

In this book, you will learn how to manipulate functions and expressions
and how to evaluate expressions in nonstandard ways. Prerequisites for reading
this book are familiarity with functional programming, at least familiarity with
higher-order functions, that is, functions that take other functions as an input or
that return functions.

xi

CHAPTER 1

Anatomy of a Function)

Everything you do in R involves defining functions or calling functions. You cannot
do any action without evaluating some function or other. Even assigning values to
variables or subscripting vectors or lists involves evaluating functions. But functions
are more than just recipes for how to perform different actions; they are also data
objects in themselves, and there are ways of probing and modifying them.

Manipulating Functions

If you define a simple function like the following, you can examine the
components it consists of:

f <- function(x) x

There are three parts to a function: its formal parameters, its body, and the
environment it is defined in. The functions formals, body, and environment give
you these:

formals(f)

$x

body ()

X

environment(f)

<environment: R_GlobalEnv>

Formals

The formal parameters are given as a list where element names are the
parameter names and values are default parameters.

© Thomas Mailund 2017 1
T. Mailund, Metaprogramming in R, DOI 10.1007/978-1-4842-2881-4_1

CHAPTER 1 "/ ANATOMY OF A FUNCTION

g <- function(x = 1, y =2, z=3) x+y +z
parameters <- formals(g)
for (param in names(parameters)) {

cat(param, "=>", parameters[[param]], "\n")

}

##fx => 1
#Hy =2
#z =>3

Strictly speaking, it is a so-called pairlist, but that is an implementation
detail that has no bearing on how you treat it. You can treat it as if itis a 1ist.

g <- function(x = 1, y =2, z=3) x+y +z
parameters <- formals(g)
for (param in names(parameters)) {

cat(param, " => ", '"', parameters[[param]], '"', "\n", sep = "")
}
X => ||1u
y => n 2 n
z => n 3 n

For variables in this list that do not have default values, the list represents
the values as the empty name. This is a special symbol that you cannot assign to,
so it cannot be confused with a real value. You cannot use the missing function
to check for a missing value in a formals function (that function is useful only
inside a function call, and in any case there is a difference between a missing
parameter and one that doesn’t have a default value), but you can always check
whether the value is the empty symbol.

g <- function(x, y, z=3) x +y + 2
parameters <- formals(g)
for (param in names(parameters)) {

cat(param, " => ", , parameters[[param]], ,
" (", class(parameters[[param]]), ")\n", sep = "")
}

x => "" (name)
##y => "" (name)
z => "3" (numeric)

Primitive functions (those that call into the runtime system, such as "+) do
not have formals. Only functions that are defined in R.

formals("+)
NULL

