Gopal B. Saha

Basics of PET Imaging

Physics, Chemistry, and Regulations

Third Edition

Basics of PET Imaging

Gopal B. Saha

Basics of PET Imaging

Physics, Chemistry, and Regulations

Third Edition

Gopal B. Saha, PhD Emeritus Staff Cleveland Clinic Cleveland, OH, USA

ISBN 978-3-319-16422-9 ISBN 978-3-319-16423-6 (eBook) DOI 10.1007/978-3-319-16423-6

Library of Congress Control Number: 2015945822

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

Dedication

With an ocean of love to my granddaughter Samira

who has been a perpetual source of my joy and inspiration

Preface

Stipulation of the third edition of the book, *Basics of PET Imaging*, has been prompted by many new developments in PET technology, equipment, and products since its second edition published in 2010. In this edition, new materials have been added, obsolete topics deleted, and pertinent contents updated. The purpose of the book remains the same as was for the previous editions—to fulfill the need for radiology and nuclear medicine professionals in their board examinations and practice.

The content of the book has been organized concisely in 14 chapters. Chapters 1 and 12 have no major change. In Chapter 2, information on detectors has been updated, and a new section on MR scanners and the principle of their operation has been added. Updated tables for specifications of PET, PET/CT, PET/MR, and animal scanners from different manufacturers have been incorporated. Chapter 3 contains a new section on PET/MR imaging. Iterative reconstruction method has been elaborated in Chapter 4. A table of PACS from different vendors has been added in Chapter 5. Chapter 6 contains a section on quality control of MR scanners. New positron emitting radionuclides with potential for human use have been included in Chapter 7, and similarly new PET radiopharmaceuticals have been added in Chapter 8. The original Chapter 9 has been split into two separate chapters to include FDA regulations in Chapter 9 and NRC regulations in Chapter 10 with updated information. Included in Chapter 11 is current updated information on reimbursement in healthcare. A new procedure for amyloid imaging in Alzheimer's patients using ¹⁸F-florbetapir PET/CT imaging has been detailed in Chapter 13. A new Chapter 14 contains special topics of interest, such as absorbed doses from ¹⁸F-FDG and ⁸²Rb-RbCl, SUV calculation in ¹⁸F-FDG tumor imaging, and the use of infusion pump in 82Rb-RbCl myocardial perfusion imaging, which were presented as appendices in past editions. In addition, four old appendices have been kept as before with minimal updating.

viii Preface

I would like to thank William C. Franz for his kind help in providing updated information on reimbursement in healthcare, which are included in Chapter 11. My special thanks are due to Ms Janet Foltin, Senior Editor, Clinical Medicine, of Springer Science and Business Media, Inc., who graciously encouraged and supported me in pursuing the third edition. I also sincerely thank Mr. Patrick Carr, production editor, for kind support in the production of the book. I would like to thank the SPi-Global of Chennai, India for the excellent production of the book.

Cleveland, OH, USA

Gopal B. Saha, PhD

Contents

Atomic Structure	1
Radioactive Decay	
Radioactive Decay	2
α Decay	2
β^- Decay	3
Positron (β^+) Decay	3
	4
	4
	5
	5
	8
	10
	10
	10
	11
	11
	13
	17
References and Suggested Reading	18
PET Scanning Systems	19
	19
Solid Scintillation Detectors	20
Semiconductor Detectors	23
Photomultiplier Tube	26
	27
	27
	30
	31
	33
	$ \alpha$ Decay $ \beta^-$ Decay Positron (β^+) Decay Electron Capture Isomeric Transition Radioactive Decay Equations General Decay Equations Successive Decay Equations Units of Radioactivity Units of Radioactivity in System Internationale Calculations Interaction of Radiation with Matter Interaction of Charged Particles with Matter Interaction of γ Radiation with Matter Questions References and Suggested Reading PET Scanning Systems Background Solid Scintillation Detectors

x Contents

	PET/CT Scanner	35
	PET/MR Scanner	41
	Principles of MR Imaging	41
	MR Scanner	45
	Commercial PET/MR Scanner	46
	Small-Animal PET/CT and PET/MR Scanner	50
	Mobile PET or PET/CT Scanner	52
	Questions	53
	References and Suggested Reading	54
3	Data Acquisition and Corrections	55
	PET Data Acquisition	55
	Time-of-Flight Method	60
	Two-Dimensional vs. Three-Dimensional Data Acquisition	61
	Factors Affecting Acquired PET Data	63
	Normalization	63
	Photon Attenuation	64
	Random Coincidences	67
	Scatter Coincidences	69
	Dead-Time Loss	72
	Depth of Interaction	74
		74 76
	PET/CT Data Acquisition	78
	Factors Affecting PET/CT Data	
	Positioning of Patient	78
	Metal Object	78
	Contrast Agent	78
	Truncation Effect	80
	Respiratory Movement	82
	PET/MR Data Acquisition	83
	Factors Affecting PET/MR Data	84
	Attenuation Correction	85
	Respiratory Movement	86
	Metal Object	86
	Truncation Effect	87
	Questions	87
	References and Suggested Reading	89
4	Image Reconstruction	91
	Introduction	91
	Simple Backprojection	91
	Filtered Backprojection	92
	The Fourier Method	93
	Types of Filters	94

Contents xi

	Iterative Reconstruction	97 103 105 106 107
5	Storage, Display, and PACS Introduction Storage Display Software and DICOM Picture Archiving and Communication Systems Electronic Health Record Teleradiology Questions References and Suggested Reading	109 109 109 111 113 113 118 119 119
6	Performance Characteristics of PET Scanners Introduction Spatial Resolution Sensitivity Noise Equivalent Count Rate Scatter Fraction Contrast Quality Control of PET Scanner Daily Quality Control Tests Weekly Quality Control Tests Quality Control of CT Scanner Quality Control of MR Scanner Acceptance Tests for PET Scanner Spatial Resolution Scatter Fraction Sensitivity Count Rate Loss and Random Coincidence Questions References and Suggested Reading	121 121 124 127 128 129 129 130 131 132 133 135 136 138 139 140
7	Cyclotron and Production of PET Radionuclides	143
	Introduction	143 143 146 146 149 151

xii Contents

	Production of Positron-Emitting Radionuclides	153
	Fluorine-18	153
	Carbon-11	155
	Nitrogen-13	155
	Oxygen-15	156
	Iodine-124	156
	Strontium-82	156
	Technetium-94m	157
	Germanium-68	157
	Gallium-68	157
	Copper-64	158
	Copper-62	158
	Yttrium-86	158
	Zirconium-89	158
	Questions	159
	References and Suggested Reading	159
0	Symthesis of DET Dedienbourgesoutisels	161
8	Synthesis of PET Radiopharmaceuticals	161
	Introduction	161
	Automated Synthesis Device	163
	PET Radiopharmaceuticals	163
	¹⁸ F-Fluorodeoxyglucose	164
	6- ¹⁸ F-L-Fluorodopa	165
	18F-Fluorothymidine	167
	¹⁸ F-O-(2-Fluoroethyl)-L-Tyrosine	167
	¹⁸ F-Fluoromisonidazole	167
	¹⁸ F-1-(5-Fluoro-5-Deoxy-α-Arabinofuranosyl)-2-Nitroimidazole	168
	¹⁸ F-Florbetapir	168
	r-rioroetapii	168
	<i>n</i> - ¹⁵ O-Butanol	169
	13N-Ammonia	169
	11C-Sodium Acetate	169
	11C-Flumazenil	170
	11C-Methylspiperone	170
	11C-L-Methionine	170
	C-L-Methioline	171
	11C-Choline	171
	62Cu-Pyruvaldehyde-Bis(N ⁴ -Methylthiosemicarbazonato)	1/1
		172
	Copper(II)	
	82Rb-Rubidium Chloride	172
		172
	Quality Control of PET Radiopharmaceuticals	173
	Methods of Quality Control	174 177
	Questions	177
	References and ouggested reading	1//

Contents xiii

9	FDA Regulations for PET Radiopharmaceuticals	179
	Food and Drug Administration	179
	Investigational New Drug	179
	New Drug Application	180
	Exploratory IND	181
	Radioactive Drug Research Committee	183
	Difference Between RDRC and Exploratory IND	183
	Expanded Access IND for PET Radiopharmaceutical	184
	Compounding of PET Radiopharmaceuticals	184
	Personnel	185
	Facility and Equipment	186
	Components, Materials, and Supplies	186
	Compounding Procedure Verification	186
	Dispensing of PET Radiopharmaceuticals	187
	Aseptic Technique	187
	Legal Requirements for Practicing PET	187
	License or Registration	188
	PET Certification for Technologists	190
	Accreditation of PET Facility	192
	Questions	195
	References and Suggested Reading	195
10	NRC Regulations for Radiation Protection in PET	197
	NRC Regulations for PET Radiopharmaceuticals	197
	Definitions	198
	Caution Signs and Labels	200
		200
	Radiation Safety Officer	200
	Radiation Safety Officer	
	Occupational Dose Limits	201
	Occupational Dose Limits	201 201
	Occupational Dose Limits	201 201 202
	Occupational Dose Limits	201 201 202 202 203 203
	Occupational Dose Limits	201 201 202 202 203
	Occupational Dose Limits	201 201 202 202 203 203
	Occupational Dose Limits Personnel Monitoring Receiving and Monitoring of Radioactive Packages ALARA Program Radioactive Waste Disposal Surveys for Radiation Exposure and Contamination Syringe and Vial Shields Use of Dose Calibrator	201 201 202 202 203 203 204 204 205
	Occupational Dose Limits	201 201 202 202 203 203 204 204
	Occupational Dose Limits Personnel Monitoring Receiving and Monitoring of Radioactive Packages ALARA Program Radioactive Waste Disposal Surveys for Radiation Exposure and Contamination Syringe and Vial Shields Use of Dose Calibrator Radioactive Spill Record Keeping	201 202 202 203 203 204 204 205 205 206
	Occupational Dose Limits Personnel Monitoring Receiving and Monitoring of Radioactive Packages ALARA Program Radioactive Waste Disposal Surveys for Radiation Exposure and Contamination Syringe and Vial Shields Use of Dose Calibrator Radioactive Spill	201 201 202 202 203 203 204 204 205 205
	Occupational Dose Limits Personnel Monitoring Receiving and Monitoring of Radioactive Packages ALARA Program Radioactive Waste Disposal Surveys for Radiation Exposure and Contamination Syringe and Vial Shields Use of Dose Calibrator Radioactive Spill Record Keeping	201 202 202 203 203 204 204 205 205 206 206
	Occupational Dose Limits Personnel Monitoring Receiving and Monitoring of Radioactive Packages ALARA Program Radioactive Waste Disposal Surveys for Radiation Exposure and Contamination Syringe and Vial Shields Use of Dose Calibrator Radioactive Spill Record Keeping Principles of Radiation Protection Time Distance	201 201 202 202 203 203 204 204 205 206 206 206 206
	Occupational Dose Limits Personnel Monitoring Receiving and Monitoring of Radioactive Packages ALARA Program Radioactive Waste Disposal Surveys for Radiation Exposure and Contamination Syringe and Vial Shields Use of Dose Calibrator Radioactive Spill Record Keeping Principles of Radiation Protection Time Distance Shielding	201 202 202 203 203 204 204 205 205 206 206 206 207
	Occupational Dose Limits Personnel Monitoring Receiving and Monitoring of Radioactive Packages ALARA Program Radioactive Waste Disposal Surveys for Radiation Exposure and Contamination Syringe and Vial Shields Use of Dose Calibrator Radioactive Spill Record Keeping Principles of Radiation Protection Time Distance	201 202 202 203 203 204 204 205 205 206 206 206

xiv Contents

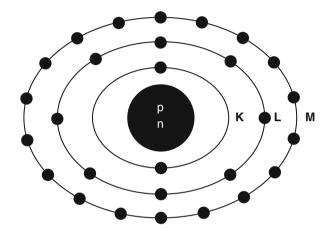
	Department of Transportation	210
	Distribution of ¹⁸ F-FDG	212
	Questions	213
	References and Suggested Reading	214
11	Reimbursement for PET Procedures	215
	Background	215
	Coverage	215
	Coding	216
	CPT, HCPCS, and APC Codes	216
	Diagnosis Codes	217
	Payment	217
	Hospital Inpatient Services: Medicare Part A	219
	Hospital Outpatient Services: Medicare Part B	219
	Payment for PET Radiopharmaceuticals	220
	Physician's Payment by Medicare	220
	Freestanding Facilities: Medicare	221
	Non-Medicare Payers: All Settings	221
	Billing	221
	Billing Process	222
	Chronology of Reimbursement for PET Procedures	223
	National Oncologic PET Registry	224
	Questions	225
	References and Suggested Reading	225
12	Design and Cost of PET Center	227
	Introduction	227
	Site Planning	228
	Passage	229
	PET Center	229
	Scanner Section	229
	Cyclotron Section	230
	Office Area	231
	Caveat	232
	Shielding	232
	Case Study	236
	Cost of PET/CT and Cyclotron Operation	237
	Questions	238
	References and Suggested Reading	239
13	Sample Procedures for PET Studies	241
	Introduction	241
	Whole-Body PET Imaging with ¹⁸ F-FDG	242
	Physician's Directive	242
	Patient Preparation	242
	Dosage Administration	242

Contents xv

	Scan	242
	Reconstruction and Storage	243
	Whole-Body PET/CT Imaging with ¹⁸ F-FDG	243
	Physician Directive	243
	Patient Preparation	244
	Dosage Administration	244
	Scan	244
	Reconstruction and Storage	245
	Amyloid-Plaque Imaging in Alzheimer's Patients Using	
	¹⁸ F-Florbetapir PET/CT	245
	Patient Preparation	245
	Dosage Administration	245
	Scan	245
	Reconstruction and Storage	246
	Myocardial Metabolic PET or PET/CT Imaging with ¹⁸ F-FDG	246
	Patient Preparation	246
	Dosage Administration	247
	Scan	247
	Reconstruction and Storage	247
	Myocardial Perfusion PET or PET/CT Imaging with 82Rb-RbCl	248
	Patient Preparation	248
	Dosage Administration and Scan	248
	Reconstruction and Storage	249
	References and Suggested Reading	249
14	Topics of Interest	251
	Estimated Absorbed Dose from Intravenous Administration	
	of ¹⁸ F-FDG and ⁸² Rb-RbCl in Humans	251
	Evaluation of Tumor Uptake of ¹⁸ F-FDG by PET	251
	Infusion Pump for ⁸² Sr ⁻⁸² Rb Generator	255
	Calculation of ⁸² Sr and ⁸⁵ Sr Breakthrough in ⁸² Rb Eluate	256
	Questions	257
	References and Suggested Reading	257
		250
App	pendix A: Abbreviations Used in the Text	259
Apj	pendix B: Terms Used in the Text	263
Apj	pendix C: Units and Constants	269
App	pendix D: Answers to Questions	271
Ind	ex	275

Chapter 1 Radioactive Decay and Interaction of Radiation with Matter

Atomic Structure


Matter is composed of atoms. An atom consists of a nucleus containing protons (Z) and neutrons (N), collectively called nucleons, and electrons rotating around the nucleus. The sum of neutrons and protons (total number of nucleons) is the mass number denoted by A. The properties of neutrons, protons, and electrons are listed in Table 1.1. The number of electrons in an atom is equal to the number of protons (atomic number Z) in the nucleus. The electrons rotate along different energy shells designated as K-shell, L-shell, M-shell, etc. (Fig. 1.1). Each shell further consists of subshells or orbitals, e.g., the K-shell has s orbital; the L-shell has s and p orbitals; the M-shell has s, p, and d orbitals, and the N-shell has s, p, d, and f orbitals. Each orbital can accommodate only a limited number of electrons. For example, the s orbital contains up to 2 electrons; the p orbital, 6 electrons; the d orbital, 10 electrons; and the f orbital, 14 electrons. The capacity number of electrons in each orbital adds up to give the maximum number of electrons that each energy shell can hold. Thus, the K-shell contains 2 electrons; the L-shell 8 electrons, the M-shell 18 electrons, and so forth.

A combination of a given number of protons and neutrons in a nucleus leads to an atom called the nuclide. A nuclide X is represented by ${}^A_Z X_N$. Some nuclides (280 or so) are stable, while others (more than 3400) are unstable. The unstable nuclides are termed the radionuclides, most of which are artificially produced in the cyclotron or reactor, with a few naturally occurring. The nuclides having the same number of protons are called the isotopes, e.g., ${}^{12}_{6}C_{6}$ and ${}^{13}_{6}C_{7}$; the nuclides having the same number of neutrons are called the isotones, e.g., ${}^{16}_{8}O_{8}$ and ${}^{15}_{7}N_{8}$; the nuclides having the same mass number are called the isobars, e.g., ${}^{131}I$ and ${}^{131}Xe$; and the nuclides with the same mass number but differing in energy are called the isomers, e.g., ${}^{99m}Tc$ and ${}^{99}Tc$.

1

Table 1.1 Characteristics of electrons and nucleons					
Particle	Charge	Mass (amu) ^a	Mass (kg)	Mass (MeV) ^b	
Electron	-1	0.000549	0.9108×10^{-30}	0.511	
Proton	+1	1.00728	1.6721×10^{-27}	938.78	
Neutron	0	1.00867	1.6744×10^{-27}	939.07	
^a amu = 1 atomic mass unit = 1.66×10^{-27} kg = $1/12$ of the mass of 12 C ^b 1 atomic mass unit = 931 MeV					

Fig. 1.1 Schematic structure of a ²⁸Ni atom. The nucleus containing protons and neutrons is at the center. The K-shell has 2 electrons, the L-shell 8 electrons, and the M-shell 18 electrons

Radioactive Decay

Radionuclides are unstable due to the unsuitable composition of neutrons and protons or excess energy and, therefore, decay by emission of radiations such as α particles, β^- particles, β^+ particles, electron capture, and isomeric transition.

α Decay

This decay occurs in heavy nuclei such as ²³⁵U and ²³⁹Pu. For example,

$$^{235}_{92}\mathrm{U}_{143} \to ^{231}_{90}\mathrm{Th}_{141} + \alpha$$
 (1.1)

Alpha particles are a nucleus of helium atom ${}_{2}^{4}\text{He}_{2}$ having two protons and two neutrons in the nucleus with two orbital electrons stripped off from the K-shell. The α particles are emitted with discrete energy and have a very short range in matter, e.g., about 0.03 mm in human tissues.

Radioactive Decay 3

β^{-} Decay

 β^- Decay occurs in radionuclides that are neutron rich. In the process, a neutron in the nucleus is converted to a proton along with the emission of a β^- particle and an antineutrino, $\overline{\nu}$.

$$n \to p + \beta^- + \overline{\nu} \tag{1.2}$$

For example,

$$^{131}_{53}$$
I₇₈ $\rightarrow ^{131}_{54}$ Xe₇₇ + β^- + \overline{v}

The energy difference between the two nuclides (i.e., between ^{131}I and ^{131}Xe in the above example) is called the decay energy or transition energy, which is shared between the β^- particle and the antineutrino $\overline{\nu}$. Because of the random nature of decay, β^- particles are emitted with a spectrum of energy with the transition energy as the maximum energy and with an average energy equal to one-third of the maximum energy.

Positron (β^+) Decay

When a radionuclide is proton rich, it decays by the emission of a positron (β^+) along with a neutrino ν . In essence, a proton in the nucleus is converted to a neutron in the process.

$$p = n + \beta^+ + v \tag{1.3}$$

Since a neutron is one electron mass heavier than a proton, the right-hand side of Eq. (1.3) is two electron mass more than the left-hand side, i.e., 2×0.511 MeV = 1.022 MeV more on the right side. For conservation of energy, therefore, the radionuclide must have a transition energy of at least 1.022 MeV to decay by β^+ emission. The energy beyond 1.022 MeV is shared as kinetic energy by the β^+ particle and the neutrino.

Some examples of positron-emitting nuclides are:

$${}^{18}_{9}F_{9} \rightarrow {}^{18}_{8}O_{10} + \beta^{+} + \nu$$

 ${}^{82}_{37}Rb_{45} \rightarrow {}^{82}_{36}Kr_{46} + \beta^{+} + \nu$

Positron emission tomography (PET) is based on the principle of coincidence detection of the two 511-keV photons arising from positron emitters, which will be discussed in detail later.

Electron Capture

When a radionuclide is proton rich, but has energy less than 1.022 MeV, then it decays by electron capture. In the process, an electron from the nearest shell, i.e., K-shell, is captured by a proton in the nucleus to produce a neutron, and a neutrino v is emitted to conserve energy.

$$p + e^{-} \rightarrow n + \nu \tag{1.4}$$

Note that when the transition energy is less than 1.022 MeV, the radionuclide definitely decays by electron capture. However, when the transition energy is more than 1.022 MeV, the radionuclide can decay by positron emission and/or electron capture. The greater the transition energy above 1.022 MeV, the more likely the radionuclide will decay by positron emission. Some examples of radionuclides decaying by electron capture are:

$$^{111}_{49} {
m In}_{62} + e^-
ightarrow ^{111}_{48} {
m Cd}_{63} +
u$$
 $^{67}_{31} {
m Ga}_{36} + e^-
ightarrow ^{67}_{30} {
m Zn}_{37} +
u$

Isomeric Transition

When a nucleus has excess energy above the ground state, it can exist in excited (energy) states, which are called the isomeric states. The lifetimes of these states normally are very short ($\sim 10^{-15}$ to 10^{-12} s); however, in some cases, the lifetime can be longer from minutes to years. When an isomeric state has a longer lifetime, it is called a metastable state and is represented by "m." Thus, having an energy state of 140 keV above ⁹⁹Tc and decaying with a half-life of 6 h, ^{99m}Tc is an isomer of ⁹⁹Tc.

$$^{99\text{m}}\text{Tc} \rightarrow ^{99}\text{Tc} + \gamma$$
 $^{113\text{m}}\text{In} \rightarrow ^{113}\text{In} + \gamma$

A radionuclide may decay by α , β^- , β^+ emissions, or electron capture to different isomeric states of the product nucleus, if allowed by the rules of quantum physics.

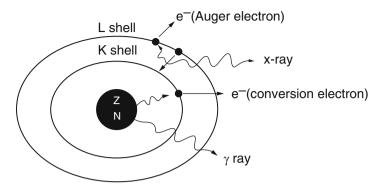


Fig. 1.2 γ -Ray emission and internal conversion process. In internal conversion process, the excitation energy of the nucleus is transferred to a K-shell electron, which is then ejected, and the K-shell vacancy is filled by an electron from the L-shell. The energy difference between the L-shell and K-shell appears as the characteristic K X-ray. The characteristic K X-ray energy may again be transferred to an L-shell electron, which is then ejected in the Auger process

Naturally, these isomeric states decay to lower isomeric states and finally to the ground states of the product nucleus, and the energy differences appear as γ -ray photons.

As an alternative to γ -ray emission, the excitation energy may be transferred to an electron, preferably in the K-shell, which is then ejected with energy $E_{\gamma}-E_{\rm B}$, where E_{γ} and $E_{\rm B}$ are the γ -ray energy and binding energy of the electron, respectively (Fig. 1.2). This process is called the internal conversion, and the ejected electron is called the conversion electron. The vacancy created in the K-shell is filled by the transition of an electron from an upper shell. The energy difference between the two shells appears as a characteristic K X-ray. Similarly, characteristic L X-ray and M X-ray can be emitted if the vacancy in the L- or M-shell is filled by electron transition from upper shells. Like γ rays, the characteristic X-ray energy can be emitted as photons or be transferred to an electron in a shell which is then ejected, if energetically possible. The latter is called the Auger process, and the ejected electron is called the Auger electron.

The decay of radionuclides is represented by a decay scheme, an example of which is given for 68 Ga in Fig. 1.3.

Radioactive Decay Equations

General Decay Equations

The atoms of a radioactive sample decay randomly, and one cannot tell which atom will decay when. One can only talk about an average decay of the atoms in the sample. This decay rate is proportional to the number of radioactive atoms present. Mathematically,

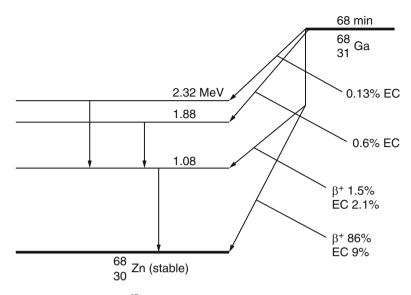


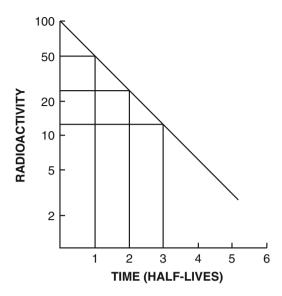
Fig. 1.3 The decay scheme of 68 Ga. The 87.5% of positrons are annihilated to give rise to 175% of 511-keV photons

$$-\frac{dN}{dt} = \lambda N,\tag{1.5}$$

where -dN/dt is the rate of decay denoted by the term activity or radioactivity A, λ is the decay constant, and N is the number of atoms of the radionuclide present. Thus,

$$A = \lambda N, \tag{1.6}$$

Integrating Eq. (1.5) gives the activity A_t at time t as


$$A_t = A_0 e^{-\lambda t}, (1.7)$$

where A_0 is the activity at time t = 0. The plot of A_t vs. t on a semilog scale is shown in Fig. 1.4. If one knows activity A_0 at a given time, the activity A_t at time t before or later can be calculated by Eq. (1.7).

Half-life ($t_{1/2}$): The half-life of a radionuclide is defined as the time required to reduce the initial activity to one-half. It is unique for every radionuclide and is related to the decay constant as follows:

$$\lambda = \frac{0.693}{t_{1/2}}.\tag{1.8}$$

Fig. 1.4 Plot of activity A_t against time on a semilogarithmic graph indicating a straight line. The slope of the line is the decay constant λ of the radionuclide. The half-life $t_{1/2}$ is calculated from λ using (1.8). Alternatively, the half-life is determined by reading an initial activity and half its value and their corresponding times. The difference in time between the two readings is the half-life

The half-life of a radionuclide is determined by measuring the radioactivity at different time intervals and plotting them on semilogarithmic paper, as shown in Fig. 1.4. An initial activity and half its value are read from the straight line, and the corresponding times are noted. The difference in time between the two readings gives the half-life of the radionuclide.

The mean life τ of a radionuclide is defined by

$$\tau = \frac{1}{\lambda} = \frac{t_{1/2}}{0.693} = 1.44t_{1/2}.$$
 (1.9)

A radionuclide decays by 63% in one mean life.

Effective half-life: Each radionuclide decays with a definite half-life, called the physical half-life, which is denoted by $T_{\rm p}$ or $t_{\rm L2}$. When radiopharmaceuticals are administered to patients, analogous to physical decay, they are eliminated from the body by biological processes such as fecal excretion, urinary excretion, and perspiration. This elimination is characterized by a biological half-life ($T_{\rm b}$) which is defined as the time taken to eliminate a half of the administered activity from the biological system. It is related to the decay constant $\lambda_{\rm b}$ by

$$\lambda_{\rm b} = \frac{0.693}{T_{\rm b}}.$$

Thus, in a biological system, the loss of a radiopharmaceutical is related to λ_p and λ_b . The net effective rate of loss (λ_e) is characterized by

$$\lambda_{\rm e} = \lambda_{\rm p} + \lambda_{\rm b}. \tag{1.10}$$

Since $\lambda = 0.693/t_{1/2}$,

$$\frac{1}{T_{\rm e}} = \frac{1}{T_{\rm p}} + \frac{1}{T_{\rm b}},\tag{1.11}$$

$$T_{\rm e} = \frac{T_{\rm p} \times T_{\rm b}}{T_{\rm p} + T_{\rm b}}.\tag{1.12}$$

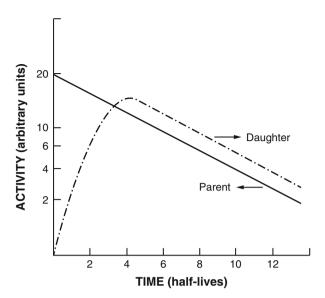
The effective half-life is always less than the shorter of $T_{\rm p}$ or $T_{\rm b}$. For a very long $T_{\rm p}$ and a short $T_{\rm b}$, $T_{\rm e}$ is almost equal to $T_{\rm b}$. Similarly, for a very long $T_{\rm b}$ and a short $T_{\rm p}$, $T_{\rm e}$ is almost equal to $T_{\rm p}$.

Successive Decay Equations

In a successive decay, a parent radionuclide p decays to a daughter nuclide d, and d in turn decays to another nuclide c, and we are interested in the decay rate of d over time. Thus,

$$p \rightarrow d \rightarrow c$$
.

Mathematically,


$$-\frac{dN_{\rm d}}{dt} = \lambda_{\rm p} N_{\rm p} - \lambda_{\rm d} N_{\rm d}. \tag{1.13}$$

On integration,

$$A_{\rm d} = \frac{\lambda_{\rm d} (A_{\rm p})_0}{\lambda_{\rm d} - \lambda_{\rm p}} \left[e^{-\lambda_{\rm p} t} - e^{-\lambda_{\rm d} t} \right]. \tag{1.14}$$

If the parent half-life is greater than the daughter half-life (say, by a factor of 10–100), that is, $(t_{1/2})_p > (t_{1/2})_d$ or $\lambda_d > \lambda_p$ and also if the time of decay (t) is very long, then $e^{-\lambda_d t}$ is almost zero compared to $e^{-\lambda_p t}$. Then

Fig. 1.5 The transient equilibrium is illustrated in the plot of activity vs. time on a semilogarithmic graph. The daughter activity increases initially with time, reaches a maximum, then transient equilibrium, and finally appears to decay following the half-life of the parent. Note that the daughter activity is higher than the parent activity in equilibrium

$$(A_{\rm d})_t = \frac{\lambda_{\rm d}}{\lambda_{\rm d} - \lambda_{\rm p}} (A_{\rm p})_t. \tag{1.15}$$

Equation (1.15) represents a *transient equilibrium* between the parent p and the daughter d radionuclides, which is achieved after several half-lives of the daughter. The graphical representation of this equilibrium is shown in Fig. 1.5. It can be seen that after equilibrium, the daughter activity is greater than the parent activity and the daughter appears to decay following the half-life of the parent. The principle of transient equilibrium is applied to many radionuclide generators such as the $^{99}\text{Mo}-^{99\text{m}}\text{Tc}$ generator.

If the parent half-life is much greater than the daughter half-life (by a factor of hundreds or thousands), then λ_p is negligible compared to λ_d , that is, $\lambda_d \gg \lambda_p$. Then Eq. (1.15) becomes

$$(A_{\rm d})_t = \left(A_{\rm p}\right)_t. \tag{1.16}$$

This equation represents a *secular equilibrium* in which the daughter activity becomes equal to the parent activity, and the daughter decays with the half-life of the parent. The ⁸²Sr⁸²Rb generator is an example of secular equilibrium.

Units of Radioactivity

1 Ci =
$$3.7 \times 10^{10}$$
 disintegration per second (dps)
1 mCi = 3.7×10^7 dps
1 μ Ci = 3.7×10^4 dps

Units of Radioactivity in System Internationale

```
1 Becquerel (Bq) = 1 dps

1 kBq = 10^3 dps = 2.7 \times 10^{-8} Ci

1 Mbq = 10^6 dps = 2.7 \times 10^{-5} Ci

1 GBq = 10^9 dps = 2.7 \times 10^{-2} Ci
```

Calculations

Problem 1.1 A dosage of ¹⁸F-FDG has 20 mCi at 10 a.m. Wednesday. Calculate the activity of the dosage at 7 a.m. and 2 p.m. that day. The half-life of ¹⁸ F is 110 min.

Answer:

$$\lambda \ \ for^{18}F = \frac{0.693}{110} min^{-1}$$
 Time from 7 a.m. to 10 a.m. = 43 h = 180 min
 Time from 10 a.m. to 2 a.m. = 4h = 240 min
 Activity of ¹⁸F-FDG at 7 a.m. = $20 \times e^{+\frac{0.693}{110} \times 180}$
 = $20 \times e^{+1.134}$
 = $62 \text{ mCi } (2.29 \text{ GBq})$
 Activity of ¹⁸F-FDG at 2 p.m. = $20 \times e^{-\frac{0.693 \times 240}{110}}$
 = $20 \times e^{-1.512}$
 = $20 \times 0.22 = 4.4 \text{ mCi } (163.1 \text{ MBq})$

Problem 1.2 A radioactive sample decays 40% per hour. What is the half-life of the radionuclide?

Answer:

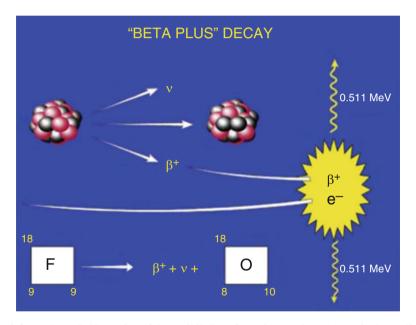
$$\lambda = 0.4 \, \mathrm{h}^{-1} = \frac{0.693}{t_{1/2}}$$

$$t_{1/2} = \frac{0.693}{0.4} = 1.73 \,\mathrm{h}.$$

Interaction of Radiation with Matter

Radiations are either particulate type, such as α particle and β particle, or nonparticulate type, such as high-frequency electromagnetic radiation (e.g., γ rays, X-rays), and both kinds are ionizing radiations. The mode of interaction of these two types of radiations with matter is different.

Interaction of Charged Particles with Matter


The energetic charged particles such as α particles and β particles, while passing through matter, lose their energy by interacting with the orbital electrons of the atoms in the matter. In these processes, the atoms are ionized in which the electron in the encounter is ejected or the atoms are excited in which the electron is raised to a higher energy state. In both excitation and ionization processes, chemical bonds in the molecules of the matter may be ruptured, forming a variety of chemical entities.

The lighter charged particles (e.g., β particles) move in a zigzag path in the matter, whereas the heavier particles (e.g., α particles) move in a straight path, because of the heavy mass and charge. The straight line path traversed by the charged particles is called the range R. The range of a charged particle depends on the energy, charge, and mass of the particle as well as the density of the matter it passes through. It increases with increasing charge and energy, while it decreases with increasing mass of the particle and increasing density of the matter. The range of positrons and other properties of common positron-emitters are given in Table 1.2.

A unique situation of the passage of positrons through an absorber is that as a positron loses its energy by interaction with electrons of the absorber atoms and comes to almost rest, it combines with an electron of an absorber atom. At this instant, both particles (β^+ and e^-) are annihilated as a result of matter–antimatter encounter to produce two photons of 511 keV, which are emitted in opposite directions (~180°) (Fig. 1.6). This process is called the *annihilation* process. Because the positrons have a residual momentum at the time of annihilation, the

Radionuclide range	Half-life	$E_{\beta+,\text{max}}$ (MeV)	Max. β^+ range (mm) in water	Average β^+ range (mm) in water
¹¹ C	20.4 min	0.97	3.8	0.85
¹³ N	10 min	1.20	5.0	1.15
¹⁵ O	2 min	1.74	8.0	1.80
¹⁸ F	110 min	0.64	2.2	0.46
⁶⁸ Ga ⁸² Rb	68 min	1.90	9.0	2.15
⁸² Rb	75 s	3.35	15.5	4.10

Adapted by the permission of the Society of Nuclear Medicine from Brown TF, Yasillo NJ (1997) Radiation safety considerations for PET centers. J Nucl Med Technol 25:98

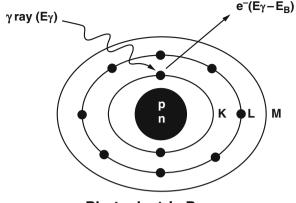


Fig. 1.6 A schematic illustration of the annihilation of a positron and an electron in the medium. Two 511-keV photons are produced and emitted in opposite directions (180°) (Reprinted with the permission of The Cleveland Clinic Center for Medical Art & Photography © 2009. All Rights Reserved)

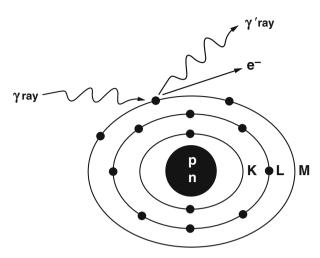
two annihilation photons are not emitted exactly at 180°. Detection of the two 511-keV photons in coincidence by two opposite detectors is the basis of PET.

An important parameter related to the interaction of radiations with matter is linear energy transfer (LET). It is the energy deposited by a radiation per unit length of the path in the absorber and is normally given in units of kiloelectron volt per micrometer (keV/ μ m). The LET varies with the energy, charge, and mass of the particle. The γ radiations and β^- particles interact with matter depositing relatively

Fig. 1.7 An illustration of photoelectric effect, where a γ ray transfers all its energy E_{γ} to a K-shell electron and the electron is ejected with E_{γ} – $E_{\rm B}$, where $E_{\rm B}$ is the binding energy of the electron in the K-shell. The characteristic K X-ray emission or the Auger process can follow, as described in Fig. 1.2

Photoelectric Process

less amount of energy per unit length and so have low LET. On the other hand, α particles and protons deposit more energy per unit length because of their greater mass and charge and so have higher LET.


Interaction of γ Radiation with Matter

In the spectrum of electromagnetic radiations, γ radiations are high-frequency radiations and interact with matter by three mechanisms: photoelectric, Compton, and pair production.

Photoelectric Process: In this process, a γ radiation, while passing through an absorber, transfers its entire energy primarily to an inner shell electron (e.g., the K-shell) of an absorber atom and ejects the electron (Fig. 1.7). The ejected electron will have the kinetic energy equal to E_{γ} – $E_{\rm B}$, where E_{γ} is the γ -ray energy and $E_{\rm B}$ is the binding energy of the electron in the shell. The probability of this process decreases with increasing energy of the γ ray, but increases with increasing atomic number of the absorber. It is roughly given by Z^5/E_{γ}^3 . The vacancy in the shell is filled in by the transition of an electron from the upper shell, which is followed by emission of the energy difference between the two shells as characteristic X-rays or by the Auger process described in the internal conversion process.

Compton Scattering Process: In a Compton scattering process, a γ radiation with somewhat higher energy interacts with an outer shell electron of the absorber atom transferring only part of its energy to the electron and ejecting it (Fig. 1.8). The ejected electron is called the Compton electron and carries a part of the γ -ray energy minus its binding energy E_B in the shell, i.e., $E_{\gamma}' - E_B$, where E_{γ}' is a part of the original γ ray energy E_{γ} that is transferred to the electron. The scattered photon carries energy equal to $E_{\gamma} - E_{\gamma}' - E_B$. Thus, in Compton scattering, a scattered photon and a Compton electron are produced. The scattered photon may again,

Fig. 1.8 The Compton scattering process in which a γ ray transfers only a part of its energy to an electron in a shell and is itself scattered with reduced energy. The electron is ejected from the shell with energy, E'_{ν} – E_B , where E'_{ν} is the partial energy transferred by the γ ray and $E_{\rm B}$ is the binding energy of the electron in the shell. The remaining γ -ray energy appears as a scattered photon

Compton Interaction

depending on the energy and location of interaction, encounter a photoelectric process or another Compton scattering process, or leave the absorber without interaction. As the energy of the γ radiation increases, the photoelectric process decreases and the Compton scattering process increases, but the latter also decreases with photon energy above 1.0 MeV or so. The probability of Compton scattering is independent of the atomic number Z of the absorber.

Pair Production: When the γ -ray energy is higher than 1.022 MeV, the photon interacts with the nucleus of an absorber atom during its passage through it and produces a positron and an electron. This is called pair production. The excess energy beyond 1.022 MeV is shared as kinetic energy between the two particles. The probability of pair production increases with increasing photon energy above 1.022 MeV. The positron produced will undergo annihilation in the absorber as described earlier.

Attenuation of γ Radiations: When γ radiations pass through the absorber medium, they undergo one or a combination of the above three processes (photoelectric, Compton, and pair production) depending on their energy, or they are transmitted out of the absorber without any interaction. The combined effect of the three processes is called the *attenuation* of the γ radiations (Fig. 1.9). For a γ radiation passing through an absorber, the linear attenuation coefficient (μ_{ℓ}) of the γ radiation is given by

$$\mu_{\ell} = \tau + \sigma + \kappa,\tag{1.17}$$

where τ is the photoelectric coefficient, σ is the Compton coefficient, and κ is the pair production coefficient (Fig. 1.10). The linear attenuation coefficient of a