Edition KWV

Christoph Stich

Produktionsplanung in der Automobil-industrie

Optimierung des Ressourceneinsatzes im Serienanlauf

Edition KWV

Die "Edition KWV" beinhaltet hochwertige Werke aus dem Bereich der Wirtschaftswissenschaften. Alle Werke in der Reihe erschienen ursprünglich im Kölner Wissenschaftsverlag, dessen Programm Springer Gabler 2018 übernommen hat.

Weitere Bände in der Reihe http://www.springer.com/series/16033

Christoph Stich

Produktionsplanung in der Automobilindustrie

Optimierung des Ressourceneinsatzes im Serienanlauf

Christoph Stich Capgemini Deutschland GmbH Stuttgart, Deutschland

Bis 2018 erschien der Titel im Kölner Wissenschaftsverlag, Köln

Edition KWV ISBN 978-3-658-26351-5 ISBN 978-3-658-26352-2 (eBook) https://doi.org/10.1007/978-3-658-26352-2

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Gabler

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2007, Nachdruck 2019 Ursprünglich erschienen bei Kölner Wissenschaftsverlag, Köln, 2007

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Gabler ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Vorwort

Wenn der Mensch sich etwas vornimmt, so ist ihm mehr möglich als man glaubt. Johann-Heinrich Pestalozzi

Die vorliegende Arbeit ist während meiner Tätigkeit als Mitarbeiter der DaimlerChrysler AG im Werk Sindelfingen in Zusammenarbeit mit dem Seminar für Allgemeine Betriebswirtschaftslehre, Supply Chain Management und Produktion (SCMP) der Universität zu Köln entstanden. Sie wurde im Februar 2007 von der Wirtschafts- und Sozialwissenschaftlichen Fakultät als Dissertation angenommen.

Diese Arbeit beschäftigt sich mit Planungsproblemen im Serienanlauf, wie sie gewöhnlich in der betrieblichen Praxis auftreten. Im Allgemeinen ist die angewandte Forschung bestrebt, Forschungsinhalte aus praktischen Problemen abzuleiten und durch wissenschaftlichen Fortschritt zu neuen, besseren Lösungen zu gelangen. Mit dem in dieser Arbeit entwickelten modellorientierten Problemlösungsansatz hoffe ich, diesem Bestreben möglichst weitgehend nachzukommen. An dieser Stelle möchte ich nun all denjenigen gebührend danken, die jeweils auf ihre Weise zum Gelingen dieser Arbeit beigetragen haben.

Mein ganz besonderer Dank gilt meinem akademischen Lehrer, Herrn Univ.-Prof. Dr. Horst Tempelmeier, für den von ihm gewährten wissenschaftlichen Freiraum, für seine stete Diskussionsbereitschaft und die vielen wertvollen Anregungen, die mich nicht zuletzt auch immer wieder zur kritischen Reflexion meiner Arbeit zwangen. Herrn Univ.-Prof. Dr. Ulrich W. Thonemann danke ich für die Anfertigung des Zweitgutachtens, Herrn Univ.-Prof. Dr. Dr. Ulrich Derigs für die Übernahme des Vorsitzes in der Prüfungskommission.

Darüber hinaus danke ich sehr herzlich Herrn Dipl.-Ing. Matthias Eisenschmid und Herrn Dr. Ferdinand Blömer, für die Möglichkeit zur Anfertigung einer Dissertation in ihrem Bereich, für ihre Einführung in die interessante "Welt" der Anlaufprobleme sowie ihre stete Betreuung und Förderung. Ebenso danke ich allen fest und allen befristet angestellten ehemaligen Kollegen der Abteilung für ihre Unterstützung, für die äußerst angenehme Arbeitsatmosphäre und die zahlreichen mal mehr, mal weniger fachlichen Diskussionen.

Bedanken möchte ich mich zudem bei allen Mitarbeitern des Seminars. Sie haben mich als sog. "Externer" von Beginn an hervorragend integriert und sind mir stets mit großer

VI Vorwort

Hilfsbereitschaft entgegengetreten. Ein ganz herzlicher Dank gebührt vor allem Herrn Dr. Michael Manitz für seine vielen wertvollen Hinweise und Anregungen sowie für die eingehende Korrektur des Manuskripts.

Meinen Eltern danke ich dafür, dass sie mir eine solche Ausbildung ermöglicht haben und mir stets den notwendigen Rückhalt gaben. Zu guter Letzt richtet sich mein Dank an meine Freundin Mercedes. Sie hat mich während der gesamten Entstehungszeit begleitet und dabei auf viele gemeinsame Stunden verzichtet. Ihr Verständnis, ihre Geduld und ihre motivierenden Worte gaben mir immer wieder den entscheidenden Ansporn voranzuschreiten. Mercedes, te doy las gracias.

Köln, Februar 2007

Christoph Stich

Inhaltsverzeichnis

V	Vorwort	V
A	Abbildungsverzeichnis	XIII
T	Tabellenverzeichnis	XV
Sy	ymbolverzeichnis	. XVII
A	Abkürzungsverzeichnis	XXVII
1	Gegenstand und Gang der Arbeit	1
2	Der Serienanlauf als Planungsumfeld	5
	2.1 Begriff des Serienanlaufs	5
	2.2 Phasen des Serienanlaufs	6
	2.2.1 Vorserie	7
	2.2.2 Nullserie	8
	2.2.3 Produktionshochlauf	8
	2.3 Anlauftypen	9
	2.4 Literaturüberblick über Probleme und Lösungsansätze im Serienanlauf	10
	2.5 Planungsprobleme und -ebenen der Produktionsplanung und -steuerung	14
	2.6 Produktionsprogrammplanung	16
	2.7 Produktprogrammverfügbarkeitsplanung	18
	2.8 Einordnung des Problems in den Planungskontext	22
	2.9 Strukturdefekte des Planungsproblems	24
3	Abbildung variantenreicher Erzeugnisse	27
	3.1 Abbildungsebenen	27
	3.2 Produktebene	28
	3.2.1 Funktion der Produktebene	29

	5.1	Einordnung d	ler entwickelten Modelle in Modelltypen	87
5	Opt	timierungsm	odelle zur Abbildung des MEPVP	87
	4.7	Fazit		85
	4.6	Plananpassun	g und -fortschreibung	83
	4.5	Zielkriterien		81
		4.4.2.4	Unterschiedlichkeit der Auswahl	81
		4.4.2.3	-	
		4.4.2.2	Interpretation der Auswahl	
		4.4.2.1	Abbildung des Produktprogramms	
			e Restriktionen	
			Restriktionen	
		C		
			ernativen	
			geprognose, Stückdeckungsbeitrag und Beschaffungskapazität	
		_	insatzkosten zur Aufholung eines Entwicklungsverzug	
			neter	
		O 1	II (WIEI VI)	
4		U	e, einperiodige Produktprogrammverfügbarkeits- m (MEPVP)	55
		3.3.4.4	Integration von Strukturinformationen	47
		3.3.4.3	Sekundärbedarfsbestimmung	
		3.3.4.2	Coderegeln als Boole'sche Terme	
		3.3.4.1	Funktionsweise	
		3.3.4 Offene	Variantenstückliste: Die regelbasierte Komplexstückliste	
		3.3.3 Geschlo	ossene Variantenstücklisten	40
		3.3.2 Problem	ne bei der Abbildung variantenreicher Erzeugnisse	37
		3.3.1 Erzeugr	nisstruktur und Stücklistenarten	35
	3.3	Technische E	bene	35
		3.2.4 Restrikt	ionen zwischen Merkmalsausprägungen	33
		3.2.3 Implizit	e und explizite Produktdefinition	31
		3.2.2 Klassifiz	zierung von Merkmalen	31

	5.2	Ubersicht über die entwickelten Modelle und die Gliederung des Kapitels	90
	5.3	Mengen-, Parameter- und Variablendefinitionen	91
	5.4	Verfügbarkeitsplanung mit einzelnen Varianten	93
		5.4.1 Minimierungsmodell	93
		5.4.2 Erweiterungsmöglichkeiten des Minimierungsmodells	99
		5.4.3 Maximierungsmodell	. 101
		5.4.4 Erweiterungsmöglichkeiten des Maximierungsmodells	. 103
		5.4.5 Kritische Beurteilung	. 104
	5.5	Verfügbarkeitsplanung mit Variantenmengen	. 104
		5.5.1 Geschlossene Variantenmengen	. 105
		5.5.2 Semi-offene Variantenmengen (Das MEPVP-Modell)	. 112
		5.5.3 Offene Variantenmengen	. 117
		5.5.4 Erweiterungsmöglichkeiten	. 119
		5.5.5 Kritische Beurteilung	. 119
6	Mö	gliche Lösungsansätze für das MEPVP	121
	6.1	Verallgemeinerung des MEPVP-Modells	. 121
	6.2	Einordnung des MEPVP in die Systematik der Knapsack-Probleme	. 122
		6.2.1 Multi-dimensionales Knapsack-Problem (MDKP)	. 123
		6.2.2 Multiples Knapsack-Problem (MKP)	. 124
		6.2.3 Vergleich des MEPVP mit dem MDKP und dem MKP	. 125
	6.3	Komplexität des MEPVP	. 128
		6.3.1 Empirische Überlegungen	. 128
		6.3.2 Komplexitätstheoretische Betrachtung	. 129
	6.4	Diskussion von Lösungsverfahren	. 134
		6.4.1 Anforderungen an ein Lösungsverfahren für das MEPVP	. 135
		6.4.2 Exakte Lösungsverfahren	. 136
		6.4.3 Heuristische Lösungsverfahren	. 138
		6.4.4 Auswahlentscheidung und deren Begründung	. 147
7	Ein	heuristischer Lösungsansatz für das MEPVP	. 149

X Inhaltsverzeichnis

	7.2	0 0	von Stücklisteninformationen in die Produktebene als Vorstu	
		7.2.1 Prinzip		150
		7.2.2 Sekunda	ärbedarfsbestimmung bei ausgelagerten Stücklisteninformatio	onen . 152
		7.2.3 Auslage	rung von Baubarkeitsregeln	154
		7.2.4 Auslage	rung von Zusteuerungsregeln	156
		7.2.5 Vereinf	achung von Coderegeln	158
		7.2.6 Anwend	dung am Beispiel	161
	7.3	Greedy Rand	omized Adaptive Search Procedure (GRASP)	163
	7.4	Tabu-Search.		166
		7.4.1 Basisalg	orithmus	166
		7.4.2 Erweite	rungen	170
	7.5	Konzeption o	ler Algorithmen für das MEPVP	172
		7.5.1 Definiti	onen und algorithmische Grundlagen	172
		7.5.2 GRASP	als Eröffnungsverfahren	179
		7.5.2.1	Überblick über den Algorithmus	179
		7.5.2.2	Konstruktionsphase	180
		7.5.2.3	Lokale Suche	188
		7.5.3 Tabu-Se	earch als Verbesserungsverfahren	193
		7.5.3.1	Überblick über den Algorithmus	193
		7.5.3.2	Erzeugung der Nachbarschaft	200
		7.5.3.3	Auswahl des besten Zugs	205
		7.5.3.4	Exploration, Intensivierung und Diversifikation	207
8	En	npirische Ana	lyse des heuristischen Lösungsansatzes	211
	8.1	Übersicht übe	er die Probleminstanzen	212
		8.1.1 Beschre	ibung der Probleminstanzen	212
		8.1.2 Künstli	che Probleminstanzen	213
		8.1.3 Reale P	robleminstanzen	214
	8.2	Empirische A	analyse von GRASP	215
	8.3	Empirische A	analyse von Tabu-Search	219
9	Sch	nlussbetracht	ung und Ausblick	229

Xl

Anhang	. 231
8	
Literaturverzeichnis	. 235

Abbildungsverzeichnis

Abb. 2.1: Phasen des Serienanlaufs	7
Abb. 2.2: Literaturüberblick über Lösungsansätze im Serienanlauf und Branchen (Teil I)	12
Abb. 2.3: Literaturüberblick über Lösungsansätze im Serienanlauf und Branchen (Teil II)	13
Abb. 2.4: Produktprogramm einer Produktserie	17
Abb. 2.5: Störungen in der Entwicklungs- und Anlaufphase als Problemursache	21
Abb. 2.6: Einordnung des Planungsproblems in den Planungskontext einer hierarchischen Produktionsprogrammplanung	23
Abb. 3.1: Zusammenhang der drei Abbildungsebenen	28
Abb. 3.2: Erzeugnisdarstellung in Listen	36
Abb. 3.3: Struktur von einfachen und von variantenreichen Erzeugnissen	38
Abb. 3.4: Repräsentation von Coderegeln mit Hilfe von Mengen	46
Abb. 3.5: Neutrales Produktschema einer Fahrzeugserie	49
Abb. 3.6: Kurze und lange Coderegeln als nicht-disjunkte und disjunkte Mengen	51
Abb. 4.1: Unstetige Plan- und Ist-Reifegradentwicklung eines Teils i	59
Abb. 4.2: Stetige Plan- und Ist-Reifegradentwicklung eines Teils $\it i$	60
Abb. 4.3: Aufholen des Entwicklungsverzugs eines Teils i	63
Abb. 4.4: Kostensatzfunktion für den zusätzlichen Faktoreinsatz pro Zeiteinheit eines Teils i	65
Abb. 4.5: Zeitlicher Verlauf des Faktoreinsatzes pro Zeiteinheit und des Entwicklungsverzugs eines Teils i	66
Abb. 4.6: Eine zulässige Lösung des MEPVP	69
Abb. 4.7: Produktprogramm zur Beispielstückliste	73
Abb. 4.8: Logische Restriktionen zur Interpretation einer Auswahl von Teilen	78
Abb. 4.9: Zielhierarchie für das MEPVP	82
Abb. 4.10: Plananpassung für das MEPVP	84
Abb. 5.1: Übersicht über die entwickelten Modelle und die Gliederung des Kapitels	90
Abb. 7.1: Überblick über die verfolgten Lösungsansätze für das MEPVP	149
Abb. 7.2: Prinzip der Auslagerung von Stücklisteninformationen in die Produktebene	151

XIV Abbildungsverzeichnis

Abb. 7.3: Sekundärbedarfsbestimmung mit vorgelagerter Zusteuerung und Zulässigkeitsprüfung	bei einer
regelbasierten Komplexstückliste mit ausgelagerten Stücklisteninformationen	153
Abb. 7.4: Vorgehensweise zur Reduzierung von Coderegeln	158
Abb. 7.5: Darstellung der direkten zwingenden positiven Restriktionen zwischen Codes als Digra	ph 160
Abb. 7.6: GRASP-Algorithmus	164
Abb. 7.7: Tabu-Search-Algorithmus	167
Abb. 7.8: Aufteilung der Menge aller Codes bezüglich einer semi-offenen Variantenmenge d	176
Abb. 7.9: Aufteilung der Menge aller Teile bezüglich einer semi-offenen Variantenmenge d	178
Abb. 7.10: Überblick über den Ablauf von GRASP für das MEPVP	180
Abb. 7.11: Ablauf der zufälligen Auswahl von \overline{d} Produkttypen	182
Abb. 7.12: Ablauf des Semi-Greedy-Algorithmus für das MEPVP	185
Abb. 7.13: Ablauf der Methode Zusteuerung()	187
Abb. 7.14: Ablauf der lokalen Suche für das MEPVP	190
Abb. 7.15: Überblick über den Ablauf von Tabu-Search für das MEPVP	199
Abb. 7.16: Ablauf zur Erzeugung von Add-Zügen	200
Abb. 7.17: Ablauf der Methode bestimmeHinzukommendeCodes()	201
Abb. 7.18: Ablauf der Methode repariereBaubarkeitsregel()	202
Abb. 7.19: Ablauf zur Erzeugung von Drop-Zügen	203
Abb. 7.20: Ablauf der Methode bestimmeZuEntfernendeCodes()	204
Abb. 7.21: Ablauf der strategischen Oszillation	207
Abb. 7.22: Zusammenspiel von Exploration, Intensivierung und Diversifikation	209

Tabellenverzeichnis

Tab. 3.1: Verzeichnis der Merkmalsausprägungen und Codes für ein Automobil	30
Tab. 3.2: Verzeichnis der Merkmalsausprägungen und Codes für einen Motor	32
Tab. 3.3: Implizite Produktdefinition	32
Tab. 3.4: Explizite Produktdefinition	32
Tab. 3.5: Klasseninterne Restriktionen	33
Tab. 3.6: Sekundärbedarf für die einzelnen Motorvarianten	42
Tab. 3.7: Regelbasierte Komplexstückliste ohne Struktur	43
Tab. 3.8: Regelbasierte Komplexstückliste mit der Gruppierung von Alternativteilen in Positionen	50
Tab. 3.9: Regelbasierte Komplexstückliste mit vierstufiger Struktur	54
Tab. 4.1: Beispielstückliste	73
Tab. 4.2: Möglichkeiten zur Abbildung von Varianten durch Teilmengen d von Codes	74
Tab. 4.3: Möglichkeiten zur Abbildung der Fahrzeugvarianten durch Teilmengen von Codes im Beispiel	76
Tab. 4.4: Möglichkeiten zur Abbildung des MEPVP	85
Tab. 5.1: Übersicht über Modelltypen	88
Tab. 5.2: Beispielstückliste	95
Tab. 5.3: Verzeichnis der Merkmalsausprägungen und Codes zur Beispielstückliste	95
Tab. 5.4: Beispielstückliste	107
Tab. 5.5: Verzeichnis der Merkmalsausprägungen und Codes zur Beispielstückliste	108
Tab. 6.1: Charakterisierung des MEPVP, des MDKP und des MKP	127
Tab. 6.2: Stückliste zu der betrachteten MEPVP-Instanz	133
Tab. 6.3: Zusammenfassende Gegenüberstellung der Vor- und Nachteile ausgewählter heuristischer Verfahren	146
Tab. 7.1: Codeliste zur Beispielstückliste	162
Tab. 7.2: Reduzierte Beispielstückliste	163
Tab. 7.3: Repräsentation der Variablen γ_{cd}	177
Tab. 7.4: Repräsentation der Variablen $ \xi_i $	179
Tab. 7.5: Auswahl des besten Zugs nach Phasen	206
Tab. 8.1: Übersicht über die Strukturmerkmale der künstlichen Probleminstanzklassen	213

XVI Tabellenverzeichnis

Tab. 8.2: Übersicht über die Strukturmerkmale der realen Probleminstanzklassen	214
Tab. 8.3: Parametereinstellungen von GRASP für die künstlichen Probleminstanzen	216
Tab. 8.4: Ergebnisse der empirischen Analyse von GRASP mit den künstlichen Probleminstanzen	217
Tab. 8.5: Parametereinstellungen von GRASP für die realen Probleminstanzen	218
Tab. 8.6: Ergebnisse der empirischen Analyse von GRASP mit den realen Probleminstanzen	219
Tab. 8.7: Parametereinstellungen von Tabu-Search für die künstlichen Probleminstanzen	221
Tab. 8.8: Ergebnisse der empirischen Analyse von Tabu-Search als Eröffnungsverfahren mit den künstlichen Probleminstanzen	222
Tab. 8.9: Ergebnisse der empirischen Analyse von Tabu-Search als Verbesserungsverfahren mit den k\u00fcnstliche Probleminstanzen	n 224
Tab. 8.10: Parametereinstellungen von Tabu-Search für die realen Probleminstanzen	225
Tab. 8.11: Ergebnisse der empirischen Analyse von Tabu-Search als Eröffnungs- und als Verbesserungsverfahr mit den realen Probleminstanzen	en 226

Symbolverzeichnis

Mengen

0 leere Menge

A eine beliebige Teilmenge der Menge C

BC Menge aller Basiscodes c

 BC_A Menge der Basiscodes c der Teilmenge A der Menge C

 BC_d Menge aller Basiscodes c der Teilmenge bzw. des Produkttyps d

C Menge aller Codes c

 C_m Menge aller Codes c der Merkmalsausprägungen des Merkmals m

 C^{Mind} Menge aller Codes c, die in jeder Teilmenge d als Mindestausstattung enthalten sein

müssen ($C^{Mind} \subset C$)

 C^n eine beliebige Teilmenge der Menge C

 C_d^{alt} Menge aller Codes c (Basiscodes und Zusatzcodes) der aktuellen semi-offenen

Variantenmenge des Produkttyps d

 $C_{d}^{akt,fix}$ Menge aller Codes c, die auf Grund einer Intensivierungsphase oder einer

Diversifikationsphase in der aktuellen semi-offenen Variantenmenge des Produkttyps d

fixiert sind

 C_{μ}^{uncul} Menge aller unzulässigen Codes der semi-offenen Variantenmenge des Produkttyps d

 $C_d^{unzul, temp}$ Menge aller temporär unzulässigen Codes der semi-offenen Variantenmenge des

Produkttyps d

 C_d^{zul} Menge aller zulässigen Zusatzcodes der semi-offenen Variantenmenge des Produkttyps

d

 $C_t^{NBB_c}$ Menge aller Codes c des Konjunktionsterms t der negativen Baubarkeitsregel NBB_c des

Codes c

 $C_{t}^{PBB_{c}}$ Menge aller Codes c des Konjunktionsterms t der positiven Baubarkeitsregel PBB_{c} des

Codes c

D Menge aller Produkttypen d

 \overline{D} Menge aller zu erzeugenden Teilmengen d ($\overline{D} = 1,...,\overline{d}$)

XVIII Symbolverzeichnis

EC_{cd}^{akt}	Menge aller Codes c (inklusive dem Primärcode), die zur Einhaltung der logischen Restriktionen aus der semi-offenen Variantenmenge des Produkttyps d zusammen entfernt werden müssen
$EC_{cd}^{akt,rep}$	Teilmenge der Menge EC_{cd}^{akt}
$HC_{cd}^{\ akt}$	Menge aller Codes c (inklusive dem Primärcode), die zusammen in die semi-offene Variantenmenge des Produkttyps d zur Einhaltung der logischen Restriktionen aufgenommen werden müssen
$HC_{cd}^{akt,ges}$	Menge, die mehrere Mengen HC_{cd}^{akt} vereinigt
I	Menge aller Teile i in der Stückliste
I_d	Menge aller Basisteile i der semi-offenen Variantenmenge des Produkttyps d
I_p	Menge aller Teile i in der Position p
I_{cd}^{akt}	Menge aller Teile i , die zur Menge I_d^{akt} von Teilen hinzugefügt werden müssen, falls der Primärcode c und die durch ihn zugesteuerten Codes der Menge ZC_{cd} in der aktuellen Iteration in die semi-offene Variantenmenge des Produkttyps d aufgenommen werden
I_d^{akt}	Menge aller Teile i (Basisteile und Zusatzteile) der aktuellen semi-offenen Variantenmenge des Produkttyps d
$oldsymbol{J}_{ip}$	Menge aller Konjunktionsterme j der langen Coderegel des Teils i in der Position p
J^{BB_c}	Menge aller Konjunktionsterme j der Baubarkeitsregel des Codes c
$J^{\it NBB_c}$	Menge aller Konjunktionsterme $\it t$ der negativen Baubarkeitsregel des Codes $\it c$
$J^{\it PBB_c}$	Menge aller Konjunktionsterme t der positiven Baubarkeitsregel des Codes c
J^{ZB_c}	Menge aller Konjunktionsterme j der Zusteuerungsregel des Codes c
$J_{\it ip}^{\it kurz}$	Menge aller Konjunktionsterme j der kurzen Coderegel des Teils i in der Position p
M^{BT}	Menge von Boole'schen Termen
IN	Menge der natürlichen Zahlen
NC_{ipj}	Menge aller Codes c der negativen Codemenge des Konjunktionsterms j der langen Coderegel des Teils i in der Position p
NC^{kurz}_{ipj}	Menge aller Codes c der negativen Codemenge des Konjunktionsterms j der kurzen Coderegel des Teils i in der Position p
$NC_{ipj}^{\ red}$	Menge aller Codes c der reduzierten negativen Codemenge des Konjunktionsterms j der Coderegel des Teils i in der Position p
$NC_j^{BB_c}$	Menge aller Codes c der negativen Codemenge des Konjunktionsterms j der Baubarkeitsregel des Codes c
$NC_j^{ZB_c}$	Menge aller Codes c der negativen Codemenge des Konjunktionsterms j der Zusteuerungsregel des Codes c
P	Menge aller Positionen p in der Stückliste
P(C)	Potenzmenge der Menge C

Symbolverzeichnis XIX

P(X)	Menge der Nachbarschaften $N(x)$ aller Lösungen x
PC_{ipj}	Menge aller Codes c der positiven Codemenge des Konjunktionsterms j der langen Coderegel des Teils i in der Position p
PC_{ipj}^{kurz}	Menge aller Codes c der positiven Codemenge des Konjunktionsterms j der kurzen Coderegel des Teils i in der Position p
$PC_{ipj}^{\it red}$	Menge aller Codes c der reduzierten positiven Codemenge des Konjunktionsterms j der Coderegel des Teils i in der Position p
$PC_{j}^{BB_{c}}$	Menge aller Codes der positiven Codemenge des Konjunktionsterms j der Baubarkeitsregel des Codes c
$PC_{j}^{ZB_{c}}$	Menge aller Codes der positiven Codemenge des Konjunktionsterms j der Zusteuerungsregel des Codes c
IR	Menge der reellen Zahlen
R	Menge aller diskreten Reifegrade $R = \{r_0,, r_n\}$
$RC_{cd}^{\ akt}$	Menge aller Codes c_{\cdot} die zur Reparatur der Baubarkeitsregel von Code c_{\cdot} in die semi-offene Variantenmenge des Produkttyps d_{\cdot} aufgenommen werden müssen
$SZK^{ipj}_{\ \ w}$	Menge aller Codes c der w -ten streng zusammenhängenden Komponente des Digraphen der direkten zwingenden positiven Restriktionen der Codes der positiven Codemenge PC_{ipj}
W	Menge aller streng zusammenhängenden Komponenten w des betrachteten Digraphen
Ω	Menge aller (Teil i , Position p)-Kombinationen in der Stückliste
X	Menge der Lösungen x eines beliebigen Problems
ZC_d	Menge aller Codes c , die durch die Menge BC_d der Basiscodes der semi-offenen Variantenmenge des Produkttyps d zugesteuert werden, d. h., zusammen mit den Basiscodes immer in der semi-offenen Variantenmenge d enthalten sein müssen
ZPC_{ipj}	Menge aller Codes c der direkten zwingenden positiven Restriktionen der Codes der positiven Codemenge PC_{ipj}
ZC_{cd}^{akt}	Menge aller Codes c_{\cdot} , die bei Aufnahme des Primärcodes c_{\cdot} in der aktuellen Iteration zur Einhaltung der logischen Restriktionen der semi-offenen Variantenmenge des Produkttyps d_{\cdot} zugesteuert bzw. ebenfalls hinzugefügt werden müssen
$ZC_{cd}^{\ akt,rep}$	Menge aller Codes c_{\cdot} die in der aktuellen Iteration bei Aufruf der Reparaturfunktion zurückgegeben werden
$ZC^{akt,temp}_{cd}$	Menge aller Codes c , die im aktuellen Zusteuerungsdurchlauf (temporär) bei Aufnahme des Primärcodes c in der aktuellen Iteration der semi-offenen Variantenmenge des Produkttyps d zugesteuert werden

Variablen

 a_{l} eine beliebige Boole'sche Variable

XX Symbolverzeichnis

α eine beliebige Boole'sche Variable β eine beliebige Boole'sche Variable c, c' Boole'sche Variablen (Codes) χ eine beliebige Boole'sche Variable δ_{ipj} Binärvariable, die den Wert 1 annimmt, falls der Konjunktionsterm j der Coderege Teils i in der Position p in der Auswahl (Lösung) enthalten ist, 0 sonst δ_{ipjd} Binärvariable, die den Wert 1 annimmt, falls der Konjunktionsterm j der Coderege Teils i in der Position p in der Teilmenge d der Lösung enthalten ist, 0 sonst ε_d Binärvariable, die den Wert 1 annimmt, falls die Teilmenge bzw. der Produkttyp d wählt wird, 0 sonst γ_c Binärvariable, die den Wert 1 annimmt, falls der Code c in der Auswahl (Lösung) et ten ist, 0 sonst γ_{cd} Binärvariable, die den Wert 1 annimmt, falls der Code c in der Teilmenge d der Lenthalten ist, 0 sonst $\eta_{cdd'}$ (Hilfs-)Variable, die sicherstellt, dass sich die Teilmengen d und d' der Lösung im c unterscheiden λ_{ip} Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i in der Positie in der Auswahl (Lösung) enthalten ist, 0 sonst ξ_i Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i in der Positie in der Teilmenge d der Lösung enthalten ist, 0 sonst ξ_i Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i in der Positie in der Teilmenge d der Lösung enthalten ist, 0 sonst
\mathcal{L}_{ipj} eine beliebige Boole'sche Variable (Codes) \mathcal{L}_{ipj} eine beliebige Boole'sche Variable \mathcal{L}_{ipj} Binärvariable, die den Wert 1 annimmt, falls der Konjunktionsterm j der Coderege Teils i in der Position p in der Auswahl (Lösung) enthalten ist, 0 sonst \mathcal{L}_{ipjd} Binärvariable, die den Wert 1 annimmt, falls der Konjunktionsterm j der Coderege Teils i in der Position p in der Teilmenge d der Lösung enthalten ist, 0 sonst \mathcal{L}_{ipjd} Binärvariable, die den Wert 1 annimmt, falls die Teilmenge bzw. der Produkttyp d wählt wird, 0 sonst \mathcal{L}_{ipjd} Binärvariable, die den Wert 1 annimmt, falls der Code c in der Auswahl (Lösung) et ten ist, 0 sonst \mathcal{L}_{ipjd} Binärvariable, die den Wert 1 annimmt, falls der Code c in der Teilmenge d der Lenthalten ist, 0 sonst \mathcal{L}_{ipjd} (Hilfs-)Variable, die sicherstellt, dass sich die Teilmengen d und d 0 der Lösung im c 0 unterscheiden \mathcal{L}_{ipjd} Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i 1 in der Positic in der Auswahl (Lösung) enthalten ist, 0 sonst \mathcal{L}_{ipjd} Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i 2 in der Positic in der Auswahl (Lösung) enthalten ist, 0 sonst
$ \mathcal{X} \qquad \text{eine beliebige Boole's che Variable} \\ \mathcal{S}_{ipj} \qquad \text{Binärvariable, die den Wert 1 annimmt, falls der Konjunktionsterm } j \text{ der Coderege Teils } i \text{ in der Position } p \text{ in der Auswahl (Lösung) enthalten ist, 0 sonst} \\ \mathcal{S}_{ipjd} \qquad \text{Binärvariable, die den Wert 1 annimmt, falls der Konjunktionsterm } j \text{ der Coderege Teils } i \text{ in der Position } p \text{ in der Teilmenge } d \text{ der Lösung enthalten ist, 0 sonst} \\ \mathcal{E}_d \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Teilmenge bzw. der Produkttyp } d \text{ wählt wird, 0 sonst} \\ \mathcal{Y}_c \qquad \text{Binärvariable, die den Wert 1 annimmt, falls der Code } c \text{ in der Auswahl (Lösung) et en ist, 0 sonst} \\ \mathcal{Y}_{cd} \qquad \text{Binärvariable, die den Wert 1 annimmt, falls der Code } c \text{ in der Teilmenge } d \text{ der Lenthalten ist, 0 sonst} \\ \mathcal{H}_{cdd} \qquad \text{(Hilfs-)Variable, die sicherstellt, dass sich die Teilmengen } d \text{ und } d' \text{ der Lösung im } c \text{ unterscheiden} \\ \mathcal{A}_{ip} \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils } i \text{ in der Position in der Auswahl (Lösung) enthalten ist, 0 sonst} \\ \mathcal{A}_{ipd} \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils } i \text{ in der Position in der Teilmenge} } d \text{ der Lösung enthalten ist, 0 sonst} \\ \mathcal{A}_{ipd} \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils } i \text{ in der Position in der Teilmenge} } d \text{ der Lösung enthalten ist, 0 sonst} \\ \mathcal{A}_{ipd} \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils } i \text{ in der Position in der Teilmenge} } d \text{ der Lösung enthalten ist, 0 sonst} \\ \mathcal{A}_{ipd} \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils } i \text{ in der Position in der Teilmenge} } d \text{ der Lösung enthalten ist, 0 sonst} \\ \mathcal{A}_{ipd} \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils } i \text{ in der Position in der Teilmenge} } d \text{ der Lösung enthalten ist, 0 sonst} \\ \mathcal{A}_{ipd} \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils } i der Lös$
δ_{ipj} Binärvariable, die den Wert 1 annimmt, falls der Konjunktionsterm j der Coderege Teils i in der Position p in der Auswahl (Lösung) enthalten ist, 0 sonst δ_{ipjd} Binärvariable, die den Wert 1 annimmt, falls der Konjunktionsterm j der Coderege Teils i in der Position p in der Teilmenge d der Lösung enthalten ist, 0 sonst ε_d Binärvariable, die den Wert 1 annimmt, falls die Teilmenge bzw. der Produkttyp d wählt wird, 0 sonst γ_c Binärvariable, die den Wert 1 annimmt, falls der Code c in der Auswahl (Lösung) et ten ist, 0 sonst γ_{cd} Binärvariable, die den Wert 1 annimmt, falls der Code c in der Teilmenge d der Lenthalten ist, 0 sonst η_{cdd} (Hilfs-)Variable, die sicherstellt, dass sich die Teilmengen d und d 0 der Lösung im c unterscheiden λ_{ip} Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i in der Position in der Auswahl (Lösung) enthalten ist, 0 sonst λ_{ipd} Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i in der Position in der Teilmenge d 0 der Lösung enthalten ist, 0 sonst
Teils i in der Position p in der Auswahl (Lösung) enthalten ist, 0 sonst δ_{ipjd} Binärvariable, die den Wert 1 annimmt, falls der Konjunktionsterm j der Coderege Teils i in der Position p in der Teilmenge d der Lösung enthalten ist, 0 sonst ε_d Binärvariable, die den Wert 1 annimmt, falls die Teilmenge bzw. der Produkttyp d wählt wird, 0 sonst γ_c Binärvariable, die den Wert 1 annimmt, falls der Code c in der Auswahl (Lösung) et ten ist, 0 sonst γ_{cd} Binärvariable, die den Wert 1 annimmt, falls der Code c in der Teilmenge d der Lenthalten ist, 0 sonst γ_{cd} (Hilfs-)Variable, die sicherstellt, dass sich die Teilmengen d und d ' der Lösung im d unterscheiden λ_{ip} Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils d in der Position in der Auswahl (Lösung) enthalten ist, d sonst λ_{ipd} Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils d in der Position in der Teilmenge d der Lösung enthalten ist, d sonst
Teils i in der Position p in der Teilmenge d der Lösung enthalten ist, 0 sonst \mathcal{E}_d Binärvariable, die den Wert 1 annimmt, falls die Teilmenge bzw. der Produkttyp d wählt wird, 0 sonst γ_c Binärvariable, die den Wert 1 annimmt, falls der Code c in der Auswahl (Lösung) et ten ist, 0 sonst γ_{cd} Binärvariable, die den Wert 1 annimmt, falls der Code c in der Teilmenge d der Lenthalten ist, d sonst d (Hilfs-)Variable, die sicherstellt, dass sich die Teilmengen d und d der Lösung im d unterscheiden d Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils d in der Position in der Auswahl (Lösung) enthalten ist, d sonst d Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils d in der Position in der Teilmenge d der Lösung enthalten ist, d sonst
wählt wird, 0 sonst $ \gamma_c $ Binärvariable, die den Wert 1 annimmt, falls der Code c in der Auswahl (Lösung) et ten ist, 0 sonst $ \gamma_{cd} $ Binärvariable, die den Wert 1 annimmt, falls der Code c in der Teilmenge d der Lenthalten ist, 0 sonst $ \eta_{cdd'} $ (Hilfs-)Variable, die sicherstellt, dass sich die Teilmengen d und d ' der Lösung im c unterscheiden $ \lambda_{ip} $ Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i in der Positie in der Auswahl (Lösung) enthalten ist, 0 sonst $ \lambda_{ipd} $ Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i in der Positie in der Teilmenge d der Lösung enthalten ist, 0 sonst
ten ist, 0 sonst $ \gamma_{cd} $ Binärvariable, die den Wert 1 annimmt, falls der Code c in der Teilmenge d der Lenthalten ist, 0 sonst $ \eta_{cdd} $ (Hilfs-)Variable, die sicherstellt, dass sich die Teilmengen d und d ' der Lösung im c unterscheiden $ \lambda_{ip} $ Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i in der Positie in der Auswahl (Lösung) enthalten ist, 0 sonst $ \lambda_{ipd} $ Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i in der Positie in der Teilmenge d der Lösung enthalten ist, 0 sonst
enthalten ist, 0 sonst $\eta_{cdd'} \qquad \qquad \text{(Hilfs-)Variable, die sicherstellt, dass sich die Teilmengen } d \text{ und } d' \text{ der Lösung im } c \text{ unterscheiden}$ $\lambda_{ip} \qquad \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils } i \text{ in der Positive in der Auswahl (Lösung) enthalten ist, } 0 \text{ sonst}$ $\lambda_{ipd} \qquad \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils } i \text{ in der Positive in der Teilmenge } d \text{ der Lösung enthalten ist, } 0 \text{ sonst}$
c unterscheiden $\lambda_{ip} \qquad \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils } i \text{ in der Positivi in der Auswahl (Lösung) enthalten ist, 0 sonst}$ $\lambda_{ipd} \qquad \qquad \text{Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils } i \text{ in der Positivi in der Teilmenge } d \text{ der Lösung enthalten ist, 0 sonst}$
in der Auswahl (Lösung) enthalten ist, 0 sonst λ_{ipd} Binärvariable, die den Wert 1 annimmt, falls die Coderegel des Teils i in der Positie in der Teilmenge d der Lösung enthalten ist, 0 sonst
in der Teilmenge d der Lösung enthalten ist, 0 sonst
Binärvariable, die den Wert 1 annimmt, falls das Teil i ausgewählt wird. 0 sonst
91
x_{ij} Binärvariable, die den Wert 1 annimmt, falls der Gegenstand j in den Rucksack i packt wird, 0 sonst
\boldsymbol{x}_j Binärvariable, die den Wert 1 annimmt, falls der Gegenstand j in den Rucksack gewird, 0 sonst
x_l eine beliebige Boole'sche Variable

Indices

c, c'	Codes
d, d'	Teilmengen einer Lösung des MEPVP
d	ein Produkttyp (beim MEPVP-Modell)
i	ein "Rucksack" im Knapsack-Problem
i, i'	Teile (Baugruppen oder Einzelteile)
j	ein Gegenstand im Knapsack-Problem
j, j', j''	Konjunktionsterme einer Coderegel

Symbolverzeichnis XXI

l	eine GRASP-Iteration
m	ein Merkmal
p	eine Position in der Stückliste
PF	ein Produktionsfaktor
q	eine logische Restriktion des MEPVP-Modells
t	ein Konjunktionsterm einer positiven oder negativen Baubarkeitsregel
w	eine streng zusammenhängende Komponente eines Graphen

Funktionen

BT	Boole'scher Term (bzw. Boole'sche Funktion)
BB_c	Baubarkeitsregel des Codes c
$c_{PF}(\Delta F E_{PF,i}(t))$	Kostensatzfunktion des zusätzlichen Faktoreinsatzes des Produktionsfaktors PF pro Zeiteinheit
$D_1, D_2,, D_e$	paarweise verschiedene Disjunktionsterme
$\Delta FE_{PF,i}(t)$	zusätzlicher (notwendiger) Faktoreinsatz des Produktionsfaktors PF pro Zeiteinheit bezüglich der Entwicklung von Teil i zur Aufholung eines eingetretenen Entwicklungsverzugs über den Zeitverlauf t
$\Delta\Phi(mv_{cd})$	Zielfunktionswertdifferenz, die aus der Ausführung des Zugs mv_{cd} resultiert
$\Delta\Phi^{best}$	Zielfunktionswertdifferenz, die aus der Ausführung des besten Zugs $\mathit{mv}^\mathit{best}_\mathit{cd}$ resultiert
$\Delta K(mv_{cd})$	Faktoreinsatzkostendifferenz, die aus der Ausführung des Zugs \textit{mv}_{cd} resultiert
ΔK^{best}	Faktoreinsatzkostendifferenz, die aus der Ausführung des besten Zugs $\mathit{mv}_\mathit{cd}^\mathit{best}$ resultiert
$\Delta P_i(t)$	zusätzliche (notwendige) Produktivität bezüglich der Entwicklung von Teil i zur Aufholung eines eingetretenen Entwicklungsverzugs über den Zeitverlauf t
$\Delta r_i(t)$	Funktion, die jedem Zeitpunkt t den Reifegrad-Entwicklungsverzug eines Teils i zuordnet
$e^{akt}(c,d)$	Greedy-Funktion, die die Aufnahme des Primärcodes c in die semi-offene Variantenmenge des Produkttyps d bewertet
flipFreq(c,d)	Anzahl, wie häufig eine Variable γ_{cd} bzw. eine Stelle $(\gamma_{cd})_i$ des Lösungsvektors seit dem Beginn von Tabu-Search von 0 auf 1 gesetzt wurde
$f(\cdot)$	eine beliebige Funktion
$f_{\scriptscriptstyle B}$	eine n-stellige Boole'sche Funktion
$f_{\rm Z}(\cdot)$	eine beliebige Zielfunktion
$f_i^{Ist}(t)$	Funktion, die jedem Zeitpunkt t den Ist-Reifegrad r zuordnet
$f_i^{Plan}(t)$	Funktion, die jedem Zeitpunkt t den Plan-Reifegrad r zuordnet

XXII Symbolverzeichnis

F_N	Funktion, die aus einer beliebigen Teilmenge von Codes einen Konjunktionsterm aus negierten Codes bildet
F_{P}	Funktion, die aus einer beliebigen Teilmenge von Codes einen Konjunktionsterm aus Codes bildet
$FE_{PF,i}^{Plan}$	konstanter Plan-Faktoreinsatz des Produktionsfaktors PF pro Zeiteinheit bezüglich der Entwicklung von Teil i
$FE_{PF,j}^{Ist}(t)$	Ist-Faktoreinsatz des Produktionsfaktors PF pro Zeiteinheit bezüglich der Entwicklung von Teil i über den Zeitverlauf t
$\Phi(\cdot)$	Zielfunktion des MEPVP
$g(\cdot)$	eine beliebige Funktion
$g_i^{Ist}(t)$	Funktion, die die zur Beseitigung des eingetretenen Entwicklungsverzugs des Teils $\it i$ notwendige Reifegradentwicklung beschreibt
$k_i(t)$	Funktion, die jedem Zeitpunkt t die zusätzlichen Faktoreinsatzkosten für Teil i zuordnet
$K_1, K_2,, K_e$	paarweise verschiedene Konjunktionsterme
K_{ges}	zusätzliche Faktoreinsatzkosten einer Lösung
$K(\cdot)$	Faktoreinsatzkostenfunktion
KT_{ipj}	j -ter Boole'scher Konjunktionsterm der langen Coderegel des Teils i in der Position p
KT_{ipj}^{kurz}	j-ter Boole'scher Konjunktionsterm der kurzen Coderegel des Teils i in der Position p
$KT_{ipj}^{\ red}$	j-ter Boole'scher Konjunktionsterm der reduzierten langen Coderegel des Teils i in der Position p
LCR_{ip}	Funktion zur Berechnung der langen Coderegel des Teils i in der Position p
$N(\cdot)$	Nachbarschaftsfunktion
NBB_c	negative Baubarkeitsregel des Codes c
$p_{PF,i}^{Plan}$	konstante spezifische Plan-Produktivität des Produktionsfaktors PF bezüglich der Entwicklung von Teil i
$p_{PF,i}^{Ist}(t)$	spezifische Ist-Produktivität des Produktionsfaktors PF bezüglich der Entwicklung von Teil i über den Zeitverlauf t
PBB_c	positive Baubarkeitsregel des Codes c
$P_i^{\it Plan}$	konstante Plan-Produktivität bezüglich der Entwicklung von Teil i
$P_i^{Ist}(t)$	Ist-Produktivität bezüglich der Entwicklung von Teil i über den Zeitverlauf t
r	kontinuierlicher Reifegrad, $r \in [r_0, r_n]$
resFreq(c,d)	Aufenthaltshäufigkeit eines Codes $\it c$ in der semi-offenen Variantenmenge $\it d$ in Bezug auf alle besuchten Lösungen
resFreqBest(c,d)	Aufenthaltshäufigkeit eines Codes c in der semi-offenen Variantenmenge d in Bezug

auf alle besuchten "guten" Lösungen

Symbolverzeichnis XXIII

$O(\cdot)$	Landausches Symbol "groß O"
T(n)	Rechenaufwand als Funktion der Eingabelänge n einer Probleminstanz
ZB_c	Zusteuerungsregel des Codes c
arameter	

Pa

a_d	geplante Produktionsmenge der durch die Teilmenge d beschriebenen Variante
α	Parameter, der bei der GRASP-Heuristik die Länge der RCL festlegt
α	von der Probleminstanz abhängiger Parameter für die Berechnung der dynamischen Tabudauer bei Tabu-Search
A(c)	Anzahl der Konjunktionsterme der Baubarkeits- und der Zusteuerungsregeln, die den Code $\it c$ enthalten
β	(Steuerungs-)Parameter für die dynamische Tabudauer bei Tabu-Search
β	Parameter, der bei der GRASP-Heuristik die Länge der RCL festlegt
c_i	Kapazität der i -ten Dimension (bzw. des Rucksacks i) im Knapsack-Problem
d	Anzahl der Dimensionen i im Knapsack-Problem
\overline{d}	vorgegebene mengenmäßige Verfügbarkeit (Anzahl an zu erzeugenden Teilmengen)
k_{i}	zusätzliche Faktoreinsatzkosten für Teil i
\overline{K}	verfügbares Budget an zusätzlichem Faktoreinsatz
m	Anzahl der Rucksäcke i im Knapsack-Problem
m_{ip}	Mengenbedarf in Mengeneinheiten des Teils i in der Position p
M	Anzahl der Merkmale $m \ (m = 1,,M)$
n	Anzahl der Gegenstände j im Knapsack-Problem
n	Anzahl der diskreten Reifegrade
p_{j}	Nutzen von Gegenstand j im Knapsack-Problem
r_0	diskreter Reifegrad zum Zeitpunkt des Entwicklungsstarts
r_n	diskreter Reifegrad zum Zeitpunkt des Entwicklungsendes (Serienreife)
S	Anzahl der logischen Restriktionen des MEPVP-Modells
t	ein Zeitpunkt bzw. eine Periode
t_0	ein beliebiger Zeitpunkt vor dem Serienstart T_s
τ	ein beliebiger Zeitpunkt bzw. eine beliebige Periode, $\tau < t + T$
$ au_i$	Zeitpunkt, zu dem der Entwicklungsverzug des Teils \boldsymbol{i} beseitigt ist
T	Planreichweite, Länge des Planungshorizonts
$T_{E,i}$	Zeitpunkt des Entwicklungsstarts eines Teils i

XXIV Symbolverzeichnis

$T_{\scriptscriptstyle S}$	Zeitpunkt des Serienstarts der anlaufenden Produktserie
$T_{v,i}$	Zeitpunkt, zu dem ein Teil i verfügbar ist, wenn kein zusätzlicher Faktoreinsatz bezüglich der Entwicklung von Teil i erbracht wird
\overline{R}_i	Beschaffungskapazität in Mengeneinheiten für das Teil $\it i$
v_c	Nachfrageprognosewert des Codes c
v_{cd}	Nachfrageprognosewert des Codes c für den Produkttyp d
\overline{V}	geforderte Mindestmarktabdeckung der Auswahl
\overline{V}_d	geforderte Mindestmarktabdeckung für jede Teilmenge d
w_{ij}	Kosten von Gegenstand j bezüglich der i -ten Dimension im Knapsack-Problem
w_{i}	Kosten von Gegenstand j im Knapsack-Problem

Sonstige Größen

 n^k

\rightarrow	Implikationsverknüpfung (wenn A dann B)
\leftrightarrow	Äquivalenzverknüpfung (wenn A dann B und umgekehrt)
Ø	Durchschnitt
$a_{\it cdq}$, $a_{\it ipdq}$, $a_{\it ipjdq}$	ganzzahlige Koeffizienten der logischen Restriktionen des verallgemeinerten MEPVP-Modells
a_{iq}, a_{dq}, b_q	ganzzahlige Koeffizienten der logischen Restriktionen des verallgemeinerten MEPVP-Modells
A	ein beliebiges Entscheidungsproblem
В	ein beliebiges Entscheidungsproblem
c	eine Konstante, $c > 0$
e	Aufnahmewert für die RCL
e^{\max}	Obergrenze für den Aufnahmewert $\it e$
$e^{ m min}$	Untergrenze für den Aufnahmewert $\it e$
H	Gedächtnisstruktur
I_{KP}	eine Probleminstanz des Knapsack-Problems
$I_{{\it MEPVP}}$	eine Probleminstanz des MEPVP
m	eine Zahl, die kleiner gleich der Anzahl der Elemente der Menge C ist
mv_{cd}	Zug, der von der aktuellen zu einer Lösung in der Nachbarschaft führt
mv best cd	Zug, der von der aktuellen zur besten Lösung in der Nachbarschaft führt
n	Eingabelänge einer Probleminstanz

ein Polynom vom Grad k

Symbolverzeichnis XXV

NP	Klasse aller Probleme, die mit einem nicht-deterministischen polynomialen Algorithmus gelöst werden können
p(n)	ein beliebiges Polynom
P	Klasse aller Probleme, die mit einem deterministischen polynomialen Algorithmus gelöst werden können
S^{akt}	aktuelle Lösung, die für alle Produkttypen d aus den Mengen C_d^{akt} von Codes und den Mengen I_d^{akt} von Teilen besteht
S 1*	bisher beste Lösung der GRASP-Iteration 1
S next	Lösung des MEPVP, zu welcher durch die Ausführung des besten Zugs aus der Nachbarschaft als nächstes übergegangen wird
S^*	bisher beste gefundene Lösung
$TD(mv_{cd})$	Tabudauer eines Zugs mv_{cd}
TL	Tabuliste
x	eine Probleminstanz
x	eine beliebige Lösung eines bestimmten Problems
у	eine beliebige Lösung eines bestimmten Problems
$ar{\gamma}_{cd}$, $ar{\gamma}'_{cd}$, $ar{\gamma}''_{cd}$	Vektoren, die eine Lösung des MEPVP darstellen
$\overline{\gamma}_{cd}^{next}$	Vektor, der eine Lösung des MEPVP darstellt, zu welcher durch die Ausführung des besten Zugs aus der Nachbarschaft als nächstes übergegangen wird

Abkürzungsverzeichnis

CL candidate list

const. constant

CP constraint programming

DIN Deutsche Industrie-Norm(en)

Diss. Dissertation

DNF disjunktive Normalform

DPSP daily photograph scheduling problem

GA genetische Algorithmen

geg. gegeben

GH Greedy-Heuristiken

GRASP Greedy Randomized Adaptive Search Procedure

HC Hill-Climbing

I Probleminstanz

Kap. Kapitel

KCR kurze Coderegel

KNF konjunktive Normalform

KP eindimensionales, lineares Knapsack-Problem

KT Konjunktionsterm

LCR lange Coderegel

LP lineare Programmierung

LS lokale Suche

max. maximale

MDKP multi-dimensionales Knapsack-Problem

MEPVP mehrstufiges, einperiodiges Produktprogrammverfügbarkeits-Planungsproblem

min. minimale

MKP multiples Knapsack-Problem

o. O. ohne Ortsangabe

o. S. ohne Seitenangabe

OR Operations Research

PCKP precedence-constrained knapsack problem

PIK Probleminstanzklasse

RCL restricted candidate list

RLCR reduzierte lange Coderegel

RV relaxationsbasierte Verfahren

SA Simulated Annealing

SAT-Problem Satisfiability-Problem, Erfüllbarkeitsproblem

SG Semi-Greedy

SO strategische Oszillation

SOP start of production

Sp. Spalte

Tab. Tabelle

TL Tabuliste

TS Tabu-Search

u. B. d. R. unter Beachtung der Restriktionen

VDI Verein Deutscher Ingenieure

ZF Zielfunktion

Zyl. Zylinder