The Joysof -
Hashi ng

Hash Table Programming with C

Thomas Mailund

Apress®

The Joys of Hashing

Hash Table Programming
with C

Thomas Mailund

Apress’

The Joys of Hashing: Hash Table Programming with C

Thomas Mailund
Aarhus N, Denmark

ISBN-13 (pbk): 978-1-4842-4065-6 ISBN-13 (electronic): 978-1-4842-4066-3
https://doi.org/10.1007/978-1-4842-4066-3

Library of Congress Control Number: 2019932793

Copyright © 2019 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484240656. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4066-3

Table of Contents

About the AUROFcccmmiemmmmssnnmssns s vii
About the Technical ReVIEWErccuvcesssessssmssssnsssassssnsssssssssssssnsssassssass ix
Acknowledgementsccccuusssmemnnmnmmmmsssssssssssnsssessssssssssssnnssssssssssnnnnnns Xi
Chapter 1: The Joys of Hashing.......cccccussemnsnssssnnsssssssnnnssssssnsssssssssnssnss 1
Chapter 2: Hash Keys, Indices, and ColliSionsc..ccurussmsrsssmnsssssnssssanss 7
Mapping from Keys 10 INAICESccocervvriniriinnrnrne e 9
RiSKS Of COIlISIONSccveereecrercsesese e sene e 12
Mapping Hash Keys t0 BiNSc.ccccvvrrnninmnennnse s ssssesens 18
Chapter 3: Collision Resolution, Load Factor, and Performance......... 21
{081 T T T O 21
LINKEA LISTScovrcerieerinese s s 22
Chained Hashing Collision ReSOIULIONccovevrircrninnenenesers e 25
0PEN AdAreSSING......covcerverererirsirse e s s r s sr e aenran 27
Probing Strate@giescccvveerrrerereneresesesese e 32
Load and Performance.........c.cueeeerenerrnsesenesnsesmssssesessesssssssssssessssssessessssesesessesenns 35
Theoretical Runtime Performance...........ouoocvnnnnsssnsssssessssssssenens 35
(0 T=T 111 [=T £ RS 43
Chapter 4: ReSiZiNgccccrrmsssnnnnmsssssnnnmsssssnnnmssssssssssssssnnsssssssnnssssssnnnnss 49
Amortizing Resizing COSES ..o 50
Resizing Chained Hash TabIES ... 57

iii

TABLE OF CONTENTS

Resizing Open Addressing Hash Tablesccccovcivninncncnnnsnsnenesssenennens 61
Theoretical Considerations for Choosing the Load Factorcccooeevvecnennnne 65
EXPEIMENTS ...t e e 68
Resizing When Table Sizes Are Not Powers of TWO.........ccccvveernvennnenenenesensenens 75
DYNAMIC RESIZING....ccertererrererertrseriesesae s s e sse e s e s sse s s e s e ssesaesessessesaesessessesnens 85
Chapter 5: Adding Application Keys and Values..........ccceunsssnnnsrsssnnns 101
HASH SELS ..o s 103
Chained Hashing.........cccoininininnsn s 104
Updating LINKed LiSTSccveererrererenernseresesesese s sessese s snenes 105
Updating the Hash Table..........c.ccoveernnrneneneses s sessee s 110
0PEN AArESSING ..cvvverrreerreereseserese s e sra s 114
Implementing Hash Mapsccccvirennnnieniens s sse e ssssessessenns 120
Chained Hashing.......ccccooverrrnerennsene s ses e ssesessessesassessessesaes 121
Updates to the Linked LiStSc.ccoivvvrnirinnsnncsesn e e sessesnes 121
Updates to the Hash Table.........ccorvrinnrcncrcrr e 127
0PEN AUrESSING ..c.veeeereeereee e 132
Chapter 6: Heuristic Hash Functionscccccusemmmmnnssssnnnnssssssnnnsnnn 139
What Makes a Good Hash FUNCHION?ccovcvnennennnsesnesesesess e sessesesseens 141
Hashing Computer WOrdS..........ccvvviererensnsenennnessesessssessesessessssessessessssessessenes 143
Additive Hashing........cccceeeririrrenrccrsersee s s s e ssessse s ssessenns 146
Rotating Hashing ..o s ssennens 148
One-at-a-Time Hashing ..o 152
Jenkins Hashingc.ccccovenmrenmrnsmsnesese s sesse s s sessssessssesessesenns 161
Hashing Strings 0f BYLES........cucucvvrrninmnnsirssessse s s sessenes 166

iv

TABLE OF CONTENTS

Chapter 7: Universal Hashingc..ccccmumssssnnnmsssssnnssssssssssssssssssssssssnns 173
Uniformly Distributed Keyscccccvirinninininssnsene s 174
Universal Hashing ... 175
Stronger Universal Families.........ccovorneennenereserssesesesese s 176

Binning Hash KEYS........ccourrienmmnnmnnesnnesessse s s ssssssns e sessessssenens 177
Collision Resolution Strategies.........ccvvrirnrninieriennsnsesess e sessenns 178
Constructing Universal FAMIlIESccccvveriernnennenienesessessesessssessessessessssessessens 179
Nearly Universal FAMIlieS.......cccccoverirvrrnnerierrerree e s 180
Polynomial Construction for k-Independent Families.........c..cccooeernicnencnns 180
Tabulation Hashing ..o 182
Performance COMPAriSON........ccuceveiernrieniesnsenese s s s s ses s sessssessessens 186
RENASNINGcivieiirreiree e s 190

Chapter 8: ConcCluSiONS......ccccurrrnssees 199

30T Ty T 1] " | } |

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus
University, Denmark. He has a background in math and computer science.
For the past decade, his main focus has been on genetics and evolutionary
studies, particularly comparative genomics, speciation, and gene flow
between emerging species.

He is the author of Domain-Specific Languages in R, Beginning Data
Science in R, Functional Programming in R, and Metaprogramming in R, all
from Apress, as well as other books.

vii

About the Technical Reviewer

Michael Thomas has worked in software
development for over 20 years as an individual
contributor, team lead, program manager, and
vice president of engineering. Michael has over
10 years of experience working with mobile
devices. His current focus is in the medical
sector using mobile devices to accelerate

information transfer between patients and
health care providers.

ix

Acknowledgments

I am very grateful to Rasmus Pagh for comments on the manuscript,
suggestions for topics to add, and correcting me when I have been
imprecise or downright wrong. I am also grateful to Anders Halager for
many discussions about implementation details and bit fiddling. I am also
grateful to Shiella Balbutin for proofreading the book.

CHAPTER 1

The Joys of Hashing

This book is an introduction to the hash table data structure. When
implemented and used appropriately, hash tables are exceptionally
efficient data structures for representing sets and lookup tables. They
provide constant time, low overhead, insertion, deletion, and lookup.
The book assumes the reader is familiar with programming and the

C programming language. For the theoretical parts of the book, it also
assumes some familiarity with probability theory and algorithmic theory.

Hash tables are constructed from two basic ideas: reducing application
keys to a hash key, a number in the range from 0 to some N - 1, and
mapping that number into a smaller range from 0 to m - 1, m « N. We can
use the small range to index into an array with constant time access. Both
ideas are simple, but how they are implemented in practice affects the
efficiency of hash tables.

Consider Figure 1-1. This figure illustrates the main components of
storing values in a hash table: application values, which are potentially
complex, are mapped to hash keys, which are integer values in a range of
size N, usually zero to N - 1. In the figure, N = 64. Doing this simplifies the
representation of the values; now you only have integers as keys, and if Nis
small, you can store them in an array of size N. You use their hash keys as
their index into the array. However, if N is large, this is not feasible.

If, for example, the space of hash keys is 32-bit integers, then N = 4, 294,
967, 295, slightly more than four billion. An array of bytes of this size would,

© Thomas Mailund 2019 1
T. Mailund, The Joys of Hashing, https://doi.org/10.1007/978-1-4842-4066-3_1

CHAPTER 1 THE JOYS OF HASHING

therefore, take up more than four gigabytes of space. To be able to store
pointers or integers, simple objects, you would need between four and
eight times as much memory. It is impractical to use this size of an array to
store some application keys.

Application value space Hash key space Table bin space

,/ ./\\

(__,,/\
y /\ }(1) \
/ N\ 12

CEOND G AWN= O

NoupwN = O

o N\ 2
() 24
S — 25
26
27
/ 8
29
A /—\ 30
3 31

‘ﬁ/

61
62
63

Figure 1-1. Values map to hash keys that then map to table bins

Even if N is considerably smaller than four-byte words, if you plan to
store n « N keys, you waste a lot of space to have the array. Since this array
needs to be allocated and initialized, merely creating it will cost you O(N).
Even if you get constant time insertion and deletion into such an array, the
cost of producing it can easily swamp the time your algorithm will spend
while using the array. If you want a table that is efficient, you should be
able to both initialize it and use it to insert or delete n keys, all in time O(n).
Therefore, N should be in O(n).

2

CHAPTER 1 THE JOYS OF HASHING

The typical solution to this is to keep N large but have a second step
that reduces the hash key range down to a smaller bin range of size m with
m € O(n); in the example, you use m = 8. If you keep m small, as in O(n),
you can allocate and initialize it in linear time, and you can get any bin in
itin constant time. To insert, check, or delete an element in the table, you
map the application value to its hash key and then map the hash key to a
bin index.

You reduce values to bin indices in two steps because the first step,
mapping data from your application domain to a number, is program-
specific and cannot be part of a general hash table implementation.!
Moving from large integer intervals to smaller, however, can be
implemented as part of the hash table. If you resize the table to adapt it to
the number of keys you store in it, you need to change m. You do not want
the application programmer to provide separate functions for each m.
You can think of the hash key space, [N] = [0, ..., N - 1], as the interface
between the application and the data structure. The hash table itself can
map from this space to indices in an array, [m] = [0, ..., m - 1].

The primary responsibility of the first step is to reduce potentially
complicated application values to simpler hash keys, such as to map
application-relevant information like positions on a board game or
connections in a network down to integers. These integers can then be
handled by the hash table data structure. A second responsibility of the
function is to make the hash keys uniformly distributed in the range [N].
The binning strategy for mapping hash keys to bins assumes that the hash
keys are uniformly distributed to distribute keys into bins evenly. If this
is violated, the data structure does not guarantee (expected) constant
time operations. Here, you can add a third, middle step that maps from

'In some textbooks, you will see the hashing step and the binning step combined
and called hashing. Then you have a single function that maps application-
specific keys directly to bins. I prefer to consider this as two or three separate
functions, and it usually is implemented as such.

CHAPTER 1 THE JOYS OF HASHING

[N] — [N] and scrambles the application hash keys to hash keys with a
better distribution; see Figure 1-2. These functions can be application-
independent and part of a hash table library. You will return to such
functions in Chapter 6 and Chapter 7. Having a middle step does not
eliminate the need for application hash functions. You still need to map
complex data into integers. The middle step only alleviates the need for
an even distribution of keys. The map from application keys to hash keys
still has some responsibility for this, though. If it maps different data to
the same hash keys, then the middle step cannot do anything but map the
same input to the same output.

Application key space Hash key space Table bin space

Application value space

8
9
10
1
12

>
~oaswn—oo

Figure 1-2. Ifthe application maps values to keys, but they are not
uniformly distributed, then a hashing step between the application
and the binning can be added

Strictly speaking, you do not need the distribution of hash keys to
be uniform as long as the likelihood of two different values mapping to
the same key is highly unlikely. The goal is to have uniformly distributed

CHAPTER 1 THE JOYS OF HASHING

hash keys, as these are easiest to work with when analyzing theoretical
performance. The runtime results referred to in Chapter 3 assume this,
and therefore, we will as well. In Chapter 7, you will learn techniques for
achieving similar results without the assumption.

The book is primarily about implementing the hash table data
structure and only secondarily about hash functions. The concerns when
implementing hash tables are these: given hash keys with application
values attached to them, how do you represent the data such that you
can update and query tables in constant time? The fundamental idea
is, of course, to reduce hash keys to bins and then use an array of bins
containing values. In the purest form, you can store your data values
directly in the array at the index the hash function and binning functions
provide but if m is relatively small compared to the number of data values,
then you are likely to have collisions: cases where two hash keys map to the
same bin. Although different values are unlikely to hash to the same key in
the range [NV], this does not mean that collisions are unlikely in the range
[m] if m is smaller than N (and as the number of keys you insert in the
table, n, approaches m, collisions are guaranteed). Dealing with collisions
is a crucial aspect of implementing hash tables, and a topic we will deal
with for a sizeable part of this book.

CHAPTER 2

Hash Keys, Indices,
and Collisions

As mentioned in the introduction, this book is primarily about
implementing hash tables and not hash functions. So to simplify the
exposition, assume that the data values stored in tables are identical to the
hash keys. In Chapter 5, you will address which changes you have to make
to store application data together with keys, but for most of the theory of
hash tables you only need to consider hash keys; everywhere else, you will
view additional data as black box data and just store their keys. While the
code snippets below cover all that you need to implement the concepts in
the chapter, you cannot easily compile them from the book, but you can
download the complete code listings from https://github.com/mailund/
JoyChapter2.

Assume that the keys are uniformly distributed in the interval
[N] =[O0, ..., N-1] where N is the maximum uint32_t and consider the
most straightforward hash table. It consists of an array where you can
store keys and a number holding the size of the table, m. To be able
to map from the range [N] to the range [m], you need to remember m.
You store this number in the variable size in the structure below. You
cannot use a special key to indicate that an entry in the table is not
occupied, so you will use a structure called struct bin that contains a
flag for this.

© Thomas Mailund 2019 7
T. Mailund, The Joys of Hashing, https://doi.org/10.1007/978-1-4842-4066-3_2

https://github.com/mailund/JoyChapter2
https://github.com/mailund/JoyChapter2

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

struct bin {
int is free : 1;
uint32_t key;

};

struct hash_table {
struct bin *table;
uint32_t size;

}s
Functions for allocating and deallocating tables can then look like this:

struct hash_table *empty table(uint32_ t size)
{
struct hash_table *table =
(struct hash_table*)malloc(sizeof(struct hash table));
table->table = (struct bin *)malloc(size * sizeof
(struct bin));
for (uint32 t i = 0; i < size; ++i) {
struct bin *bin = & table->table[i];
bin->is_free = true;
}
table->size = size;
return table;

}
void delete table(struct hash table *table)

{
free(table->table);
free(table);

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

The operations you want to implement on hash tables are the insertion
and deletion of keys and queries to test if a table holds a given key. You use
this interface to the three operations:

void insert key (struct hash table *table, uint32 t key);
bool contains key (struct hash table *table, uint32 t key);
void delete key (struct hash table *table, uint32_t key);

Mapping from Keys to Indices

When you have to map a hash key from [N] down to the range of the
indices in the array, [m], the most straightforward approach is to take the

remainder of a division by m:
unsigned int index = key % table->size;

You then use that index to access the array. Assuming that you
never have collisions when doing this, the implementation of the three
operations would then be as simple as this:

void insert key(struct hash _table *table, uint32 t key)
{
uint32_t index = key % table->size;
struct bin *bin = & table->table[index];
if (bin->is free) {
bin->key = key;
bin->is_free = false;
} else {
// There is already a key here, so we have a
// collision. We cannot deal with this yet.

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

bool contains key(struct hash_table *table, uint32 t key)
{
uint32_t index = key % table->size;
struct bin *bin = & table->table[index];
if (!bin->is free 8& bin->key == key) {
return true;
} else {
return false;

}

void delete key(struct hash table *table, uint32_t key)
{
uint32_t index = key % table->size;
struct bin *bin = & table->table[index];
if (bin->key == key) {
bin->is_free = true;

When inserting an element, you place the value at the index given by
the mapping from the space of hash keys to the range of the array. Deleting
a key is similarly simple: you set the flag in the bin to false. To check if the
table contains a key, you check that the bin is not free and that it contains
the right key. If you assume that the only way you can get an index at a
given index is if you have the key value, this would be correct. However,
you also usually check that the application keys match the key in the
hash table, not just that the hash keys match. In this implementation, the
application keys and hash keys are the same, so you check if the hash keys
are identical only. Because, of course, you could have a situation where two

10

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

different hash keys would map to the same bin index, even if the hash keys
never collide. The space of bin indices, after all, is much smaller than the
space of keys.

Collisions of hash values are rare events if they are the results of a
well-designed hash function. Although collisions of hash keys are rare,
it does not imply that you cannot get collisions in the indices. The range
[N] is usually vastly larger than the array indices in the range [m]. Two
different hash keys can easily end up in the same hash table bin; see
Figure 2-1. Here, you have hash keys in the space of size N = 64 and only
m = 8 bins. The numbers next to the hash keys are written in octal, and
you map keys to bins by extracting the lower eight bits of the key, which
corresponds to the last digit in the octal representation. The keys 8 and
16, or 104 and 204 in octal, both map to bin number 0, so they collide in
the table.

The figure is slightly misleading since the hash space is only a factor of
eight larger than the size of the hash table. In any real application, the keys
range over a much wider interval than could ever be represented in a table.
In the setup in this book, the range [N] maps over all possible unsigned
integers, which in most C implementations means all possible memory
addresses on your computer. This space is much larger than what you
could reasonably use for an array; if you had to use your entire computer
memory for a hash table, you would have no space for your actual
computer program. Each value might map to a unique hash key, but when
you have to map the hash keys down to a smaller range to store values in a
table, you are likely to see collisions.

11

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

Hash key space Table bin space
0
1
2
3
4
5
6
7
8 10 =10 8 g
10
1
12
_ 13 "
14 10 =16 8 1; 2
3
- 16
16 10 =20 8 17 4
18 g
19
20 7
21
22
23
24
25
27 33 %
= 27
10 8 28
29
30
31
32
61
62
63

Figure 2-1. Collisions of hash keys when binning them

Risks of Collisions

Assuming a uniform distribution of hash keys, let’s do some back-of-
the-envelope calculations of collisions probabilities. The chances of
collisions are surprisingly high once the number of values approaches
even a small fraction of the number of indices we can hit. To figure

12

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

out the chances of collisions, let’s use the birthday paradox (https://
en.wikipedia.org/wiki/Birthday). In a room of n people, what is the
probability that two or more have the same birthday? Ignoring leap
years, there are 365 days in a year, so how many people do we need for
the chance that at least two have the same birthday is above one half?
This number, n, turns out to be very low. If we assume that each date is
equally likely as a birthday, then with only 23 people we would expect a
50% chance that at least two share a birthday.

Let’s phrase the problem of “at least two having the same birthday”

a little differently. Let’s ask “what is the probability that all n people have
different birthdays?” The answer to the first problem will then be one
minus the answer to the second.

To answer the second problem, we can reason like this: out of the n
people, the first birthday hits 1 out of 365 days without any collisions. The
second person, if we avoid collisions, has to hit 1 of the remaining 364
days. The third person has to have his birthday on 1 of the 363 remaining
days. Continuing this reasoning, the probability of no collisions in
birthdays of n people is

365 364 365-n+1
— XX, X

365 365 365

where 1 minus this product is then the risk of at least one collision when
there are n people in the room. Figure 2-2 shows this probability as a
function of the number of people. The curve crosses the point of 50%
collision risk between 22 and 23.

13

https://en.wikipedia.org/wiki/Birthday
https://en.wikipedia.org/wiki/Birthday

