
Raku
Fundamentals

A Primer with Examples, Projects,
and Case Studies
—
Second Edition
—
Moritz Lenz
Foreword by Larry Wall, creator of Raku

Raku Fundamentals
A Primer with Examples,

Projects, and Case Studies

Second Edition

Moritz Lenz
Foreword by Larry Wall, creator of Raku

Raku Fundamentals: A Primer with Examples, Projects, and
Case Studies

ISBN-13 (pbk): 978-1-4842-6108-8 ISBN-13 (electronic): 978-1-4842-6109-5
https://doi.org/10.1007/978-1-4842-6109-5

Copyright © 2020 by Moritz Lenz

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image, we use
the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the author nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Stephen Hume on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Springer Science+Business Media, 1 New York
Plaza, New York, NY 10004, U.S.A.. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer- sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484261088. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Moritz Lenz
Fürth, Bayern, Germany

https://doi.org/10.1007/978-1-4842-6109-5

iii

Table of Contents

Chapter 1: What Is Raku? ���1

1.1 Intended Audience ..2

1.2 Perl 5: The Older Sister ...3

1.3 Library Availability ...4

1.4 Why Should I Use Raku? ...4

1.5 Summary...6

Chapter 2: Running Rakudo ��7

2.1 Installers ...8

2.2 Docker ...9

2.3 Building from Source ..10

2.4 Testing Your Rakudo Star Installation ..11

2.5 Documentation ..12

2.6 Summary...12

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Foreword ��xv

iv

Chapter 3: Formatting a Sudoku Puzzle ���13

3.1 Making the Sudoku Playable...17

3.2 Shortcuts, Constants, and More Shortcuts ..22

3.3 I/O and Other Tragedies ...24

3.4 Get Creative! ...26

3.5 Summary...28

Chapter 4: Datetime Conversion for the Command Line ���������������������31

4.1 Libraries to the Rescue ...32

4.2 DateTime Formatting ..36

4.3 Looking the Other Way ..38

4.4 Dealing with Time ...41

4.5 Tighten Your Seat Belt ...42

4.6 MAIN Magic ...45

4.7 Automated Tests ..46

4.8 Summary...51

Chapter 5: Testing say() ��53

5.1 Summary...57

Chapter 6: Silent-Cron: A Cron Wrapper ���59

6.1 Running Commands Asynchronously ..60

6.2 Implementing Timeouts ..64

6.3 More on Promises ...66

6.4 Possible Extensions ..69

6.5 Refactoring and Automated Tests ...69

Table of ConTenTsTable of ConTenTs

v

6.5.1 Refactoring ...70

6.5.2 Mocking and Testing ...72

6.5.3 Improving Reliability and Timing ..78

6.5.4 Installing a Module ...79

6.6 Summary...80

Chapter 7: Stateful Silent-Cron ���81

7.1 Persistent Storage ..81

7.2 Developing the Storage Back End ...83

7.3 Using the Storage Back End ..87

7.4 Room for Expansion ..88

7.5 Summary...89

Chapter 8: Review of the Raku Basics ��91

8.1 Variables and Scoping ...91

8.2 Subroutines ...92

8.3 Classes and Objects ..94

8.4 Concurrency ..96

8.5 Outlook ..97

Chapter 9: Parsing INI Files Using Regexes and Grammars ���������������99

9.1 Regex Basics ...100

9.1.1 Character Classes ...102

9.1.2 Quantifiers ..103

9.1.3 Alternatives ...104

9.2 Parsing the INI Primitives ..104

9.3 Putting Things Together ..108

9.4 Backtracking ...109

9.5 Grammars ...112

Table of ConTenTsTable of ConTenTs

vi

9.6 Extracting Data from the Match ..113

9.7 Generating Good Error Messages ...120

9.7.1 Failure Is Normal ..120

9.7.2 Detecting Harmful Failure ..122

9.7.3 Providing Context ...123

9.7.4 Shortcuts for Parsing Matching Pairs ...125

9.8 Write Your Own Grammars ..126

9.9 Summary...126

Chapter 10: A File and Directory Usage Graph ���������������������������������129

10.1 Reading File Sizes ...129

10.2 Generating a Tree-Map ..132

10.3 Flame Graphs ..137

10.4 Functional Refactorings ..140

10.5 More Language Support for Functional Programming148

10.6 More Improvements ..149

10.7 Explore! ...151

10.8 Summary...152

Chapter 11: A Unicode Search Tool ���153

11.1 Code Points, Grapheme Clusters, and Bytes ...156

11.2 Numbers ...158

11.3 Other Unicode Properties ..158

11.4 Collation ..159

11.5 Summary...160

Table of ConTenTsTable of ConTenTs

vii

Chapter 12: Creating a Web Service and Declarative APIs ���������������161

12.1 Getting Started with Cro..161

12.2 Expanding the Service ..165

12.3 Testing ...167

12.4 Adding a Web Page ...170

12.5 Declarative APIs ..173

12.6 Summary...176

Chapter 13: What’s Next? ���177

13.1 Scaling Your Code Base ..177

13.2 Packaging Your Application ...178

13.2.1 Packaging As a Traditional Raku Module ..179

13.2.2 Deploying with Docker ...180

13.2.3 Windows Installers ...180

13.3 Closing Thoughts ...181

Index ���183

Table of ConTenTsTable of ConTenTs

ix

About the Author

Moritz Lenz is a software engineer and

architect. In the Raku community, he is

well known for his contributions to the

Raku programming language, the Rakudo

compiler, related test suite, infrastructure,

and tools. He is also a prolific Perl and

Python programmer.

xi

About the Technical Reviewer

Matt Wade is a programmer, database developer, and system administrator.

He works for a large financial firm running a production support

organization where he gets to solve puzzles all day long. Matt resides in

Jacksonville, Florida, with his wife, Michelle, and their children, Matthew

and Jonathan.

xiii

Acknowledgments

They say it takes a village to raise a child. Similar things can be said about

writing a book. It is only possible through the effort of many people, often

unpaid volunteers who contribute just to see the project succeed, and out

of kindness of heart.

I am very grateful for the review by and feedback from Paul

Cochrane, Will Coleda, Elizabeth Mattijsen, Ryan Erwin, Claudio

Ramirez, Alexander Kiryuhin, Aleks-Daniel Jakimenko-Aleksejev, Matt

Wade, and Massimo Nardone.

Special thanks go to Larry Wall for creating Perl and Raku, for the great

foreword, and for shaping the community to be friendly, welcoming, and a

second home to me.

Finally, thanks go to my parents, for kindling my love both for books

and for engineering. And most importantly to my family: to Signe, my wife,

for constant support and to my daughters Ida and Ronja for keeping me

grounded in the real world, and bringing joy to my life.

xv

Foreword

The reason I’m writing this (and perhaps why you’re reading it) is that

people just give me way too much credit. Yeah, sure, I invented Perl 30

years ago, and I coded the first five versions all by myself, pretty much. But

for the last 20 years, the vast majority of the work has been done by other

members of the industrious Perl1 community, who get far too little credit.

To be sure, I don’t mind getting extra credit: I’m human enough to enjoy

the undue adulation, and I understand how communities want—and

possibly even need—to have a figurehead who represents the whole.

I will gladly take credit, however, for the idea that a computer language

must have a vibrant community in order to thrive. From the beginning,

that was the intent of Perl. It all comes down to linguistics: Perl was

designed to work like a natural language on many levels, not just the

syntactic level. In particular, every living language is symbiotic with the

culture that conveys it forward into the future. More generally, natural

languages are responsive to context on every level, and some of those

levels are anthropological. People provide context to Perl, which in turn is

designed to respond productively to that context.

This may seem simple, but it’s a surprisingly tricky concept to bake into

a programming language and its culture. Just look at how many computer

languages fail at it. In most programming cultures, you are a slave to the

computer language. Rarely, if ever, do you get the feeling that the computer

language is there to work for you.

1 Raku started its life as Perl 6; it was renamed after Mr. Wall has written this
foreword.

xvi

We’re trying to change all that. So when the Perl community, back in

2000, decided to do a major redesign of Perl 5 to clean up the cruftier bits,

we not only wanted to fix things that we already knew were suboptimal,

but we also wanted to do a better job of responding to cultural change,

because we simply don’t know what we’ll want in the future. So we

thought about how best to future-proof a computer language; much of the

current design is about maintaining careful control of identity, mutability,

dimensionality, typology, and extensibility over time, so we could isolate

changes to minimize collateral damage. Other than worrying about

that, my main contribution as the language designer was to unify the

community’s contradictory desires into a coherent whole.

All that being said, it’s still all about the community: nearly all the

implementation work was done by others, and most of the features that

ended up in Perl 6 can be traced back through various revisions to the

community’s original RFCs. True, many of those original designs we

deemed inadequate, but we never lost sight of the pain points those

original suggestions were trying to address. As a result, even though Perl 6

ended up to be quite a different language than Perl 5, it is still essentially

Perl in spirit. We now think of Perl 6 as the “younger sister” to Perl 5, and

we expect the sisters will get along well in the future. You’re allowed to be

friends with either or both. They only squabble occasionally, as family do.

Since 2000, we’ve had over 800 contributors to the Perl 6 effort, one

way or another. Some folks come and go, and that’s fine. We welcome the

occasional contributor. On the other hand, we also honor those who strove

greatly but paid the price of burnout. And we deeply revere those who have

already passed on, who contributed, in some cases, knowing they would

never see the final result.

But then there are those who have stuck with the Perl 6 effort through

thick and thin, through joy and frustration, who have patiently (or at least

persistently!) risen to the challenge of building a better Perl community

around the revised Perl language, and who have gladly taken on the hard

work of making other people’s lives easy.

forewordforeword

xvii

One such is my friend Moritz Lenz, your author, and a much-respected

member of our not-so-secret Perl 6 Cabal. Well, some days it’s more like

the Perl 6 Comedy Club.

While thinking about this foreword, I guessed (and Moritz confirmed)

that he has a background in the performance arts. One can tell, because he

seems to have a natural feel for when to blend in as part of the ensemble,

when to step forward and take a solo lead, and when to step back again and

let someone else come to the fore. In many ways, the Perl 6 effort has been

like a jazz jam session, or like improv comedy, the kind of art where part of it is

showing how cleverly we learn to work together and trade off roles on the fly.

I’ve had to learn some of that myself. Good leaders don’t try to lead

all the time. That’s what bad leaders try to do. Often, a good leader is just

“following out in front,” sensing when the group behind wants a change of

direction, and then pretending to lead the group in that direction. Moritz

knows how to do that too.

Hence, this book. It’s not just a reference, since you can always find

such materials online. Nor is it just a cookbook. I like to think of it as an

extended invitation, from a well-liked and well-informed member of our

circle to people like you who might want to join in on the fun, because

joy is what’s fundamental to Perl. The essence of Perl is an invitation to

love, and to be loved by, the Perl community. It’s an invitation to be a

participant of the gift economy, on both the receiving and the giving end.

Since Herr Doktor Professor Lenz is from Deutschland, I think it’s

appropriate to end with one of my favorite German sayings:

Liebe ist arm und reich,

Fordert und gibt zugleich.

Oder auf Englisch:

Love is poor and rich,

Taking and giving as one.

—Larry Wall, May 2017

forewordforeword

1© Moritz Lenz 2020
M. Lenz, Raku Fundamentals, https://doi.org/10.1007/978-1-4842-6109-5_1

CHAPTER 1

What Is Raku?
Raku is a programming language. It is designed to be easily learned,

read, and written by humans and is inspired by natural language. It

allows the beginner to write in “baby Raku,” while giving the experienced

programmer freedom of expression, from concise to poetic.

Raku is gradually typed. It mostly follows the paradigm of dynamically

typed languages in that it accepts programs whose type safety it can’t

guarantee during compilation. However, unlike many dynamic languages,

it accepts and enforces type constraints. Where possible, the compiler uses

type annotations to make decisions at compile time that would otherwise

only be possible at runtime.

Many programming paradigms have influenced Raku. It has started

its life under the name “Perl 6” but has been renamed in 2019 to break

the illusion that it is just another version of Perl. Besides the obvious Perl

influence, it contains inspirations from Ruby, Haskell, Smalltalk, and many

other languages.

You can write imperative, object-oriented, and functional programs in

Raku. We will see object-oriented programming starting from Chapter 5

and a refactoring with functional approaches in Sections 10.4 and 10.5.

Declarative programming is supported through features like multiple

dispatch, subtyping, and the regex and grammar engine (explored in

Chapter 9).

https://doi.org/10.1007/978-1-4842-6109-5_1#DOI

2

Most lookups in Raku are lexical, and the language avoids global state.

This makes parallel and concurrent execution of programs easier, as does

Raku’s focus on high-level concurrency primitives. When you don’t want

to be limited to one CPU core, instead of thinking in terms of threads and

locks, you tend to think about promises and message queues.

Raku as a language is not opinionated about whether Raku programs

should be compiled or interpreted. Rakudo—the main implementation—

precompiles modules on the fly and interprets scripts.

1.1 Intended Audience
To get the most out of this book, you should be interested in learning

the Raku programming language and have some basic familiarity with

programming.

You should know what variables, if statements, and loops are and have

used some mechanisms for structuring code, be it through functions,

subroutines, methods, or similar constructs. A basic understanding

of object-oriented concepts such as classes, objects or instances, and

methods helps but is not required.

A basic knowledge of data types such as numbers, strings (text), arrays

or lists, and hashes (often also called hash maps, dictionaries, or maps) is

also assumed.

If you lack this knowledge, Think Perl 6 by Allen Downey and Laurent

Rosenfeld (2017, O’Reilly Media) is good introduction.

Finally, this book is not a reference, so it assumes you are at least

somewhat comfortable with looking things up, usually through the

search engine of your choice or the official documentation at

https://docs.raku.org/.

Chapter 1 What Is raku?

https://docs.raku.org/

3

1.2 Perl 5: The Older Sister
Around the year 2000, Perl 5 development faced major strain from the

conflicting desires to evolve and to keep backward compatibility.

Perl 6 was the valve to release this tension. All the extension proposals

that required a break in backward compatibility were channeled into Perl 6,

leaving it in a dreamlike state where everything was possible and nothing

was fixed. It took several years of hard work to get into a more solid state.

During this time, Perl 5 also evolved, and the two languages are

different enough that most Perl 5 developers don’t consider Perl 6 a natural

upgrade path anymore, to the point that Perl 6 does not try to obsolete

Perl 5 (at least not more than it tries to obsolete any other programming

language :-), and the first stable release of Perl 6 in 2015 does not indicate

any lapse in support for Perl 5. The rename of Perl 6 to Raku solidified

the intention of both communities to continue development of Perl and

Raku separately but with collaboration through shared workshops and

conferences.

Raku provides several features that have not found their way into Perl 5,

mostly because they seem to require backward incompatible changes or

changes too big for the fairly conservative Perl 5 developers:

• An easy-to-use, powerful object model, includes a

meta-object model, built into the language.

• A rich collection of built-in types.

• A clear distinction between binary data and strings.

• A solid approach to concurrent execution with threads.

• Built-in grammars and a cleaned-up regex syntax.

On the other hand, Perl scores with maturity and an excellent track

record of backward compatibility, a huge ecosystem of libraries, and

predictable (and often, but not always) superior performance.

Chapter 1 What Is raku?

4

1.3 Library Availability
Being a relatively young language, Raku lacks the mature module

ecosystem that languages such as Perl 5 and Python provide.

Nonetheless, some excellent, open source modules exist for Raku. One

example is the Cro1 HTTP framework for both client- and serverside HTTP

applications, including support for HTTP/2 and reactive programming.

Another is Red,2 a cross-database object-relation mapper that makes use

of Raku’s extensive meta-programming capabilities to provide a smooth

interface.

If you still find yourself missing libraries, interfaces exist that allow you

to call into libraries written in C, Python, Perl 5, and Ruby. The Perl 5 and

Python interfaces are sophisticated enough that you can write a Raku class

that subclasses a class written in either language and the other way around.

So if you like a particular Python library, for example, you can simply

load it into your Raku program through the Inline::Python module.

1.4 Why Should I Use Raku?
If you like the quick prototyping experience from dynamically typed

programming languages, but you also want enough safety features to build

big, reliable applications, Raku is a good fit for you. Its gradual typing

allows you to write code without having a full picture of the types involved,

and later introduce type constraints to guard against future misuse of your

internal and external APIs.

Perl has a long history of making text processing via regular

expressions (regexes) very easy, but more complicated regexes have

acquired a reputation of being hard to read and maintain. Raku solves this

1 https://cro.services/
2 https://modules.raku.org/dist/Red:cpan:FCO

Chapter 1 What Is raku?

https://cro.services/
https://cro.services/
https://modules.raku.org/dist/Red:cpan:FCO

5

by putting regexes on the same level as code, allowing you to name them

like subroutines and even to use object-oriented features such as class

inheritance and role composition to manage code and regex reuse. The

resulting grammars are very powerful and easy to read. In fact, the Rakudo

compiler parses Raku source code with a grammar!

Speaking of text, Raku has amazing Unicode support. If you ask your

user for a number, and they enter it with digits that don’t happen to be the

Arabic digits from the ASCII range, Raku still has you covered. And if you

deal with graphemes that cannot be expressed as a single Unicode code

point, Raku still presents it as a single character.

There are more technical benefits that I could list, but more

importantly, the language is designed to be fun to use. An important aspect

of that is good error messages. Have you ever been annoyed at Python for

typically giving just SyntaxError: invalid syntax when something’s

wrong? This error could come from forgetting a closing parenthesis, for

example. In this case, Rakudo says

Unable to parse expression in argument list; couldn't find

final ')'

which actually tells you what’s wrong. But this is just the tip of the iceberg.

The compiler catches common mistakes and points out possible solutions

and even suggests fixes for spelling mistakes. The Raku community

considers error messages that are less than awesome, short LTA, to be

worthy of bug reports, and much effort is spent into raising the bar for

error messages.

Finally, Raku gives you the freedom to express your problem domain

and solution in different ways and with different programming paradigms.

And if the options provided by the core language are not enough, it is

designed with extensibility in mind, allowing you to introduce both new

semantics for object-oriented code and new syntax.

Chapter 1 What Is raku?

6

1.5 Summary
Raku is a flexible programming language that offers many cool and

convenient features to both beginners and experts. It offers flexibility, type

checking, and powerful Unicode and text processing support.

Chapter 1 What Is raku?

