Raku
Fundamentals

A Primer with Examples, Projects,
and Case Studies

Second Edition

Moritz Lenz
Foreword by Larry Wall, creator of Raku

ApPress’

Raku Fundamentals

A Primer with Examples,
Projects, and Case Studies

Second Edition

Moritz Lenz
Foreword by Larry Wall, creator of Raku

Apress’

Raku Fundamentals: A Primer with Examples, Projects, and
Case Studies

Moritz Lenz
Fiirth, Bayern, Germany

ISBN-13 (pbk): 978-1-4842-6108-8 ISBN-13 (electronic): 978-1-4842-6109-5
https://doi.org/10.1007/978-1-4842-6109-5

Copyright © 2020 by Moritz Lenz

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image, we use
the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the author nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Stephen Hume on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Springer Science+Business Media, 1 New York
Plaza, New York, NY 10004, U.S.A.. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484261088. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6109-5

Table of Contents

About the AUhOFcccmminmmmmsessmsssss s ix
About the Technical REVIEWETccccsmssemmssssnsmsssnsssssnsssssnsssssnsssssnnnnns xi
Acknowledgmentsccccuuseemmmsssssnnmmssssssssnsssssnssssssssnnsssssssnnssssssnnnnsssss Xiii
L ——————— Xv
Chapter 1: What Is RaKu?ccuummmmmmmssmmmmmmmmmmsssssssssssssssssssssssssssssssnns 1
1.1 Intended AUCIENCE ..o 2
1.2 Perl 5: The Older SISTer ... 3
1.3 Library Availability..........cccoeorrinnrenres e 4
1.4 Why Should | USE RAKU?covrruririririririreresesesesese s ssssssssssssenes 4
1.5 SUMMAY...uiiiieccree e e n s 6
Chapter 2: Running Rakudo.........cousssmssesmssnmsssnsssassssssssssssssssssnsssassssanssns 7
2.1 INSTAHIEIS ...t e 8
P (1T (- O 9
2.3 Building from SOUICEccccvverennrinsire s se s 10
2.4 Testing Your Rakudo Star Installation............ccceoeeernennnenrencrnsenessenesssenens 11
2.5 DOCUMENTALION......cccrricrerererrese s e 12
2.6 SUMIMANY.....citiiitrriserisesesesssse s ses e sss s e e st ss e e sa e sessessssasessssessnns 12

iii

TABLE OF CONTENTS

Chapter 3: Formatting a Sudoku Puzzle........c..cccnrmsssnnnnnsssssnnssssssnnnnss 13
3.1 Making the Sudoku Playable.............ccccorerrienrnsrniennesere e esens 17
3.2 Shortcuts, Constants, and More ShortCuts.........cccevereervrreerevcervnseererenienns 22
3.3 1/0 and Other Tragedies.........ccovrrererenereeserenesese e senns 24
3.4 GEt Creative! ... s 26
3.5 SUMMAIY...cc ot s s e bbb e naenas 28

Chapter 4: Datetime Conversion for the Command Line........cccccunnrerns 31
4.1 Libraries t0 the RESCUEccvreieririrrsree s 32
4.2 DateTime FOormattingcccvvvinnnnnninnsn s 36
4.3 Looking the Other Way ... e snes 38
4.4 Dealing With TIMEcccoveeerererercere e 41
4.5 Tighten Your Seat Belt...........ccccovevnenennnnncssns e sens 42
4.6 MAIN MAGIC......cocverrrrerererereresesesesessssssssssssssssssssssss s ssssssssssesssessssssssssssasanas 45
4.7 AUtOMALEd TESTS......cov i s 46
B 1111111 51

Chapter 5: TeSting SaY().-scxsssseesssnrsssansessansesssnsesssnsesssnnesssnnssssnnssssnnssssas 53
LT B0 111 57

Chapter 6: Silent-Cron: A Cron Wrapperccccuumsssssssmmsmssssssssssssssssssnss 59
6.1 Running Commands ASYNCRroNOUSIY........c.cuecvrenernsesesesessssssessesesesessssesenns 60
6.2 Implementing TIMEOULSccvverrrenerrnsesneses s s sens 64
6.3 MOre 0N PrOMISEScccveererenrssssiseressssssss s s 66
6.4 P0ossible EXIENSIONScccoeriierniinee s 69
6.5 Refactoring and Automated TESEScccvveriririr s 69

iv

TABLE OF CONTENTS

(T8 I 21=1 £ T (0] T S 70
6.5.2 Mocking and TeStiNg........cccvvrrierininnnne s 72
6.5.3 Improving Reliability and Timingccccvvvvnnnnininnnn s 78
6.5.4 Installing @ ModUIececrveererinrinre s 79

6.6 SUMMAIY.....coiiiiriicrire s et 80
Chapter 7: Stateful Silent-Cron.........ccccuvseemnrnssssnnmmsssssssesssssssessssnnns 81
7.1 Persistent STOragecoooeerrrrerreerr e 81
7.2 Developing the Storage Back End...........cccovvevrvnrnsnnnenensse e 83
7.3 Using the Storage Back ENnd............ccccvvennennnnennsesnnesesese e ssssesens 87
7.4 RoOM TOr EXPANSION ...c.vevveirerereriererseressesessese e sssses e s ssessssessessesssssssessesas 88
A3 1111111 89
Chapter 8: Review of the Raku BasSiCS.......ccsrusssnnnnrsssssnsnssssssnnssssssnnnnss 91
8.1 Variables and SCOPING.......ccceveerrrerererirn et sae e se s 91
8.2 SUDIOULINES......ceeeeererereree e 92
8.3 Classes and ODJECTS.......ccccvrerernrererenern s 94
8.4 CONCUITENCY ..veveerreerrssesessessssasesessessssssessssesassesessssessssessssssnsssssssssessssenessanssnns 96
8.5 QULIOOK.....cererrireiieresrsss e 97
Chapter 9: Parsing INI Files Using Regexes and Grammarsccuuu. 99
0.1 REQEX BASICS.....crctrreeririiriin e s s s ss e s sne s s 100
9.1.1 Character ClasSes..........cuuurrerermrmnmnmsesmsssssnssssesessssssssssssssssssssssssssessns 102
9.1.2 QUANTITIEIS ..c.vveccccreris s 103
9.1.3 AREINALIVES. ... s 104

9.2 Parsing the INI Primitives......c..ccvvvnininisnsnc s sessesnens 104
9.3 Putting Things TOGEINET ... s 108
9.4 BACKLrACKINGcveueerreereresessesessee s sesessese e ses e se e ses s sessssessssesessesenns 109
9.5 GFAIMMAIS ...coveerrrreerraerrssesessese e s ses e e se s s sesss e e sessssessssessasessnsssenns 112

TABLE OF CONTENTS

9.6 Extracting Data from the Match.........c.cccovveririninnnccr e 113
9.7 Generating GOOd Error MESSAQEScccvererrererrnierenseserseseressesessesessesessssesenns 120
9.7.1 Failure IS NOrmal ..o 120
9.7.2 Detecting Harmful Failurecccoecnvrresnsnc s 122
9.7.3 Providing COntextccccvmirmennnnrnse s 123
9.7.4 Shortcuts for Parsing Matching Pairs...........ccocvvvievrrnneniernenensensenenes 125
9.8 Write YOUr OWN GrammarsScccceeecrerererenesessesessesesssesessesessssessssesessesenns 126
0.9 SUMIMANY.....cireerrrenerreerrnsesesese e e ses e se e rs e sss e e e sessssensssessssessssssenns 126
Chapter 10: A File and Directory Usage Graphccconmmsssannnnsssanns 129
10.1 Reading File SizZeS........cccvvvernnmreneninsserssesssess e s ssenes 129
10.2 Generating @ Tree-Map.......ccccveererenrrieniens e s sessesseees 132
10.3 FIAME GrapPNScoveeererrerreserserersessssessessesssssssessessssssssssessesssssssessesssssssensees 137
10.4 Functional Refactoringsccccuvvvvrnrniennsnsnsess s sessese s sessessens 140
10.5 More Language Support for Functional Programming.........c..ccceevieniennenn 148
10.6 More IMProvemMENtS..........ccucrierenniniesiess s s s e 149
10.7 EXPIOFL ...t 151
10.8 SUMMAIY.....cviereririrrere s s e e s s a e e nae s 152

Chapter 11: A Unicode Search Tool.........ccccvenssssssssmssnnnsnssssssssssssnnnnns 193

11.1 Code Points, Grapheme Clusters, and BYLESccccvrerivrerrerserserensensensenns 156
T1.2 NUMDEBIS ... s 158
11.3 Other Unicode Properties.........cunnennsnsnsennsis s sesessessssessessenns 158
L 0] 0o ST 159
11.5 SUMMAIY.....cotiicree s 160

TABLE OF CONTENTS

Chapter 12: Creating a Web Service and Declarative APIs............... 161
12.1 Getting Started With Cro..........ccovvevrevrncnrecre e 161
12.2 Expanding the Service ..o 165
2 1= 1o ST 167
12.4 Adding @ WED PAQEcccvecerrnrmrirenrsese s sessssessans 170
12.5 Declarative APIS ... 173
12.6 SUMMAIY....ccviererirerierese s e s s e e s e s saesa s e saesaesas e ssesaesessessessees 176

Chapter 13: What’s Next?ccccrrmmssmmmmmmsssssnsmsssssnnssssssssnsssssssssssssssnns 177
13.1 Scaling Your COde BaSecccvrererererinsereneserese s sesesse e sesesessssessenes 177
13.2 Packaging Your Application...........ccccuerrernsnseniennsnsessese s s e s 178

13.2.1 Packaging As a Traditional Raku Module...........c.ccooeorvniriinniniennens 179
13.2.2 Deploying With DOCKETcccocviererncnre s ses s 180
13.2.3 WindoWS INSTAIIETScccrveerercereereererere e 180

13.3 Closing TNOUGNES.......ccoeieirirre e 181
INA@X..ueeeiiienrsssnnsssnnnssssnsssssnsssssnsssssnnssssnnssssnnsnssnnansnnnnnssnnnnssnnnnssnnnnnnns 183

vii

About the Author

Moritz Lenz is a software engineer and
architect. In the Raku community, he is
well known for his contributions to the
Raku programming language, the Rakudo
compiler, related test suite, infrastructure,
and tools. He is also a prolific Perl and
Python programmer.

ix

About the Technical Reviewer

Matt Wade is a programmer, database developer, and system administrator.
He works for a large financial firm running a production support
organization where he gets to solve puzzles all day long. Matt resides in
Jacksonville, Florida, with his wife, Michelle, and their children, Matthew
and Jonathan.

Acknowledgments

They say it takes a village to raise a child. Similar things can be said about
writing a book. It is only possible through the effort of many people, often
unpaid volunteers who contribute just to see the project succeed, and out
of kindness of heart.

I am very grateful for the review by and feedback from Paul
Cochrane, Will Coleda, Elizabeth Mattijsen, Ryan Erwin, Claudio
Ramirez, Alexander Kiryuhin, Aleks-Daniel Jakimenko-Aleksejev, Matt
Wade, and Massimo Nardone.

Special thanks go to Larry Wall for creating Perl and Raku, for the great
foreword, and for shaping the community to be friendly, welcoming, and a
second home to me.

Finally, thanks go to my parents, for kindling my love both for books
and for engineering. And most importantly to my family: to Signe, my wife,
for constant support and to my daughters Ida and Ronja for keeping me
grounded in the real world, and bringing joy to my life.

xiii

Foreword

The reason I'm writing this (and perhaps why you're reading it) is that
people just give me way too much credit. Yeah, sure, I invented Perl 30
years ago, and I coded the first five versions all by myself, pretty much. But
for the last 20 years, the vast majority of the work has been done by other
members of the industrious Perl' community, who get far too little credit.
To be sure, I don’t mind getting extra credit: I'm human enough to enjoy
the undue adulation, and I understand how communities want—and
possibly even need—to have a figurehead who represents the whole.

I'will gladly take credit, however, for the idea that a computer language
must have a vibrant community in order to thrive. From the beginning,
that was the intent of Perl. It all comes down to linguistics: Perl was
designed to work like a natural language on many levels, not just the
syntactic level. In particular, every living language is symbiotic with the
culture that conveys it forward into the future. More generally, natural
languages are responsive to context on every level, and some of those
levels are anthropological. People provide context to Perl, which in turn is
designed to respond productively to that context.

This may seem simple, but it’s a surprisingly tricky concept to bake into
a programming language and its culture. Just look at how many computer
languages fail at it. In most programming cultures, you are a slave to the
computer language. Rarely, if ever, do you get the feeling that the computer
language is there to work for you.

'Raku started its life as Perl 6; it was renamed after Mr. Wall has written this
foreword.

FOREWORD

We're trying to change all that. So when the Perl community, back in
2000, decided to do a major redesign of Perl 5 to clean up the cruftier bits,
we not only wanted to fix things that we already knew were suboptimal,
but we also wanted to do a better job of responding to cultural change,
because we simply don’t know what we’ll want in the future. So we
thought about how best to future-proof a computer language; much of the
current design is about maintaining careful control of identity, mutability,
dimensionality, typology, and extensibility over time, so we could isolate
changes to minimize collateral damage. Other than worrying about
that, my main contribution as the language designer was to unify the
community’s contradictory desires into a coherent whole.

All that being said, it’s still all about the community: nearly all the
implementation work was done by others, and most of the features that
ended up in Perl 6 can be traced back through various revisions to the
community’s original RFCs. True, many of those original designs we
deemed inadequate, but we never lost sight of the pain points those
original suggestions were trying to address. As a result, even though Perl 6
ended up to be quite a different language than Perl 5, it is still essentially
Perl in spirit. We now think of Perl 6 as the “younger sister” to Perl 5, and
we expect the sisters will get along well in the future. You're allowed to be
friends with either or both. They only squabble occasionally, as family do.

Since 2000, we've had over 800 contributors to the Perl 6 effort, one
way or another. Some folks come and go, and that’s fine. We welcome the
occasional contributor. On the other hand, we also honor those who strove
greatly but paid the price of burnout. And we deeply revere those who have
already passed on, who contributed, in some cases, knowing they would
never see the final result.

But then there are those who have stuck with the Perl 6 effort through
thick and thin, through joy and frustration, who have patiently (or at least
persistently!) risen to the challenge of building a better Perl community
around the revised Perl language, and who have gladly taken on the hard
work of making other people’s lives easy.

FOREWORD

One such is my friend Moritz Lenz, your author, and a much-respected
member of our not-so-secret Perl 6 Cabal. Well, some days it’s more like
the Perl 6 Comedy Club.

While thinking about this foreword, I guessed (and Moritz confirmed)
that he has a background in the performance arts. One can tell, because he
seems to have a natural feel for when to blend in as part of the ensemble,
when to step forward and take a solo lead, and when to step back again and
let someone else come to the fore. In many ways, the Perl 6 effort has been
like a jazz jam session, or like improv comedy, the kind of art where part of it is
showing how cleverly we learn to work together and trade off roles on the fly.

I've had to learn some of that myself. Good leaders don’t try to lead
all the time. That’s what bad leaders try to do. Often, a good leader is just
“following out in front,” sensing when the group behind wants a change of
direction, and then pretending to lead the group in that direction. Moritz
knows how to do that too.

Hence, this book. It’s not just a reference, since you can always find
such materials online. Nor is it just a cookbook. I like to think of it as an
extended invitation, from a well-liked and well-informed member of our
circle to people like you who might want to join in on the fun, because
joy is what'’s fundamental to Perl. The essence of Perl is an invitation to
love, and to be loved by, the Perl community. It’s an invitation to be a
participant of the gift economy, on both the receiving and the giving end.

Since Herr Doktor Professor Lenz is from Deutschland, I think it’s
appropriate to end with one of my favorite German sayings:

Liebe ist arm und reich,

Fordert und gibt zugleich.
Oder auf Englisch:

Love is poor and rich,

Taking and giving as one.

—Larry Wall, May 2017

xvii

CHAPTER 1

What Is Raku?

Raku is a programming language. It is designed to be easily learned,
read, and written by humans and is inspired by natural language. It
allows the beginner to write in “baby Raku,” while giving the experienced
programmer freedom of expression, from concise to poetic.

Raku is gradually typed. It mostly follows the paradigm of dynamically
typed languages in that it accepts programs whose type safety it can’t
guarantee during compilation. However, unlike many dynamic languages,
it accepts and enforces type constraints. Where possible, the compiler uses
type annotations to make decisions at compile time that would otherwise
only be possible at runtime.

Many programming paradigms have influenced Raku. It has started
its life under the name “Perl 6” but has been renamed in 2019 to break
the illusion that it is just another version of Perl. Besides the obvious Perl
influence, it contains inspirations from Ruby, Haskell, Smalltalk, and many
other languages.

You can write imperative, object-oriented, and functional programs in
Raku. We will see object-oriented programming starting from Chapter 5
and a refactoring with functional approaches in Sections 10.4 and 10.5.
Declarative programming is supported through features like multiple
dispatch, subtyping, and the regex and grammar engine (explored in
Chapter 9).

© Moritz Lenz 2020 1
M. Lenz, Raku Fundamentals, https://doi.org/10.1007/978-1-4842-6109-5_1

https://doi.org/10.1007/978-1-4842-6109-5_1#DOI

CHAPTER 1 WHAT IS RAKU?

Most lookups in Raku are lexical, and the language avoids global state.
This makes parallel and concurrent execution of programs easier, as does
Raku’s focus on high-level concurrency primitives. When you don’t want
to be limited to one CPU core, instead of thinking in terms of threads and
locks, you tend to think about promises and message queues.

Raku as a language is not opinionated about whether Raku programs
should be compiled or interpreted. Rakudo—the main implementation—
precompiles modules on the fly and interprets scripts.

1.1 Intended Audience

To get the most out of this book, you should be interested in learning
the Raku programming language and have some basic familiarity with
programming.

You should know what variables, if statements, and loops are and have
used some mechanisms for structuring code, be it through functions,
subroutines, methods, or similar constructs. A basic understanding
of object-oriented concepts such as classes, objects or instances, and
methods helps but is not required.

A basic knowledge of data types such as numbers, strings (text), arrays
or lists, and hashes (often also called hash maps, dictionaries, or maps) is
also assumed.

If you lack this knowledge, Think Perl 6 by Allen Downey and Laurent
Rosenfeld (2017, O'Reilly Media) is good introduction.

Finally, this book is not a reference, so it assumes you are at least
somewhat comfortable with looking things up, usually through the
search engine of your choice or the official documentation at
https://docs.raku.org/.

https://docs.raku.org/

CHAPTER 1 WHAT IS RAKU?

1.2 Perl 5: The Older Sister

Around the year 2000, Perl 5 development faced major strain from the
conflicting desires to evolve and to keep backward compatibility.

Perl 6 was the valve to release this tension. All the extension proposals
that required a break in backward compatibility were channeled into Perl 6,
leaving it in a dreamlike state where everything was possible and nothing
was fixed. It took several years of hard work to get into a more solid state.

During this time, Perl 5 also evolved, and the two languages are
different enough that most Perl 5 developers don’t consider Perl 6 a natural
upgrade path anymore, to the point that Perl 6 does not try to obsolete
Perl 5 (at least not more than it tries to obsolete any other programming
language :-), and the first stable release of Perl 6 in 2015 does not indicate
any lapse in support for Perl 5. The rename of Perl 6 to Raku solidified
the intention of both communities to continue development of Perl and
Raku separately but with collaboration through shared workshops and
conferences.

Raku provides several features that have not found their way into Perl 5,
mostly because they seem to require backward incompatible changes or
changes too big for the fairly conservative Perl 5 developers:

e An easy-to-use, powerful object model, includes a
meta-object model, built into the language.

e Arich collection of built-in types.
e Aclear distinction between binary data and strings.
e Asolid approach to concurrent execution with threads.

e Built-in grammars and a cleaned-up regex syntax.

On the other hand, Perl scores with maturity and an excellent track
record of backward compatibility, a huge ecosystem of libraries, and
predictable (and often, but not always) superior performance.

CHAPTER 1 WHAT IS RAKU?

1.3 Library Availability

Being a relatively young language, Raku lacks the mature module
ecosystem that languages such as Perl 5 and Python provide.

Nonetheless, some excellent, open source modules exist for Raku. One
example is the Cro! HTTP framework for both client- and serverside HTTP
applications, including support for HTTP/2 and reactive programming.
Another is Red,? a cross-database object-relation mapper that makes use
of Raku’s extensive meta-programming capabilities to provide a smooth
interface.

If you still find yourself missing libraries, interfaces exist that allow you
to call into libraries written in C, Python, Perl 5, and Ruby. The Perl 5 and
Python interfaces are sophisticated enough that you can write a Raku class
that subclasses a class written in either language and the other way around.

So if you like a particular Python library, for example, you can simply
load it into your Raku program through the Inline: :Python module.

1.4 Why Should | Use Raku?

If you like the quick prototyping experience from dynamically typed
programming languages, but you also want enough safety features to build
big, reliable applications, Raku is a good fit for you. Its gradual typing
allows you to write code without having a full picture of the types involved,
and later introduce type constraints to guard against future misuse of your
internal and external APIs.

Perl has a long history of making text processing via regular
expressions (regexes) very easy, but more complicated regexes have
acquired a reputation of being hard to read and maintain. Raku solves this

'https://cro.services/
*https://modules.raku.org/dist/Red:cpan:FCO

https://cro.services/
https://cro.services/
https://modules.raku.org/dist/Red:cpan:FCO

CHAPTER 1 WHAT IS RAKU?

by putting regexes on the same level as code, allowing you to name them
like subroutines and even to use object-oriented features such as class
inheritance and role composition to manage code and regex reuse. The
resulting grammars are very powerful and easy to read. In fact, the Rakudo
compiler parses Raku source code with a grammar!

Speaking of text, Raku has amazing Unicode support. If you ask your
user for a number, and they enter it with digits that don’t happen to be the
Arabic digits from the ASCII range, Raku still has you covered. And if you
deal with graphemes that cannot be expressed as a single Unicode code
point, Raku still presents it as a single character.

There are more technical benefits that I could list, but more
importantly, the language is designed to be fun to use. An important aspect
of that is good error messages. Have you ever been annoyed at Python for
typically giving just SyntaxError: invalid syntax when something’s
wrong? This error could come from forgetting a closing parenthesis, for
example. In this case, Rakudo says

Unable to parse expression in argument list; couldn't find
final ")’

which actually tells you what’s wrong. But this is just the tip of the iceberg.
The compiler catches common mistakes and points out possible solutions
and even suggests fixes for spelling mistakes. The Raku community
considers error messages that are less than awesome, short LTA, to be
worthy of bug reports, and much effort is spent into raising the bar for
error messages.

Finally, Raku gives you the freedom to express your problem domain
and solution in different ways and with different programming paradigms.
And if the options provided by the core language are not enough, it is
designed with extensibility in mind, allowing you to introduce both new
semantics for object-oriented code and new syntax.

CHAPTER 1 WHAT IS RAKU?

1.5 Summary

Raku is a flexible programming language that offers many cool and
convenient features to both beginners and experts. It offers flexibility, type
checking, and powerful Unicode and text processing support.

