Learn Android
Studio 3

Efficient Android App Development

Ted Hagos

APress’

Learn Android Studio 3

Ted Hagos

Apress-

Learn Android Studio 3: Efficient Android App Development

Ted Hagos
Manila, National Capital Region, Philippines

ISBN-13 (pbk): 978-1-4842-3155-5 ISBN-13 (electronic): 978-1-4842-3156-2
https://doi.org/10.1007/978-1-4842-3156-2

Library of Congress Control Number: 2018933042
Copyright © 2018 by Ted Hagos

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw. springeronline.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Incis a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book's product page, located at www.apress.com/9781484231555. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3156-2
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/
rights-permissions
http://www.apress.com/
rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484231555
http://www.apress.com/source-code

For Adrianne and Stephanie.

Table of Contents

About the AULNOFccoussmmmsssmnmsssnnmssssnmssssssssssnsssssnssssansssssnsssssnsssssnnssssnnssssnnssssnnnnsns Xi
About the Technical REVIEWETucuusssemsmssssssnnmssssssnnsssssssnsssssssnnnssssssnnssssssnnnnsssssnns Xiii
Acknowledgments.......ccccuuuissmmmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnesesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
L1 L1 LT] | Xvii
Chapter 1: Introduclionccccciseemnnnsssssnmnnsssssnmsssssssess s ssssssesssnnnsensss 1
Y (0] SRS 1
STALISTICS ..oveuereeerrerresr s r s e e a e r e R n e ne e R nnn 2
Operating SYSIBIM.........coe i sr e er e a e sn e nn e s r e nn e nn e nn e nnenne s 3
Chapter 2: Android StUMI0ccunimmmmmmmmmmmmmmmssss s ———————— 5
ANAroid StUTI0 SETUD ..ccveeeeeeeereeeee e sae s re s r e r e r e sn e nesn e snennennennenan 6
MACOS ... ———————————————— 6
WINUOWS ...ttt d s d e A e A e e e R e A e Re A e e R e e e R e e e Re e e Re R e e R e e ns 6

311 OO RSR 7
Configuring ANdroid STUAIOccovierenerieresrresr e 8
Hardware ACCEIEration...........c.ccevceeeeriiesnsere e 14
The Android STUIO IDE..........cociecrerir s sn s sn s nnennenn 15

vi

Table of Contents
Chapter 3: Application Fundamentalsccccccmmmmmmnmmmmssssssnnnmmmmmmmsssssssnmmms 19
Creating @ PrOJECT........cvcceeciiecr e sn e 19
USing Android STUGI0.......coeeeeeee e n e 24
Compilation and RUNTIME.........ccccveierieeierree s s e s sse s saesae s saesnesaesnesassanesaees 34
Android COMPONENTS......cccccierrerirerersere e s sa s s nr s 35
COMPONENTS ... a e s a e sa e sa e r e sa e a e sn e sa e e e nnenrennennennan 36
ACTIVITIES ...t s e e b e e e A e Re e e b e Re e e b e Re e e e R e e e e nans 38
SBIVICES ...vvuerereeseueeresse et e s s e e e s s e e e e se e e e s e se e e A e Re e e e A e R e e e A e R e e R A e R e AR e A e R e Re e e R e Re e e A e Re e en e Re e s 38
CONENT PrOVILEIS ...ttt p e et p s 39
BroadCast RECEIVEIS.........ccceururueeirerieecrerie et 39
Chapter 4: Activities and Layouts..........ccccmrmsssmmmnmmsssssnnmsssssssssssssssssssssssssssssssssnns 41
Building the Hello SCreeN..........cececrcrcr et n s 41
THE LAYOUL Fl ...ttt nnns 42
MaiN JAVA PrOGIAM......cv ittt s e bbb et p e e e p s 45
VIEWS aNd LAYOUL ..o e s s 48
Chapter 5: Handling EVENtScccceemmmmmmnnmssssssssssnmsmmsssssssssssssnssssssssssssssssssssssssssnns 55
Overview of Event Handlingcccooeveverenennne s sss e see s ses s s s sssssssssssssesssssens 55
Declarative Event Handlingc.ccveveernennensenssnsnsessss s ses s e sesssssns s ssssnssnsssnsens 57
Programmatic Event Handling.........ccocvovcncrcrcs s 59
Working with Text and BUttOnS..........ccocvvrvrinrnsnsr e sesssenens 64
More Event Handling COOEccuceeueemrerncrcrire et ss s se e sesse s 70
Using an INNer Class @S @ LISTENE ... s 72
Using MainActivity @s the LISTENET ... se e nnnnens 76
Chapter 6: Working with Multiple ActivitieS......ccccusmmmmmsssennnmnssssnnnmssssssnsssssssnnns 83
Component ACHIVALIONcccoceerieierrcere e e 83
Launching @ SPecific ACHVILYccceeeeere e 85
DEMO PrOJECT......coererer sttt n e e n e e nn e n e 85
Pass Data to Another ACHIVILYccocvcrcrcr s s 95
AbOUL the GCF AlGOItRM.....ceceeceeecteerte st sa e e ae e sae e s s e e a e e sae e saesesaena e e sae e nae e nnenenaen 95

Returning Results from Other ACHVITIESccceccvrerererere s rre s se e e sas e sae e s 107

Table of Contents vii

IMPHCIE INTENTS ... e sa e sn e nrenn 114
DEMO PrOJECTcveeeeeerteeecer it b e sese e e s s s e e e be e e s e sennneas 115
Opening an RtP REQUESTcov et 117

ACLIVILY LifE CYCIE ..veveereereereerrereeree e reerse e ssessessesasssesasssssassaesassaessssassassssssssassssssssasssnnes 120

Chapter 7: Ul Elementsccccuunmemmmmmmmmmmmmmssssssssmsmmssssssssssssssssesssssssssssssnssssssssns 125

ULEIBMENTS ...t s s s 125

ThemMES AN COIOTS.........coceereeererrere s 125
0] 0] £ TS 126
L T=] 11T 130

0] 012 T SRS 132
DL T Yo o TSSO SS TP TTRRRSN 134

Fragments ..o s n s 142
g (0] 1= T (1] 144
Adding Fragments ProgrammatiCallyccoceeeeerrerererenrereerere s resesesesseesaesessesessessssessssessenenaes 151

Chapter 8: Running in the Backgroundccccceummrmmssssssssssnnssmsssssssssssssssssssssssns 157

LoNg RUNNING TASKScevuereireireeriersereeseeseeseessessessesssssssasssssasssssasssssssssssasssssssssssssssssssnsnns 157

DEMO PrOJECT..... et nr s nr e nn e n e nn e nn e nn e nnnnnn 158

F T - TP 162

Chapter 9: DebUggingcucourusmmrsssansssssnsssssnssssansessansesssnsesssnsesssnsesssnnesssnnssssnnssss 169

)L G = 1 (0] TSRS 170

RUNTIME EXCEPLIONS....eeiieereerieeree s s s rrsessessss s sse s e s snesas e saesn e saesn e s san e saesnssaesnnesnas 171

[T T = (0] £ SRS 173

Chapter 10: Data PersiStencCeccccuurmirmmmmmsssssssmmmmsmsssssssssssssssssssssssssssssssssssnns 177

SharedPreferenCes....... .o 178
0T TN (0] Tt T 179
VErifYiNg The File....couo e n e p e e 185
Application Level SharedPrefEreNCES.cvveverererererereres e e esas e ssesessesassesassessssessesesssnssnes 187

INTErNAI STOFAQE......ccveeeeeeereerrerre e r e s resr e aesr e sr e sr e sn e snesnesn e nnennenrnnans 195
How to Work with Internal STOrage.........ocereveeerereenennneseseses s sesssens 195

DEMO PrOJECTceeeeecerteeccer ittt s e s e e b s s e e s s e e e e sennnnas 196

viii Table of Contents

Chapter 11: App Distributionccccenirnnmmmmssssnnmmmmmmmsssssssnn .. 203
Preparing the App for REIEASE..........ccccvvrcerrerserserserser s sn e nne e 204
Prepare Materials and ASSets for REICASEcccccvvvviririnnnn s 204
Configure the AP fOr REIBASEcceveeeererertrerre et res e sss e sse e s e sse e sas e saesesaesesaesassesassesassenes 204
Build a Release-Ready APPliCALiON...........cccceeerererenenesesesss e sss s ss e ses s sns e ssssenns 205
Releasing the APP ..ot s 210
Appendix A: Introduction to Java.........ccccemmmmnnnsnsssssssssnnmmmmsmnsssssssnnnnnssnsssnnn. 213
The Java LANQUAGEcccecevererersirser s sn e e sn s sn s sn s sn s snssnsnnssnnsnn s 213
Virtual Maching ... 214
EAItIONS..c..e e —————————————— 214
£ 1] SRS 215
HEHo WOrId ... s 216
Program STIUCIUIE.........ccceeererecr e n e 218
Other ConSIdErations.........c.cveeererenriiersssse s 222
Variables and Data TYPEScccevererererereree e rssseeseesae s sae e sassassasssssassasssssassasses 223
o T] 224
R TE T (] T 1 224
00 TcT (0] £ SRS 225
Program FIOWcocicirirrcrssr st sn e sn s sn s s nn s sn s nn s nn s nn s nnn e 228
DBCISIONS ...ttt a s e e s e b e e e R e Re e b b e Re e e e e Re e E e Re e e eas 228
010 1TSS 232
Simple Application of CONtrol STrUCTUIESccccvveeriirreerier e saesnesnenns 234
The FizzBUuzz ProbIEM........ccvviimiiniiissss s s 234
How to Print @ 5x5 Multiplication TabIEcccceeererrerre e ra e e 235
MEENOUS ... —————————— 236
Object Oriented Programming..........ccccceeeesesesesesssessessesssssessesssssssssssssssssssssssssssnsnns 239
MOre DEtailS 0N CIASSEScccoururueerirrrreenereriee s ses e a e s e e ae e sssne e e e seneneas 242
CONSIIUCTOS ... e e b e e e e R e Re e e s e ae e e essbe e e nensennnnas 243

L0312 o] o OSSO R 244

Table of Contents ix

o T T TSSO SSSSSRS 245
Multiple TYPES iN @ PACKAGEccceererreeeririeeesiriee e sas e nnens 246
When We Don’t Need “IMPOI” ... s se s ssssssns 246

INNEITANCEvecc i ————————— 247
Object as the ROOL ClaSS........ccceerereererererererersesersesessesessesessessesessesessesessssessessssessesessensssssassessssesssnees 248
Single Rooted Class INNEHTANCE..........cceceverererererere e ree e rae e se e sae e sa e saesesaenesaesanaens 249
o010 02 249

INEEITACES ...cvecr st ——————————— 250
MUIEIPIE INNEITANCE.eveeeceece e b s a e a e s a e s r e e e e e e na e e es 251

(=] 01110 1 SRS 252

About the Author

Ted Hagos is the CTO of RenditionDigital International, a software development company
based out of Dublin. Before he joined RDI, he had various software development roles
and also spent time as trainer at IBM Advanced Career Education, Ateneo ITI, and Asia
Pacific College. He spent many years in software development dating back to Turbo C,

Clipper, dBase 1V, and Visual Basic. Eventually, he found Java and spent many years there.

Nowadays, he’s busy with full-stack Javascript and Android.

xi

About the Technical
Reviewer

Wallace Jackson has been writing for leading multimedia publications about his work in
new media content development since the advent of Multimedia Producer Magazine nearly
two decades ago. He has authored a half-dozen Android book titles for Apress, including
four titles in the popular Pro Android series. Wallace received his undergraduate degree in
business economics from the University of California at Los Angeles and a graduate degree
in MIS design and implementation from the University of Southern California. He is currently
the CEO of Mind Taffy Design, a new media content production and digital campaign design
and development agency.

Xiii

Acknowledgments

| don’t think a lot of people read the acknowledgement section of any book, probably not
even the people I’'m going to thank. But just in case they do read this book (and this section),
I’d like to extend my thanks to them.

Thanks to Mark Powers and Matthew Moodie for guiding me through the manuscript
development process. | used to have a romantic notion of the writing life; now | know better.
Thanks also to Wallace Jackson, who did the technical review, and to Massimo Nardone,
who helped out in the author review of the last four chapters. Special thanks to Steve Anglin,
who got me into Apress.

Thanks to Steph and Adrianne for understanding why | skipped some of my house chores
while writing this book.

Covering a topic as vast as Android and a tool as rich as Android Studio requires the effort
of many individuals whom | haven’t really met and know personally, but they do deserve
gratitude. This is a tough section to make because | know | am bound to miss some names,
so if | miss some, it’s not because of ingratitude, it’s because of ignorance.

XV

Introduction

Welcome to Learn Android Studio 3. This book will help you get started in your programming
journey with the little green robot. You already bought the book, so you don’t need to be
convinced that programming for the mobile platform offers a lot of opportunity for software
developers.

While the book is aimed at beginning Android programmers, it isn’t for people who are
completely new to programming. The book assumes that you have prior coding experience
with any of the CFOL (C family of languages, e.g., C, C++, Java, C#, JavaScript). Ideally,
you are already a Java programmer trying to get your feet wet in Android; in case you’re not,
don’t worry. Basic Java programming is covered in the Appendix, and you can refer to that
as you try to feel your way into the language.

The book covers two fronts: the fundamentals of Android programming and the use of
Android Studio 3. Android programming concepts and the use of the IDE are explained using
a combination of graphics and code walkthroughs: there’s plenty of those in the book.

Chapter Overviews

Chapter 1 - Introduces Android. It deals with a bit of Android’s history and the technical
makeup of its OS.

Chapter 2 - Walks you through to the setup of Android Studio and its requisite software.
Whether you use macOS, Linux, or Windows, this chapter has you covered.

Chapter 3 - We start dipping our toes into Android programming. We'll start with creating a

basic project and then run it on an emulator. This activity is something that you will do many
times in the course of your Android programming career. Well finish up with a discussion of

what makes up an Android application and how it is different from a desktop application.

Chapter 4 - This chapter deals with building user interfaces, one of the most basic and
probably widely used components in Android.

http://dx.doi.org/10.1007/978-1-4842-3156-2_1
http://dx.doi.org/10.1007/978-1-4842-3156-2_2
http://dx.doi.org/10.1007/978-1-4842-3156-2_3
http://dx.doi.org/10.1007/978-1-4842-3156-2_4

xviii Introduction

Chapter 5 - Continuing from Chapter 4, after you’ve built some Uls, you might want it to
actually do something. This chapter deals with how to respond to user-generated events.

Chapter 6 - This chapter deals with Intents. We’ve used Intents in the previous chapter, but
this chapter digs in deeper. Intents are uniquely an Android thing; it truly embraces loose
coupling. The chapter shows plenty of examples on how to use Intents for component
activation on a multiactivity application and how to pass data between activities.

Chapter 7 - This chapter is shorter than the rest but it will help you put a bit of polish into
your app. It deals with Ul design, themes, styles, the AppBar, and Fragments.

Chapter 8 - Android is very protective of the user experience; it doesn’t allow apps to freeze
the Ul leaving the user clueless as to what to do next. If you’ve seen ANR (Application Not
Responding) errors before, this chapter shows you how to avoid these things.

Chapter 9 - Shows some of the things you can do to debug your apps in Android Studio 3.
It goes through a list of the kinds of errors you might encounter while coding and what you
can do in Android Studio to respond them.

Chapter 10 - At some point in time, you need to be able to save all the data you’ve created
in the application. This chapter shows you the basics of saving data using a file, shared
preferences, and the internal storage.

Chapter 11 - When you’re ready to distribute your app, you’ll need to sign it and list it in a
marketplace like Google Play. This chapter walks you through the steps on how to do it.

Appendix - This chapter breezes through the Java language. It deals with some of the basic
language concepts you will need to get started in Android programming.

http://dx.doi.org/10.1007/978-1-4842-3156-2_5
http://dx.doi.org/10.1007/978-1-4842-3156-2_4
http://dx.doi.org/10.1007/978-1-4842-3156-2_6
http://dx.doi.org/10.1007/978-1-4842-3156-2_7
http://dx.doi.org/10.1007/978-1-4842-3156-2_8
http://dx.doi.org/10.1007/978-1-4842-3156-2_9
http://dx.doi.org/10.1007/978-1-4842-3156-2_10
http://dx.doi.org/10.1007/978-1-4842-3156-2_11

Chapter

Introduction

Most people would think of Android as a phone or tablet; or at least, that is what end users
would think. A developer would probably think of Android as an operating system (OS), and
for the most part, it is. Android was designed originally to work as a mobile OS, but as it
progressed, it found its way to some other places like TVs, car systems, watches, e-readers,
netbooks, game consoles, and so forth.

Android includes quite a bit of stuff. It is a comprehensive platform. Apart from the OS

and prebuilt applications, it includes a very capable software development kit, libraries,
application frameworks, and reference design. We will explore some of them in considerable
detail in the coming chapters. In the meantime, we’ll look at Android’s history, some
statistics, and the Android platform architecture.

History

Android has an interesting and very colorful history. It first came to life in 2003 when a
company called Android Inc. was founded by Andy Rubin. Android Inc. was backed by
Google, but they did not own it yet. In 2005, Google bought Android Inc. to the tune of
50M+ dollars. Sometime in 2007, the Open Handset Alliance was born, and the Android OS
has been officially open sourced. At this point, Android had not even reached version 1.0
and it was far from mainstream; it reached V1.0 sometime in 2008, but they had not thought
about dessert names just yet.

The year 2009 up to 2010 saw a torrent of rapid releases. Android was picking up steam.
Cupcake, Donut, Froyo, éclair, and Gingerbread were released during this two-year period.
2011 is a major milestone because up until this point, the Android OS remained confined to
mobile phones. Honeycomb, the successor to Gingerbread, was the first Android version
to be installed on tablets. There was a bit of controversy with Honeycomb because Google
did not release its code to open source immediately. The following is a quick summary of
Android’s history.

© Ted Hagos 2018 1
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_1

https://doi.org/10.1007/978-1-4842-3156-2_1

2 CHAPTER 1: Introduction

2003 Android Inc., founded by Andy Rubin and backed by Google, was born
2005 Google bought Android Inc.

2007 Android was officially open sourced. Google turned over its ownership to the Open
Handset Alliance (OHA)
2008 version 1.0 was released

2009 versions 1.1, 1.5 (Cupcake), 1.6 (Donut), and 2.0 (Eclair) were released
2010 versions 2.2 (Froyo) and 2.3 (Gingerbread) were released

2011 3.0 (Honeycomb) and 4.0 (Ice Cream Sandwich) were released

2012 version 4.1 (Jellybean)

2013 version 4.4 (KitKat)

2014 versions 5.0-5.1 (Lollipop); Android became 64-bit

2015 version 6.0 (Marshmallow)

2016 version 7.0-7.1.2 (Nougat)

2017 version 8 (Oreo)

One other thing that makes Android’s history colorful is the lawsuits. Sometime in the past,
Oracle sued Google, alleging that the latter infringed some copyrights of Java. But the

Java implementation of Android isn’t based on Oracle’s Java language implementation; it is
instead based on OpenJDK. Before Android Studio 2.2, installation of a separate Java SDK
was a prerequisite for Android Studio; that is no longer the case because OpenJDK is now
part of the installation. Then, there were the lawsuits between Apple and Samsung; the main
part of all that was about Android. There were some bumps in the past but the little robot
marched on.

Statistics

7.2 billion

Number of Android devices. It already has exceeded the total number of people in the planet
3

Number of decades it took for mobile devices to go from zero to 7.2 billion
1.5 million

Number of Android devices being activated daily

2,617

Number of times users touch their mobile devices in a day

2 billion

Number of active Android users monthly

87

CHAPTER 1: Introduction 3

Percentage of share of Android in the mobile OS market

| know you are already into Android development; you are reading this book after all. If you
weren’t aware of these statistics before, | hope this gives you extra motivation to continue
your journey toward mobile development. Mobile computing usage is growing at a rapid
pace, and Android has the lion’s share of it.

Operating System

The most visible part of Android, at least for developers, is its OS. An OS is a complex
thing, but for the most part, it is what stands between a user and the hardware. That is an
oversimplification, but it will suffice for our purposes. By “user,” | don’t literally mean an end
user or a person. What | mean by it is an application, a piece of code that a programmer
creates, like a word processor or an e-mail client.

Take the e-mail app, for example; as you type each character on the keys, the app needs

to communicate to the hardware for the message to make its way to your screen and hard
drive and eventually send it to the cloud via your network. It is a more involved process than
| describe it here, but that is the basic idea. At its simplest, an OS does three things:

B manages hardware on behalf of applications

B provides services to applications like networking, security and memory
management, and so forth

B manages execution of applications; this is the part that allows us to run
multiple applications (seemingly) almost at the same time

Figure 1-1 shows a logical diagram of Android’s system architecture; it is far from complete,
since it doesn’t show all the apps, components, and libraries in the Android platform, but it
should give you an idea on how things are organized.

rowser emai your apps
Lb | i | APPLICATIONS
MANAGERS content
["activity | [location |[package | [notification || [_Providers APPLICATIONS
0 view FRAMEWORK
| resource | |telephony | | window | system
LIBRARIES android
"
webkit, media framework, open media libc, etc rt::r:)rl;ne
libraries
hardware power memory process
drivers mgt mgt mgt etc LINUX KERNEL

Figure 1-1. Platform architecture

4 CHAPTER 1: Introduction

The lowest level in the diagram is the one responsible for interfacing with the hardware,
various services like memory management, and executions of processes. It should sound
familiar because these were the three things | said that OSes do. This part of the Android
OS is Linux. Linux is a very stable OS and is quite ubiquitous itself. You can find it in many
places like server hardware on data centers, appliances, medical devices, and so forth.
Android has an embedded Linux inside it which handles hardware interfacing and some
other kernel functions.

On top of the Linux kernel are low-level libraries like SQLite, OpenGL, and so on. These are
not part of the Linux kernel but are still low level and as such, are written mostly in C/C++.
On the same level, you will find the Android runtime (Android class libraries + Dalvik virtual
machine), which is where Android applications are run. Unlike other Java programs, Android
executables are not .class files; they are .dex files. Dex files are not run on a typical Java
virtual machine (JVM) like the one installed on your desktop. The dex files are meant to run
on a VM that is optimized for low-powered handheld devices. The compilation cycle could
be summed to the following: .java files (source code) » Java compiler (.class) » dex
compiler (.dex) » packaging (.apk)

Note The Dalvik VM was written by Dan Borstein; the VM was named after a fishing village in
Iceland.

Next up is the application framework layer. It sits on top of both the low-level libraries and
the Android runtime because it needs both. This is the layer that we will interact with as an
application developer because it contains all the libraries we need to write apps.

Finally, on top is the application layer. This is where all our apps reside, both the ones we
write and the ones that comes prebuilt with the OS. It should be pointed out that prebuilt
applications which come with the device do not have any special privileges over the ones we
will write. If you don’t like the e-mail app of the phone, you can write your own and replace
it. Android is democratic like that.

Chapter

Android Studio

Developing applications for Android was not always as convenient as today. When

Android 1.0 was released sometime in 2008, what developers got by way of a development
kit was no more than a bunch of command-line tools and ant build scripts. Building

apps with vim, ant, and some command-line tools, that wasn’t so bad if you were used

to that kind of thing, but many developers were not. The lack of integrated development
environment (IDE) capabilities like code hinting, project setups, and integrated debugging
was somewhat a barrier to entry.

Thankfully, the Android development tools (ADT) for the Eclipse IDE was released, also
in 2008. Eclipse was, and still is, a favorite and dominant choice of IDE for many Java
developers. It felt very natural that it would also be the go-to IDE for Android developers.

From 2009 up until 2012, Eclipse remained to be choice of IDE for development. The
Android SDK has also undergone both major and incremental changes in structure and in
scope. In 2009, the SDK manager was released; we use this to download tools, individual
SDK versions, and Android images that we can use for the emulator. In 2010, additional
images were released for the ARM processor and X86 CPUs. 2012 was a big year because
Eclipse and ADT were finally bundled; this was a big deal because until that time, developers
had to install Eclipse and the ADT separately, and the installation process wasn’t always
smooth. So, the bundling of the two together made it a whole lot easier to get started with
Android development. 2012 was also a big year because it marked the last year of Eclipse
being the dominant IDE for Android.

In 2013, Android Studio was released. To be sure, it was still on beta, but the writing on the
wall was clear. It will be the official IDE for Android development. Android Studio is based
on Jetbrain’s Intellid. Intellid is a commercial Java IDE that also has a community (nonpaid)
version. This is the version that would serve as the base for Android Studio. In this chapter,
we will cover the following.

Setup

Configuration

© Ted Hagos 2018 5
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_2

https://doi.org/10.1007/978-1-4842-3156-2_2

6 CHAPTER 2: Android Studio

Hardware acceleration

Some basic parts of Android Studio 3

Note Before you can install Android Studio, you need the Java 8 JDK. JDK installation instructions
are in the appendix.

Android Studio Setup

The AS3 installer is available for macOS, Windows, and Linux. The download page detects
the OS you are using, so you should be able to spot the download button fairly quickly.
You will be asked to agree to some terms and conditions before you can proceed with the
download. Read it, understand it, and agree to it so you can carry on. After that, the AS3
installed will be downloaded in a zipped file.

If you have an existing installation of Android Studio, you can keep using that version and
still install the preview edition. AS3 can coexist with your existing version of Android Studio;
its settings will be kept in a different directory.

mac0S

You must have seen the installation instruction after the terms and conditions screen; if you
haven’t or you skipped through it, | suggest that you give it a once-over, because there is an
installation warning in case you have an existing version of Android Studio. It says that if you
downloaded Android Studio version 2.3 or earlier, the application name on macOS installer
does not include the version number. So, you may want to rename your existing Android
Studio prior to installing the preview version. You can rename your existing Android Studio
installation by opening a finder window; then, select “Applications” from the sidebar, find
Android Studio, activate the context menu (press Ctrl + mouse click), and choose rename.
The installation notes for AS3 are at https://developer.android.com/studio/preview/
install-preview.html

1. Unpack the zipped file

2. Drag the application file into the Applications folder
3. Launch AS3
4. AS3 will prompt you to import some settings; if you have a previous
installation, you can import that (it is the default option)
Windows

1. Unzip the installer file

2. Move it to a folder location of your choice (e.g., C:\AndroidStudio).
Drill down to this folder

https://developer.android.com/studio/preview/install-preview.html
https://developer.android.com/studio/preview/install-preview.html

CHAPTER 2: Android Studio 7

3. Inside, you will find a bin folder; inside it, you will find studio64.exe.
This file is what you need to launch. If you are on a 32-bit Windows,
the launcher file is named studio.exe

Tip If you right-click studio64.exe and choose Pin to Start Menu, you can make AS3 available
from the Windows Start menu; alternatively, you can pin it to the Taskbar.

Linux

The Linux installation requires a bit more work than simply double-clicking and following the
installer prompts. In future releases of Ubuntu and its derivatives, this might change and
become as simple and frictionless as its Windows and macOS counterparts, but for now, we
need to do some tweaking. The extra activities on Linux are mostly because AS3 needs
some 32-bit libraries and hardware acceleration.

Note The installation instructions in this section are meant for Ubuntu 64-bit and other Ubuntu
derivatives: Linux Mint, Lubuntu, Xubuntu, Ubuntu MATE, and so forth. | chose this distribution
because | assumed that it is a very common Linux flavor, hence, readers of this book will be using
that distribution.

If you are running a 64-bit version of Ubuntu, you will need to pull some 32-bit libraries in order for
AS to function well.

To start pulling the 32 bit libraries for Linux, run the following commands on a terminal
window.

sudo apt-get update && sudo apt-get upgrade -y
sudo dpkg --add-architecture i386
sudo apt-get install libncurses5:i386 libstdc++6:1386 z1lib1g:i386

When all the prep work is done, the AS3 installation can be managed using the following
steps.

1. Unpack the downloaded installer file. You can unpack the file using
command-line tools or using the GUI tools; you can, for example,
right-click the file and select the “Unpack here” option, if your file
manager has that option

2. After unzipping the file, rename the folder to AndroidStudio

3. Move the folder to a location where you have read, write, and
execute privileges. Alternatively, you can also move it to /usr/local/
AndroidStudio

8 CHAPTER 2: Android Studio

4. Open a terminal window and go to the AndroidStudio/bin and
execute ./studio.sh

5. At first launch, AS3 will ask you if you want to import some settings;
if you have installed a previous version of Android Studio, you may
want to import those settings into AS3

Configuring Android Studio

Before we can dive into programming, we need to do a couple of things to complete the
development setup. We need to

B Get some more software so we start creating programs that target a
specific version of Android

B Make sure we have all the SDK tools we need, and optionally
B Change the way we get updates for AS3

Launch AS3 if you haven’t done so yet. From the opening dialog, click “Configure” and
choose “SDK Manager” from the drop-down list. This should take you to a window where
you can select the SDK platforms to download (Figure 2-1).

®e Welcome to Android Studio

"

L

¢ Start a new Android Studio project

= Open an existing Android Studio project
¥ Check out project from Version Control ~
[&' Profile or debug APK

¢ Import project (Gradle, Eclipse ADT, etc.)

¥’ Import an Android code sample

@ Events » # Configure Get Help ~

SDK Manager
- Plugins

Figure 2-1. Preferences window

CHAPTER 2: Android Studio 9

When you get to the SDK window, enable the “Show Package Details” option so you can
see a more detailed view of each API level. We don’t need to download everything in the
SDK window. We will get only the items we need.

SDK levels or platform numbers are specific versions of Android. Android 8 or Android “O”
is API level 26, and Nougat is API level 24 and 25. You don’t need to memorize the platform
numbers anymore, because AS3 shows the platform number with the corresponding
Android nickname.

If you have a pretty fast Internet connection, you may choose to download everything. That
way, you can create projects that target multiple versions of Android all the way down to
Eclair. For our purposes, we will only download Nougat (platforms 24 and 25) and Oreo
(platform 26). Make sure that together with the platforms, you will also download “Google
APIs Intel x86 Atom_64 System Image”. We will need those when we get to the part where
we test run our applications.

Note Another way to build applications for earlier Android versions without having to download
all the API levels is to use the Android Support Libraries; these libraries afford us backward
compatibility.

Once you have completed the selection, click the “OK” button to start the download process
(Figure 2-2).

10 CHAPTER 2: Android Studio

Q
v Appearance & Behavior
Appearance
Menus and Toolbars
¥ System Settings
Passwords
HTTP Proxy
Updates
Usage Statistics
Notifications
Quick Lists
Path Variables
Keymap
» Editor
Plugins
» Build, Execution, Deployment
» Tools

Figure 2-2. SDK platforms

Default Preferences
Appearance & Behavior » System Settings > Android SDK
Manager for the Android SDK and Tools used by Android Studio
Android SDK Location: | /Users/ted/Library/Androidfsdk Edit

\SDidBatiamEN SOk Tools SDK Update Sites

m

Each Android SDK Platform package includes the Android platform and sources pertaining to an

APl level by default. Once installed, Android Studio will autematically check for updates. Check
"show package details" to display individual SDK components.

Installed
Not installed
Not installed
Installed
Mot installed

Installed

Not installed
Not installed
Mot installed
Not installed
Not installed
Not installed
Not installed
Mot installed
Not installed
Not installed

Reset

Show Package Details

Name | APl Level Revision |
v & Android8.0(0)
Android SDK Platform 26 26 2
Android TV Intel x86 Atom System Image 26 4
Android Wear Intel x86 Atom System Image 26 1
Google APIs Intel x86 Atom System Image 26 5
Google Play Intel x86 Atom System Image 26 5
v B Android7.1.1 (Nougat)
Android SDK Platform 25 25 3
Sources for Android 25 25 1
Android TV Intel x86 Atom System Image 25 51
Android Wear for China ARM EABI v7a System Image 25 3
Android Wear for China Intel x86 Atom System Image 25 3
Android Wear ARM EABI v7a System Image 25 3
[] 25 3
Google APls ARM 64 v8a System Image 25 a
Google APls ARM EABI v7a System Image 25 8
-2 Google APls Intel x86 Atom System Image 25 8
Google APIs Intel xBE Atom_B4 System Image 25 8
v Android 7.0 (Nougat)
Google APls 24 1 Mot installed
Android SDK Platform 24 24 2 Not installed
Sources for Android 24 24 1 Mot installed
Android TV Intel x86 Atom System Image 24 12 Not installed
Cancel Apply

Next, we head to the “SDK Tools” tab. This is in the same section on the Preferences

window; just click the tab in the middle to view the details of the tools (Figure 2-3).

CHAPTER 2: Android Studio 11

a

© Appearance & Behavior
Appearance
Menus and Toolbars
v System Settings
Passwords
HTTP Proxy
Updates
Usage Statistics
Notifications
Quick Lists
Path Variables
Keymap
» Editor
Plugins
* Build, Execution, Deployment
» Tools

Figure 2-3. SDK tools

Default Preferences

Appearance & Behavior » System Settings > Android SDK
Manager for the Android SDK and Tools used by Android Studio

m

Android SDK Location: | /Users/tedfLibraryjAndroid/sdk

SDK Platforms _ SDK Update Sites

Below are the available SDK developer tools. Once installed, Android Studio will automatically
check for updates. Check "show package details” to display available versions of an 5DK Tool.

Mame WVersion Status
GPU Usblgging toals MOt Instaliea
CMake Not Installed
LLDB Mot Installed
Android Auto APl Simulators 1 Not installed
Android Auto Desktop Head Unit emulator 1.1 Mot installed
Android Emulator 26.1.3 Installed
Android SDK Platform-Tools 26.0.0 Installed
Android SDK Tools 26.0.2 Installed
Android Support Library, rev 23.2.1 23.21 Installed
Documentation for Android SDK 1 Mot installed
Google Play APK Expansion library 1 Mot installed
Google Play Billing Library 5 Not installed
Google Play Licensing Library 1 Mot installed
Goaogle Play services 43 Installed
Google Web Driver 2 Mot installed
Instant Apps Development SDK 1.0.0 Mot installed
Intel x86 Emulator Accelerator (HAXM installer) 6.2.0 Installed
MNDK 16.1.4119039 Mot installed
v Support Repository
ConstraintLayout for Android Installed
Solver for ConstraintLayout Installed
Android Support Repository 47.0.0 Installed
Google Repository 57 Installed

Show Package Details

Cancel Apply

You don’t generally have to change anything on this window, but it wouldn’t hurt to check
that you have the following packages.

Android SDK Platform Tools This contains important tools like adb, which will help us do

Android SDK Tools

Android Emulator

diagnostics and debugging, and sqlite3, which we can use when
we create applications that use databases, plus a couple of other
tools.

This includes essential Android tools like ProGuard. You don’t need
to deep dive into the details of these tools (for now). Just make
sure this box is ticked and you’re good to go.

You will definitely use this. This is a device emulation tool. We will
use this to test our applications in a virtual device.

12 CHAPTER 2: Android Studio

Support Repository

HAXM Installer

If you want to write code that targets Android Wear, Android TV, or
Google Cast, you want to download this. This also contains local
Maven repository for support libraries. The support repository also
allows you to use new features on older Android versions.

If you are using a macOS, or a PC with Intel processor, you can
use this. It is an accelerator for the Android Emulator.

Note If you are on the Linux platform, you cannot use HAXM even if you have an Intel processor.
KVM will be used in Linux instead of HAXM.

After you’ve downloaded some target platforms and checked the SDK Tools, we can move
on to the last configuration item, which is the “Update Channel”. You can change this setting
from the “Preferences” dialog window. From the opening dialog window, choose “Configure”
and then “Preferences” (Figure 2-4).

Welcome to Android Studio

Andr0|d Studio

rsion 3.0 Canary 6 (171.4163606)

¥¢ Start a new Android Studio project

=+ Open an existing Android Studio project
¥ Check out project from Version Control ~
[+ profile or debug APK

» Import project (Gradle, Eclipse ADT, etc.)

¥ Import an Android code sample

@) Events ~ #* Configure » Get Help ~

SDK Manager
— Plugins

Figure 2-4. Preferences

CHAPTER 2: Android Studio 13

On the left side of “Default Preferences”, choose “Updates” (Figure 2-5).

‘@ ® Default Preferences
Q Appearance & Behavior » Sy Settings > Upd
Appearance & Behavior Automatically check updates for qu?m_g‘r_g_n_ngl__a Check Now
dppadiance Use secure connection
Menus and Toolbars Dev Channel
Beta Channel
System Settings Last checked 27/ Stable Channel
Passwords Current version Android Studio 3.0
Lot HLHEETY Build number Al-171.4263559
Android SDK Tools: 26.0.2
Usagel Siatstcs Android Platform Version: API 26: Android 8.0 (O) revision 2
Android SDK
Notifications View/edit ignored updates
Quick Lists
Path Variables
Keymap
Editor
Plugins
Build, Execution, Deployment
Tools
2 Cancel Apply m-

Figure 2-5. Update Channel

ASS3, just like any Android Studio installation is configured by default to get updates from the
channel where you originally downloaded the installer. At the time of this writing, AS3 was
downloaded from the “Canary” Channel (also known as the Preview Channel), hence, it gets
the update from the Canary Channel by default. You can change the channel to any one of
these four:

B Canary Channel: This has bleeding-edge releases; it could be updated
every week. You don’t want to use this for production codes

B Dev Channel: Just like the Canary Channel but a bit more stable. You
still don’t want to use this for production

B Beta Channel: This contains release candidates. The devs are basically
waiting for feedback before they get fed to the Stable Channel

m Stable Channel: This is the official stable release and is suited for
production work

