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    Introduction 

   Most developers I know typically view coding as a means to an end. That is, they write 
the code to satisfy the requirements set forth by the business. The code is interpreted or 
compiled, but either way, the final result is machine code that executes and (hopefully) 
does the right thing. 

 However, there’s more to software development than just that. I’m not talking about 
process or patterns per se; what I’m getting at is for developers to view their code in 
a more analytical way. Throughout my career, I’ve run into numerous cases in which 
I would’ve loved to have the ability to analyze my code so I could find errors quickly. 
I’ve also wanted to be able to extend and augment languages in certain ways so I didn’t 
have to write the same code over and over again. The primary language that I’ve used 
throughout my career has been C#, and although C# is a fine language to develop in, it 
seemed to lack these dynamic, analytical capabilities. 

 That’s no longer the case. Microsoft has provided public, open-source components 
in its Compiler API that allows developers to create analyzers that will help them detect 
problematic issues. This API also empowers developers to build code at runtime to create 
amazing, dynamic applications and libraries. Because all of this code is open source, it’s 
available to read and contribute to. Enabling .NET developers to shape and mold the 
future of the .NET compilation system is a wonderful thing to behold, and it’s exciting to 
see the development community embrace this model. 

 I wrote this book to help you navigate this new open-source API world. In it, I 
demonstrate how to use the Compiler API to write custom analyzers and refactorings to 
improve your code base. I show you how to use the Scripting API (part of the Compiler 
API) to use C# as a scripting language, a feature that was essentially unavailable to C# 
developers. I also illustrate how to use the Compiler API in innovative ways that go 
beyond these typical scenarios. My hope is that when you’ve finished this book, you’ll 
view C# and the ecosystem that supports it in a fundamentally different (and hopefully 
positive!) way—as a language that is open in terms of its implementation and its 
community involvement. 

   Who This Book Is For 
 This book is for architects and developers who have experience with C# and want to dive 
deeper into how code is compiled and executed. There’s no expectation that the reader 
has any experience with compilers, but I do assume that the reader has foundational 
knowledge of C#.  
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xvi

   Chapter Contents 
 To give you a feel for the content in the book, here’s a brief synopsis of each chapter.

•    Chapter   1    —You’ll get an introduction to the Compiler API and its 
constituent parts: syntax trees, semantic models, and formatters.  

•   Chapter   2    —This chapter covers diagnostics. You’ll learn how to 
write analyzers and build code fixes to automate code corrections.  

•   Chapter   3    —Refactoring code is a primary tenant for developers. 
This chapter shows you how to write refactorings to clean up your 
code base.  

•   Chapter   4    —C# is now a scripting language! In this chapter, you’ll 
see how the Scripting API works.  

•   Chapter   5    —You’ll discover how developers are using the 
Compiler API to empower their own components and get a 
preview of a future C# feature based on the Compiler API that 
could fundamentally change how you write code in C#.     

   Code Samples 
 Throughout the book I show code snippets to illustrate various aspects of the Compiler 
API. You’ll find all of the code at    https://github.com/jasonbock/compilerAPIBook     . 
The folder structure is set up to map the code content to each chapter of the book.  

   Errata 
 The author, the technical reviewers, and many Apress staff have made every effort to find 
and eliminate all errors from this book’s text and code. Even so, there are bound to be 
one or two glitches left. To keep you informed, there’s an Errata tab on the Apress book 
page (   www.apress.com/9781484221105     ). If you find any errors that haven’t already been 
reported, such as misspellings or faulty code, please let us know by e-mailing    support@
apress.com     .  

   Customer Support 
 Apress wants to hear what you think—what you liked, what you didn’t like, and what you 
think could be done better next time. You can send comments to  feedback@apress.com . 
Be sure to mention the book title in your message.  

   Contacting the Author 
 Feel free to follow me on Twitter at @jasonbock. My web site is    http://www.jasonbock.net     . 
You can also contact me via e-mail at  jasonb@magenic.com .              
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    CHAPTER 1   

 An Overview of the 
Compiler API                          

 This chapter covers the basics of the Compiler API, including the essentials of a compiler 
and their history in the .NET world. You’ll learn how to compile code and the trees that 
constitute the fundamental API data structure. You’ll discover how to build your own 
trees from scratch and navigate their content. Finally, we’ll explore annotating and 
formatting trees. 

     From Closed to Open 
  Compilers   are used more than any other tool by a developer. Every time you tell Visual 
Studio to build your code, you’re invoking csc.exe, which is the C# compiler. Without 
compilers, your C# code would be worthless. In this section, you’ll gain an understanding 
of what compilers do, how they’ve been designed in the .NET world, and how they have 
changed in .NET 4.6. 

 ■   Note    You can invoke csc.exe directly from the command line, but generally most .NET 
developers will use it indirectly through Visual Studio or some other IDE.  

Electronic supplementary material The online version of this chapter 
(doi:  10.1007/978-1-4842-2111-2_1    ) contains supplementary material, which is 
available to authorized users.
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