
.neT
Development
Using the
Compiler api

—
Jason Bock

 .NET Development
Using the

Compiler API

 Jason Bock

.NET Development Using the Compiler API

Jason Bock
Shakopee
Minnesota, USA

ISBN-13 (pbk): 978-1-4842-2110-5 ISBN-13 (electronic): 978-1-4842-2111-2
DOI 10.1007/978-1-4842-2111-2

Library of Congress Control Number: 2016945755

Copyright © 2016 by Jason Bock

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: James DeWolf
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Pramila Balan, Aaron Black, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, James Markham, Natalie Pao, Susan McDermott,
Matthew Moodie, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Laura Lawrie
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com , or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com/9781484221105 . For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in
the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484221105
www.apress.com/source-code/

iii

Contents at a Glance

About the Author .. ix

About the Technical Reviewer .. xi

Acknowledgments .. xiii

Introduction ... xv

 ■Chapter 1: An Overview of the Compiler API 1

 ■Chapter 2: Writing Diagnostics ... 33

 ■Chapter 3: Creating Refactorings and Handling Workspaces 69

 ■Chapter 4: Using the Scripting API ... 107

 ■Chapter 5: The Future of the Compiler API 139

Index .. 155

v

Contents

About the Author .. ix

About the Technical Reviewer .. xi

Acknowledgments .. xiii

Introduction ... xv

 ■Chapter 1: An Overview of the Compiler API 1

From Closed to Open ... 1

What Do Compilers Do? .. 2

Compilers as a Closed Box ... 4

Compilers as an Open Box .. 6

Compiling Code ... 6

Referencing Assemblies ... 6

Building Code ... 8

Creating Code Using Trees .. 10

Visualizing Trees ... 10

Building Trees ... 17

Navigating and Editing Trees ... 20

Finding Content from a Node .. 21

Finding Content Using Walkers ... 22

Semantic Models .. 23

Editing Trees ... 25

■ CONTENTS

vi

Annotations and Formatters .. 29

Using Annotations ... 29

Using Formatters .. 30

Conclusion ... 32

 ■Chapter 2: Writing Diagnostics ... 33

The Need to Diagnose Compilation ... 33

Designing the Diagnostic .. 35

Understanding the Problem .. 35

Using the Syntax Visualizer .. 36

Creating a Diagnostic .. 37

Using the Template ... 37

Building the Diagnostic ... 39

Providing Code Fixes ... 43

Designing the Fix .. 44

Implementing the Fix .. 45

Using Syntax Trees ... 46

Parsing Statements .. 50

Executing the Diagnostic and Code Fix .. 52

Debugging Diagnostics ... 54

Unit Testing ... 54

VSIX Installation .. 60

Visual Studio Logging ... 61

Deploying and Installing Diagnostics .. 66

VSIX Packaging ... 66

NuGet Packaging .. 67

Conclusion ... 68

■ CONTENTS

vii

 ■Chapter 3: Creating Refactorings and Handling Workspaces 69

Consistency in Structure ... 69

Developing a Refactoring .. 73

Understanding the Problem .. 73

Creating a Refactoring Solution .. 75

Building the Refactoring ... 76

Executing the Refactoring .. 82

Debugging Refactorings .. 86

Unit Testing ... 86

VSIX Installation .. 91

Interacting with a Workspace .. 91

What Is a Workspace? .. 91

Updating Solutions and Projects ... 93

Conclusion ... 106

 ■Chapter 4: Using the Scripting API ... 107

What Is a Scripting Language? ... 107

Orchestrating an Environment .. 107

Dynamic Capabilities .. 108

Using the C# REPL ... 109

Loading Code in Script.. 113

Making C# Interactive ... 114

Referencing the Scripting NuGet Package ... 115

Evaluating Scripts ... 115

Analyzing Scripts .. 119

State Management in Scripts ... 122

■ CONTENTS

viii

Concerns with the Scripting API .. 125

Scripts, Performance, and Memory Usage ... 126

Scripts and Security ... 130

Conclusion ... 138

 ■Chapter 5: The Future of the Compiler API 139

Current Usage.. 139

Generating Mocks ... 139

Building Code with Code... 143

Other Compiler API-Based Tools and Frameworks ... 147

Looking into C#’s Future .. 147

A Quick Story About Property Change Notifi cations ... 148

Reusing Common Implementations .. 150

Conclusion ... 153

Index .. 155

ix

 About the Author

 Jason Bock is a Practice Lead for Magenic
(http://www.magenic.com) and a Microsoft MVP (C#).
He has 20 years of experience working on a number of
business applications using a diverse set of frameworks
and languages such as C#, .NET, and JavaScript. He is
the author of Metaprogramming in .NET, Applied .NET
Attributes , and CIL Programming: Under the Hood of .NET .
He has written numerous articles on software development
issues and has presented at a number of conferences and
user groups. He is a leader of the Twin Cities Code Camp
(http://www.twincitiescodecamp.com). Jason holds a
Master’s degree in electrical engineering from Marquette
University. Visit his website at http://www.jasonbock.net .

http://www.magenic.com/#_blank
http://www.twincitiescodecamp.com/#_blank
http://www.jasonbock.net/#_blank

xi

About the Technical
Reviewer

 A prolific writer on cutting-edge technologies, Fabio Claudio Ferracchiati has
contributed to more than a dozen books on .NET, C#, Visual Basic, and ASP.NET. He is
a .NET Microsoft Certified Solution Developer and lives in Milan, Italy. You can read his
blog at http://www.Ferracchiati.com .

http://www.ferracchiati.com/

xiii

 Acknowledgments

 I’d like to thank Apress for contacting me at VSLive in 2015 and asking me if I’d be
interested in writing a book on the Compiler API. Getting the opportunity to write on
a topic that I’ve been deeply interested in since I heard about it eight years ago was
something I just couldn’t pass up. Specifically, I’d like to thank Anne Marie Walker, James
DeWolf, Mark Powers, Melissa Maldonado, and Fabio Claudio Ferracchiati for their
assistance, guidance, and editing prowess—they made the book far better than it would
have been if I did it on my own.

 Thanks also to Magenic, especially Greg Frankenfield and Paul Fridman, for
creating and growing a great place to work. I’ve been with Magenic for 15 years, and I feel
fortunate to work for a dynamic and innovative company where I fit in. Here’s to another
15 (or more!) years. I’d also like to thank Jeff Ferguson for providing a couple of figures for
me that are used in the book.

 Finally, I’d like to thank my family for their support and encouragement: my wife
Liz and my sons Hayden and Ryan. I am grateful to have found someone like Liz and that
we’ve been able to have two awesome sons.

xv

 Introduction

 Most developers I know typically view coding as a means to an end. That is, they write
the code to satisfy the requirements set forth by the business. The code is interpreted or
compiled, but either way, the final result is machine code that executes and (hopefully)
does the right thing.

 However, there’s more to software development than just that. I’m not talking about
process or patterns per se; what I’m getting at is for developers to view their code in
a more analytical way. Throughout my career, I’ve run into numerous cases in which
I would’ve loved to have the ability to analyze my code so I could find errors quickly.
I’ve also wanted to be able to extend and augment languages in certain ways so I didn’t
have to write the same code over and over again. The primary language that I’ve used
throughout my career has been C#, and although C# is a fine language to develop in, it
seemed to lack these dynamic, analytical capabilities.

 That’s no longer the case. Microsoft has provided public, open-source components
in its Compiler API that allows developers to create analyzers that will help them detect
problematic issues. This API also empowers developers to build code at runtime to create
amazing, dynamic applications and libraries. Because all of this code is open source, it’s
available to read and contribute to. Enabling .NET developers to shape and mold the
future of the .NET compilation system is a wonderful thing to behold, and it’s exciting to
see the development community embrace this model.

 I wrote this book to help you navigate this new open-source API world. In it, I
demonstrate how to use the Compiler API to write custom analyzers and refactorings to
improve your code base. I show you how to use the Scripting API (part of the Compiler
API) to use C# as a scripting language, a feature that was essentially unavailable to C#
developers. I also illustrate how to use the Compiler API in innovative ways that go
beyond these typical scenarios. My hope is that when you’ve finished this book, you’ll
view C# and the ecosystem that supports it in a fundamentally different (and hopefully
positive!) way—as a language that is open in terms of its implementation and its
community involvement.

 Who This Book Is For
 This book is for architects and developers who have experience with C# and want to dive
deeper into how code is compiled and executed. There’s no expectation that the reader
has any experience with compilers, but I do assume that the reader has foundational
knowledge of C#.

■ INTRODUCTION

xvi

 Chapter Contents
 To give you a feel for the content in the book, here’s a brief synopsis of each chapter.

• Chapter 1 —You’ll get an introduction to the Compiler API and its
constituent parts: syntax trees, semantic models, and formatters.

• Chapter 2 —This chapter covers diagnostics. You’ll learn how to
write analyzers and build code fixes to automate code corrections.

• Chapter 3 —Refactoring code is a primary tenant for developers.
This chapter shows you how to write refactorings to clean up your
code base.

• Chapter 4 —C# is now a scripting language! In this chapter, you’ll
see how the Scripting API works.

• Chapter 5 —You’ll discover how developers are using the
Compiler API to empower their own components and get a
preview of a future C# feature based on the Compiler API that
could fundamentally change how you write code in C#.

 Code Samples
 Throughout the book I show code snippets to illustrate various aspects of the Compiler
API. You’ll find all of the code at https://github.com/jasonbock/compilerAPIBook .
The folder structure is set up to map the code content to each chapter of the book.

 Errata
 The author, the technical reviewers, and many Apress staff have made every effort to find
and eliminate all errors from this book’s text and code. Even so, there are bound to be
one or two glitches left. To keep you informed, there’s an Errata tab on the Apress book
page (www.apress.com/9781484221105). If you find any errors that haven’t already been
reported, such as misspellings or faulty code, please let us know by e-mailing support@
apress.com .

 Customer Support
 Apress wants to hear what you think—what you liked, what you didn’t like, and what you
think could be done better next time. You can send comments to feedback@apress.com .
Be sure to mention the book title in your message.

 Contacting the Author
 Feel free to follow me on Twitter at @jasonbock. My web site is http://www.jasonbock.net .
You can also contact me via e-mail at jasonb@magenic.com .

http://dx.doi.org/10.1007/978-1-4842-2111-2_1
http://dx.doi.org/10.1007/978-1-4842-2111-2_2
http://dx.doi.org/10.1007/978-1-4842-2111-2_3
http://dx.doi.org/10.1007/978-1-4842-2111-2_4
http://dx.doi.org/10.1007/978-1-4842-2111-2_5
https://github.com/jasonbock/compilerAPIBook
http://www.apress.com/9781484221105
http://support@apress.com
http://support@apress.com
http://www.jasonbock.net/

1© Jason Bock 2016
J. Bock, .NET Development Using the Compiler API, DOI 10.1007/978-1-4842-2111-2_1

 CHAPTER 1

 An Overview of the
Compiler API

 This chapter covers the basics of the Compiler API, including the essentials of a compiler
and their history in the .NET world. You’ll learn how to compile code and the trees that
constitute the fundamental API data structure. You’ll discover how to build your own
trees from scratch and navigate their content. Finally, we’ll explore annotating and
formatting trees.

 From Closed to Open
 Compilers are used more than any other tool by a developer. Every time you tell Visual
Studio to build your code, you’re invoking csc.exe, which is the C# compiler. Without
compilers, your C# code would be worthless. In this section, you’ll gain an understanding
of what compilers do, how they’ve been designed in the .NET world, and how they have
changed in .NET 4.6.

 ■ Note You can invoke csc.exe directly from the command line, but generally most .NET
developers will use it indirectly through Visual Studio or some other IDE.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2111-2_1) contains supplementary material, which is
available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2111-2_1

