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Chapter 1

Introduction

Bayes is all the rage!

You’ll read this, or something like it, from time to time. This example is from the

opening sentence of a book by Luc Bovens and Stephan Hartmann [1]. In full the

sentence reads “Bayes is all the rage in philosophy”. You may not be much

interested in philosophy, but that’s just one of the places where Bayes’ Rule

makes an appearance. There are others, not only in books written for academics.

For instance, Angela Saini wrote a piece in The Guardian about the use of

Bayes’ Rule in a court of law under the headline The formula for justice. She writes
that Bayes’ Rule was

Invented by an 18th-century English mathematician, Thomas Bayes, this calculates the

odds of one event happening given the odds of other related events [2].

And here’s Tim Harford writing in a piece called How to make good guesses that
when we have two pieces of information

Logically, one should combine the two pieces of information . . . There is a mathematical

rule for doing this perfectly (it’s called Bayes’ rule) [3].

Finally, describing the application of Big Data to online advertising, Cathy O’Neil
writes

The data scientists start off with a Bayesian approach, which in statistics is pretty close to

plain vanilla. The point of Bayesian analysis is to rank the variables with the most impact

on the desired outcome. Search advertising, TV, billboards, and other promotions would

each be measured as a function of their effectiveness per dollar. Each develops a different

probability, which is expressed as a value, or a weight [4].

All of which is fine, but just what is Bayes’ Rule?
It’s been with us for about 300 years and every so often enjoys some popular

prominence. Articles and books such as those above are not written for a technical

audience. They may have whetted your appetite—sounds good but how does it

work? You want to know more but you don’t want a statistics text. This book is

for you.

~ • ~
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Decisions should be made based on evidence.

A doctor may use a test such as a blood test or MRI scan when diagnosing what

illness a patient might have. Experimental results show the diagnostic power of the

test, its ability to provide evidence for the doctor who then must decide what to tell

the patient. Some tests are very informative, some less so.

Police investigating a crime and juries trying an accused have to use evidence

too. This is of variable quality, ranging from DNA matching (pretty good) to

eyewitness identification (not so good), and yet decisions of guilt and innocence

are made.

What is common is that someone—a doctor, a juror—makes a decision based on

what they believe to be true and this belief is based, in part at least, on evidence.

Bayes’ Rule provides the necessary link between the evidence and what to believe

based on that evidence. The better the evidence the stronger is the belief that the

patient is ill or the accused is guilty. The strength of the evidence, and so of our

belief, is described using probability.

Bayes’ Rule takes us that far. What to do, what action to take, is your decision.

You will have a measure of your justified belief to help you.

~ • ~

There are many fine books and research papers you could read about Bayes’ Rule
and its applications but they tend to be written in the formal language of mathe-

matics. They may assume that you know more than you do. We all hit a barrier at

some point.

The motivation for this book is that it is possible and useful to describe for any

reader, whatever their (which is to say, your) background, what Bayes’ Rule is and
how it works. Bayes’ Rule is usually presented as a formula. For many this is not an

encouragement to read further. But a great many real applications, not just text book

illustrations, need no more than simple arithmetic. To show the calculations I have

used a table—the Bayes Grid. All you need to know is how to add, multiply and

divide. Think of a very simple spreadsheet.

Bayes’ Rule is also a way of thinking, of forcing you to answer questions

What do I know about this problem?

What evidence do I have and how good is it?

What alternative explanations might account for the evidence?

Asking the right questions is always a good idea, even if you sometimes need

help with the maths.

~ • ~
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This book is organised in three parts. The first sets out the basic relation between

evidence and the alternative accounts for that evidence. The second extends the

basic framework to bring in other information you may have. This may be based on

data or on judgement. You need to know how to deal with the issues raised by this

useful extension.

Up to this point the calculations have been easy. The emphasis has been on

thinking about how to use evidence, asking the right questions. Many applications

are not so straightforward either because the maths is more difficult or because the

decision problem is, by its nature, more complex. The chapters in this third part

cover both.

In summary, the three parts are

Likelihood The key to it all. The necessary description of the relation between

the evidence you have, what might account for it, and what you are

justified in believing.

Base rate Base rates enable you to use contextual or judgemental information

as well as evidence. Bayes’ Rule becomes a means of learning,

modifying your starting belief in light of new evidence. Bringing

in judgement is quite natural, but care is needed. We may not be as

good as we think at expressing our judgement in the form of

probabilities.

Application Many of the applications of Bayes’ Rule use mathematical models

which are daunting for non-mathematicians. However, the

underlying principles are the same as in the earlier parts. These

final chapters show how some Bayes’ thinking helps structure

problems and some of the modelling issues which follow.

The closing two chapters, on law and the psychology of

reasoning, do not involve heavy maths. They further emphasise the

benefits of using Bayes’ Rule as a way of thinking.

Notes and references are there to provide hints and reading should you wish to go

further. Some of the references may not be for you but none are needed for you to

read this book and, I hope, benefit from it.

~~~ • ~~~
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Part I

Likelihood



Chapter 2

Whose Car?

Evidence provided to the police is often imperfect. Even witnesses who are quite

sure of what they saw or heard may be wrong. How should their evidence be

evaluated?

Let us suppose.

There has been a robbery at a jewellers in Stockholm. Inspector Larsson and his

squad have narrowed the suspects down to just two, Jan and Stig. Larsson is sure

that one of them is guilty but there is no conclusive evidence to decide between

them. Circumstantial evidence puts them both near the crime scene at about the

right time, but that’s not enough. Then a witness, Ingrid, comes forward. She was

walking in the street where the robbery occurred and saw a car driving very fast

away from the jewellers. She only got a very brief look at the car and all she could

say was that it was blue. Stig’s car is blue and Jan’s car is green. But thanks to the

creative efforts of car manufacturers it’s not quite as clear cut as that. A list of car

paint codes shows Albi Blue, Storm Blue, Mountain Blue, Odyssey Blue, Spray

Blue. . .. There are twenty-six shades with blue in the name, and then there’s Aqua
and others. There are only eleven which are green, including Nordic Green. Larsson

smiles. Probably all that can be said is that Stig’s car is more blue-ish and Jan’s car
more green-ish.

So, how can Ingrid’s evidence be evaluated?
Colour is defined by wavelength measured in nanometres (nm). One nanometre

is a billionth of a metre. The visible spectrum is from about 400nm to about 700nm.

Shorter wavelengths, less than 400nm, are called gamma rays and X rays. Longer

wavelengths are used for microwave and radio. In the visible part of the spectrum

ranges of wavelength are given names which are the colours with which we are all

familiar (think rainbow)1:

1These values are from the NASA website. https://science-edu.larc.nasa.gov/EDDOCS/Wave

lengths_for_Colors.html. Accessed 14 September 2017.
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violet

indigo

blue

green

yellow

orange

red

about 400

about 445

about 475

about 510

about 570

about 590

about 650

The way we map this infinite variety into a small and manageable number of

colours is called categorical perception. The same idea can be applied to sounds

and other stimuli. There is inevitably some uncertainty, some vagueness, about

where to draw the line. We may be inconsistent, applying different labels to the

same stimulus on different occasions. Different people will apply different labels.

When Ingrid said “blue” what did she mean?

While browsing the web Larsson’s trusted colleague, Mankell, comes across a

study [1] which may help. In it a number of people were shown colour cards for a

short time and then asked to say whether what they saw was blue or green. The

results are shown as identification functions. For any colour shown by its wave-

length on the horizontal axis we can see the percentage of times it was identified

either as “blue” or as “green”.

Figure 2.1 shows the function for the label “blue”. As the wavelength increases

fewer people say “blue”. For a colour with wavelength 491nm expect that fifty

percent of people would call it “blue”.

Fig. 2.1 Identification function for “blue”2

2This and other graphs in this chapter use information from Fig. 2a of Bornstein and Korda [1]:

212.
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Figure 2.2 shows the identification functions for both “blue” and “green”. The

two lines are complementary, mirror images. For any wavelength the two percent-

ages sum to one hundred since only those two alternative names—“blue” and

“green”—were used in the experiment.

This graphmight be helpful in assessing just whatweight should be given to Ingrid’s
evidence. The actual colours of the two cars are known, the wavelengths have been

measured by the crime scene investigation team, and so the percentage of times that

each car would be expected to be called “blue” or “green” can be read from the graph.

There is no reason to think that Ingrid differs in any relevant way from the

subjects of the original experiment. This graph will do as a basis for assessing how

useful her evidence is in discriminating between Stig’s car and Jan’s car.
We can mark the actual colour of Stig’s car (490nm). Our best estimate is that

seeing Stig’s car seventy-four percent of people will call it “blue” and twenty-six

percent will say “green” (Fig. 2.3).

Fig. 2.2 Identification functions for “blue” and “green”

Fig. 2.3 Stig’s car
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For Jan’s car (colour is 492.5nm) Fig. 2.4 shows that only sixteen percent of

people would call it “blue” and eighty-four percent “green”.

Because they assume that Ingrid is typical of the subjects tested in the experi-

ment it seems clear to Larsson and Mankell that these results may be used to

describe the accuracy of her assessment: when she says “blue” the odds that the

car is Stig’s car rather than Jan’s car are 74:16. To put it another way, the chance

that the car was Stig’s car is eighty-two percent.3 The chance that it was Jan’s car is
eighteen percent. Larsson and Mankell conclude that based on Ingrid’s evidence the
probability that it was Stig’s car that she saw is about eighty percent. Not bad.

~ • ~

The two policemen did what seemed obvious. Were they right?

Yes, they were.

Although they didn’t know it, they had used Bayes’ Rule. It was the intuitively
obvious thing to do.

~ • ~

This is fine so far as it goes. We have a good idea of the strength of this evidence but

how should it be used together with what else we know, or suspect? How to

combine different sources of evidence?

The natural language of the courtroom is not numeric and neither judges nor jury

members (nor many of us) are used to this form of reasoning. But courts do hear

evidence from expert witnesses, much of which is based on quantitative analysis,

and juries do make decisions.

Fig. 2.4 Jan’s car

3Odds and probabilities both express uncertainty. The conversion from one to the other is easy.

74/(74 + 16) ¼ 82% and 16/(74 + 16) ¼ 18%.
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The usefulness and, which is different, the admissibility of arguments about the

possible statistical basis of evidence and the justifiable evaluation of that evidence

is subject to quite a bit of argument. Justification is important.

~ • ~

Stig, Jan, Ingrid and the rest are fiction. But the possible use of Bayes’ Rule to

assess evidence and, more problematically, to present the analysis in court, are not.

In 1996, Denis Adams was accused of rape. The victim said her attacker was in

his twenties. Adams was 37. The victim was unable to pick Adams in an identity

parade. Adams’ alibi was that he had spent the night in question with his girlfriend.
But DNA evidence at the scene was a good match with Adams’ DNA, though there
was some dispute about the correct match probability. The match probability is the

probability that someone picked at random would match the DNA profile found at

the crime scene. The prosecutor said 1 in 200 million but the defence argued for a

much lower figure of 1 in 20 million or perhaps even 1 in 2 million. All other

evidence supported Adams’ claim of innocence. What was the jury to make of all

this? Professor Peter Donnelly of Oxford University was permitted by the court to

show the jury how Bayes’ Rule could be used to evaluate the evidence presented to
them. Adams was convicted. He appealed against his conviction.

The Court of Appeal noted that at the original trial no advice was given to the jury

about what they should do if they chose not to use Bayes’ Rule. A retrial was ordered.

At the retrial the court asked that Professor Donelly and other statisticians on the

prosecution’s side cooperate to provide a guide to help the jury. Although Donnelly
had reservations a method was agreed. Jury members were required to complete

questionnaires to illustrate how Bayes’ Rule could be used (Professor Donelly gives
a brief account of all this in the Royal Statistical Society’s journal Significance [2]).

Adams was convicted again. He appealed again. The appeal was not upheld. But

the Court of Appeal made observations critical of the use of Bayes’Rule. For example

Jurors evaluate evidence and reach a conclusion not by means of a formula, mathematical

or otherwise, but by the joint application of their individual common sense and knowledge

of the world to the evidence before them.

Individual jurors might differ greatly not only according to how cogent they found a

particular piece of evidence (which would be a matter for discussion and debate between

the jury as a whole), but also on the question of what percentage figure for probability

should be placed on that evidence.

Different jurors might well wish to select different numerical figures even when they were

broadly agreed on the weight of the evidence in question.

The general drift was that the use of Bayes’ Rule, or any mathematical model,

would illegitimately undermine “an area peculiarly and exclusively within the

province of the jury, namely the way in which they evaluate the relationship

between one piece of evidence and another”. In other words, the mental processes

of twelve members of the public can be trusted to make some quite complicated

judgements. That is sometimes inevitable, of course, but where a little calculation

might help it seems harsh to deny the jurors the use of it.

2 Whose Car? 11



The court decided against the use of Bayes’ Rule in assessing DNA evidence.

But, even if jurors had some appreciation of probabilities of events familiar to them

or which they might easily imagine—tossing a coin, choosing a card—they (and

we) are unlikely to have an appreciation of what a probability of 1 in 200 million, or

0.000000005, means. In the trial this very low rate implied that the number of

people in the UK matching Adam’s DNA profile was small, just one or two. They

might be children or older folk and so not suspects. Or they might be related to

Adams. He did, in fact, have a half-brother whose DNA profile was not known.

If the match rate was as high as 1 in 2 million then there might be about thirty or

so people who would match: a different picture.

Guidance along these lines has subsequently been issued to judges so that they

might help jurors, and themselves, get a grip on these very low probabilities.

~ • ~

This isn’t a problem which will go away. In 2010 a convicted killer, “T”, took his

case to the Court of Appeal. One of the pieces of evidence against him involved his

Nike trainers and the likelihood that shoe prints at the scene of the crime matched

his shoes. The judge believed that the expert witness had incorrectly calculated the

match probability. The case was quashed.

Professor Norman Fenton of Queen Mary, University of London, pointed out

that the conclusion was not well justified and, surprise, proposed that Bayes’ Rule
would help.4 He, with others, built a model based on the rule to help in judicial

decision making. Their model allows the combination of evidence which is based

on data and evidence which relies on judgement.5

We’ll return to this problem of using Bayes thinking in court in Chap. 16.

~ • ~

The same ideas should help doctors to make diagnoses. You can easily imagine

other applications.

And just think where all that big data analysis might lead. Simply having more

data is not enough, we still need to have a way of reaching justifiable decisions.

It should be clear that numerical analyses do not replace judgement. But where

the application of a little mathematics can help that judgement it would be wilful to

reject it out of hand. There is pretty good evidence that we human beings aren’t too
smart when it comes to dealing with numerical information unaided by some

calculation. Just what to do with the answers is where judgement comes to the fore.

~ • ~

4Some of the issues raised are discussed in [3].
5More details from their company, Agena. Bayesian Network and Simulation Software for Risk

Analysis and Decision Support. http://www.agenarisk.com/. Accessed 14 September 2017.
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The concerns of the courtroom were a long way from the mind of the Reverend

Thomas Bayes when he devised his rule for reasoning from evidence to belief. But

just what is Bayes’ Rule? And who was Bayes?

~~~ ••• ~~~
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Chapter 3

Bayes’ Rule

In the previous chapter the two policemen had evidence that was not precise. The

evidence they had was an eyewitness report that a car was “blue” and they wanted

to see how strongly this pointed to Stig’s car, which was blue, or to Jan’s car, which
was green. This is typical of many problems we face: we have to decide between a

number of alternatives (which car?) based on some imprecise evidence (“blue”). To

judge just how useful the evidence is we need to know the relation between each of

the alternatives and the evidence. This goes by many names: accuracy, track record,

diagnostic power and so on.

The idea is simple enough. If I don’t know how much you know about the

Nigerian economy why should I ask you about it? Or, if you give your opinion

anyway, how seriously should I take what you say? I should find out about your

track record. How good a pundit are you? Often we don’t, of course. What do you

know of your doctor’s track record? Dealing with this sort of judgemental evidence

raises all sorts of issues about credibility, bias and much else.

Fortunately, for a great many problems we have data on which to base an

evaluation of the relation between what we have as evidence and the alternative

causes or explanations of that evidence. Larsson and his team show how we might

use evidence. It is a straightforward case which we can put into a more formal,

though still simple, framework which will be useful for other problems.

Remember that the paint used by the makers of Stig’s car would be called “blue”
by seventy-four percent of people and “green” by the rest. Only sixteen percent of

people would call Jan’s car “blue”. Table 3.1 shows this information.
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Each row of the table shows how likely is the evidence—“blue” or “green”—

depending on which car was seen. The sum of each row is one hundred percent.

This is because only these two values of evidence are thought to be possible. We

have ruled out the possibility that a witness will say that either car was red, for

instance. So, a witness must say either that the car was blue or that it was green:

there are no other alternatives, no other colours are considered. These two distinct

values cover all possibilities. That is why the sum is one hundred percent.

This is a table presenting some experimental data.

The witness, Ingrid, was not part of the study described in the research but we

have no reason to believe that she is different from the study participants in the way

she identifies colours. It is reasonable to say that the likelihood, the probability, that

she would have called Stig’s car blue is seventy-four percent.
Just pause for a minute. The shift in perspective from data summary to prediction

is common enough, but just check it. To take one of those simple examples that stats

teachers use to illustrate a point, think of a deck of cards. There are thirteen cards in

each of four suits. That is data summary. The probability that you will pick a

diamond is a quarter, twenty-five percent. That is a probability assessment for the

result of your decision: a prediction.

Just as a diamond is one of the cards in the deck so Ingrid is one of the population

of Stockholm. But it’s a bit more than that. We reasonably assume that one deck of

cards is like any other. There is no reason to believe that the deck from which you

choose is different from any other deck. In all cases the probability of picking a

diamond is a quarter. And so we assume that the population from which Ingrid is

drawn, the residents of Stockholm, is no better or worse at identifying colours than

the population from which the people taking part in the experiment came. This is

plausible.

~ • ~

Each row of the table is a probability distribution. The values in the row show how

likely evidence is for each of the two alternatives, the two cars in this case. These

probability distributions are called likelihood distributions and are the key to

describing how evidence is related to alternative explanations of that evidence.

The table showed probabilities as percentages which sum to one hundred but

they could also be shown as decimal fractions that sum to one, as in Table 3.2.

alternatives: evidence: witness statement
car colour “blue” “green” sum
Stig’s car 74 26 100%
Jan’s car 16 84 100%

Table 3.1 Colour identification depends on car

16 3 Bayes’ Rule



Use either. Most people find percentages easier to read though sometimes

decimal fractions are easier for calculations. However you show them likelihoods

are the key to using evidence.

~ • ~

Of all the possible different values of evidence, “blue” and “green”, we have one,

“blue”. What should we believe? Do as the police did: believe in the alternatives

according to how likely each is to explain the evidence. It makes sense to express

this belief as a probability distribution, so rescale the likelihood values to sum to

one hundred percent. Figure 3.1 shows this simple rescaling.

~ • ~

Using the word belief for these probabilities is important. It emphasises that what

you believe is personal. It may be that where the evidence and likelihoods are

uncontroversial we would all believe the same thing; that the probability of a coin

coming down heads is fifty percent, for instance. But this is not always so. Different

people may identify a different set of alternatives—Stig, Jan and Mats. Some of

these differences can be accommodated in the model or extensions of it. The

following chapters will show how.

~ • ~

alternatives: evidence: witness statement
car colour “blue” “green” sum
Stig’s car 0.74 0.26 1
Jan’s car 0.16 0.84 1

Table 3.2 Likelihood distributions

Fig. 3.1 What to believe given Ingrid’s evidence

alternatives:
car colour

evidence: witness statement
“blue” “green” belief

Stig’s car
Jan’s car

74 26 82
16 84 18
90 100%

rescale and so 

believe this

we saw

this
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We now have a framework for reasoning with evidence.

A simple table is all that we needed to give a structure to our problem.

The model was just “fill the rows then look at the columns”. There will be a little

more to it than that, but that is the essence.

Here are the components of the model as shown in the table.

1. Each row shows an alternative.
What might explain the evidence; a particular deck of cards, a particular

car?

Have we missed any possible alternative explanations?

2. Each element in a row shows a possible value of the evidence.
What evidence might we collect; a card, a colour?

The list shows all possible values so that one, but only one, will be seen.

3. Values in rows show likelihoods.
For each cell in a row write how likely it is that that evidence will be seen

if that alternative is the true alternative explanation.

Call these numbers, the entries in each row, the likelihood of each piece of
evidence.

Make sure each row sums to one hundred percent to give a complete

likelihood distribution for each alternative.

4. Rule.
Once the evidence is seen rescale the likelihoods in the corresponding

column to sum to one hundred percent.

The result is a probability distribution showing the degree of belief you are

justified in having that each alternative is the true alternative.

The key word is justified.

~ • ~

To summarise, remember the very important rule which tells us how to make sense

of what we see

believe in alternative causes or explanations in proportion to the

degree to which they explain the evidence

or belief is proportional to likelihood

This, in one form or another, is Bayes’ Rule, named for its proposer. But just

who was Bayes?

~ • ~

If ever you are inLondon go toBunhill Fields on the edge of theCity near the cluster of

tech start-ups known as silicon roundabout (British irony, perhaps). Here, just off the
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City Road, you find a small burial ground in which rest the remains of nonconformist

churchmen. It is now a public park. Although appropriately modest this cemetery is

home (if that is the right word) toWilliam Blake and John Bunyan and Daniel Defoe.

Here also is the tomb of the Bayes and Cotton families. On the top of this tomb is an

inscription commemorating its 1969 restorationmade possible by “subscriptions from

statisticiansworldwide”. This generositywas in recognition of the contribution (which

we have just begun to examine) of one of the Bayes family, a priest.

Fig. 3.2 Thomas Bayes (1702–1761)1

Thomas Bayes (Fig. 3.2) was born in 1702. His father was Joshua Bayes, a

nonconformist minister at Leather Lane, in Holborn, London. In 1731, following a

private education, Thomas also was ordained as a Presbyterian minister and took up

a ministry at Tunbridge Wells, in Kent. He had a lifelong interest in mathematics

and statistics, and was elected a Fellow of the Royal Society in 1742. He retired

from the ministry in 1752 and remained in Tunbridge Wells until his death in 1761.

He published just two papers during his lifetime: in 1731,Divine Providence and
Government Is the Happiness of His Creatures, and, five years later, An Introduc-
tion to the Doctrine of Fluxions, and a Defense of the Analyst, this being an attack

on Bishop Berkeley following the Bishop’s attack on Newton’s calculus.
After Bayes’ death his friend Richard Price, also a Bunhill Fields resident, sent a

further paper by Bayes to the Royal Society and in 1763 it was published in the

Philosophical Transactions of the Royal Society of London as Essay Towards
Solving a Problem in the Doctrine of Chances. It is this paper which contains the

famous rule.2

~ • ~

1Original source unknown. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:

Thomas_Bayes.gif. Accessed 16 September 2017.
2There are a number of accounts of Bayes life and work. Here are two: Barnard [1] and Dale [2].

Another, which concentrates more on the post-war spread of Bayes’ ideas, is Fienberg [3].
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