RIEGO POR GRAVEDAD

Riego por *Gravedad*

El mayor porcentaje de agua dulce en el mundo está destinado a la agricultura, preferencialmente en sistemas de riego que funcionan por gravedad. El libro presenta una temática diversa que abarca desde la presentación de la situación actual del riego en Colombia, hasta la descripción de una metodología que puede aplicarse para conocer el impacto que la construcción de dichos sistemas genera en el ambiente. Este texto pretende generar en las personas interesadas en esta temática un interés especial, para continuar investigando en estos temas, con el fin de hacer mas eficiente el uso del agua en un mundo y en un siglo en el cual la utilización de este recurso es cada día más un problema crucial para el desarrollo humano.

Programa 6 ditorial

Jaime Ernesto Diaz Ortiz

Riego por Gravedad

Universidad del Valle Programa Editorial

Título: Riego por gravedad
Autores: Jaime Ernesto Díaz Ortiz
ISBN: 978-958-670-539-4
ISBN PDF: 978-958-765-504-9
DOI: 10.25100/peu.189

Colección: Ingeniería

Primera Edición Impresa noviembre 2006 Edición Digital junio 2017

Rector de la Universidad del Valle: Édgar Varela Barrios Vicerrector de Investigaciones: Javier Medina Vásquez Director del Programa Editorial: Francisco Ramírez Potes

- © Universidad del Valle
- © Jaime Ernesto Díaz Ortiz

Diseño de carátula: Anna Echavarria. Elefante

Este libro, o parte de él, no puede ser reproducido por ningún medio sin autorización escrita de la Universidad del Valle.

El contenido de esta obra corresponde al derecho de expresión del autor y no compromete el pensamiento institucional de la Universidad del Valle, ni genera responsabilidad frente a terceros. El autor es el responsable del respeto a los derechos de autor y del material contenido en la publicación (fotografías, ilustraciones, tablas, etc.), razón por la cual la Universidad no puede asumir ninguna responsabilidad en caso de omisiones o errores.

Cali, Colombia, junio de 2017

CONTENIDO

Presentación	9
Adelantos de la agricultura bajo riego	11
Situación actual de riego en Colombia	13
Potencialidad de adecuación de tierras en Colombia	13
Distribución geográfica del área de riego	14
Área sembrada y volumen por distritos de riego en	
valores promedios	15
Índice de aridez media anual en Colombia	
Relaciones agua – planta	19
Fisiología de la planta	20
Hidrología de la planta	
Marchitamiento y muerte por deshidratación	23
Resistencia a la sequía	24
Efectos fisiológicos de la deficiencia de agua	26
Apertura de los estomas	26
Fotosíntesis	
Nutrición mineral	28
Crecimiento	28
Floración y fructificación	28
Efectos fisiológicos del exceso de agua	
Orientación del riego por indicadores fisiológicos	
Requerimiento de agua en las plantas	
Índice de humedad de las hojas	
Apertura de los estomas	

Principios básicos del riego	
Mapas topográficos	
Mapas de suelo	
Relaciones agua – suelo – planta	
Disponibilidad de agua en el suelo	
Profundidad de enraizamiento de los cultivos	
Uso consuntivo	
Velocidad de infiltración	
Recursos de agua del predio	
Pérdidas y desperdicios de agua en el predio	52
Pérdidas y desperdicios en el sistema de distribución	52
Pérdidas y desperdicios en la parcela	53
Eficiencia de riego	54
Eficiencia de aplicación del agua	57
Eficiencia de distribución del agua	
Eficiencia de almacenaje de agua	58
Métodos de riego	
Criterios de selección	
Cultivos	62
Topografía	
Suelos	
Recursos de agua	
Costos	
Otros criterios	
Factores que favorecen la selección del método de riego	
Hidráulica del riego por superficie	69
Consideraciones generales	
Curvas de avance del frente de agua	
Periodos de riego	
Primer periodo: La función de avance	
Segundo periodo	
Tercer periodo	
Análisis de las pérdidas de agua en riego por superficie	
Pérdidas por percolación profunda	
Pérdidas por escurrimiento	
Métodos de balance de volúmenes de agua para el diseño y evaluación de sistemas de riego superficiales	95

	Parámetros para el diseño de sistemas de riego	96
	Profundidad del agua a aplicar	96
	Infiltración	97
	Tiempo de oportunidad	97
	Tiempo neto de oportunidad	98
	Balance de volumen de agua	98
	Ecuaciones de diseño	99
	Riego por superficie – Método de balance de volumen	.100
	Riego por surcos en suelos nivelados	.103
	Riego por surco alterno	.112
	Riego por melgas	.114
	Riego en pocetas	.120
	Riego por pulsos	.122
	Politubulares	.124
	Evaluación del riego por superficie - Método del	
	balance de volúmenes	
	Indicadores de eficiencia en riego por superficie	.128
	Ejemplos	.131
R	iego por superficie para suelos salino – sódicos	
	Importancia y justificación de los estudios de salinidad	.136
	El problema de la salinidad en el mundo	.137
	Origen de los suelos salinos y sódicos	.137
	Origen y composición de las sales	.137
	La salinidad y su relación con el riego	
	Salinización	.139
	Alcalinización	
	Diagnóstico de suelos salino – sódicos	.140
	Nomenclatura y clasificación	.141
	Suelos salinos	.141
	Suelos sódicos	.141
	Suelos salino – sódicos	
	Características físicas y químicas de suelos afectados por sales	.142
	Características físicas de los suelos salinos	.142
	Características químicas de los suelos salinos	.142
	Efectos del sodio en los suelos	.143
	Características físicas de los suelos sódicos	.143
	Características químicas de los suelos sódicos	.144
	Recuperación de suelos salino – alcalinos	1/15

Indicadores para la evaluación de sistemas de riego	147
Indicadores de operación (ingresos)	
Indicadores de conservación (egresos)	148
Indicadores administrativos	148
Indicadores de producción	149
Evaluación del impacto de la transferencia de distritos	
de riego en Colombia	151
Agricultura bajo riego en Colombia	152
Descripción general de los distritos de riego	152
Distrito de Roldadillo – La Unión – Toro	152
Distrito de Río Recio	154
Distrito de Samacá	154
Antecedentes delos procesos de transferencia	155
Proceso de transferencia de los distritos estudiados	158
Aplicación de los indicadores para la evaluación del	
impacto de la transferencia	162
Descripción de los indicadores	163
Indicadores operacionales	165
Indicadores de productividad agrícola	167
Indicadores financieros	
Conclusiones	173
Conceptos metodológicos del impacto ambiental	
en proyectos de riego y drenaje	175
Evaluación del impacto ambiental	175
Licencia ambiental y estudios de impacto ambiental	176
Proyecto, obra o actividad	178
Impactos ambientales	178
Área de influencia	180
Plan de manejo ambiental	183
Glosario de siglas	187
Bibliografía	189

PRESENTACIÓN

La presente publicación pretende llenar un vacío que existe en Colombia sobre el tema de riego, debido a que la mayor parte de las obras escritas se encuentran dedicadas en su mayor parte a dar a conocer los aspectos básicos para el diseño de sistemas de riego, especialmente de riego a presión, dejando a un lado aspectos fundamentales, como es el impacto económico y ambiental que este tipo de infraestructura puede ocasionar en una región determinada.

En el mundo y particularmente en Colombia, los sistemas de riego por gravedad siguen ocupando la mayor parte del área bajo riego y la tecnología que aun se sigue implementando todavía tiene graves deficiencias sobre todo por el desconocimiento de muchos aspectos relacionados con la dinámica del movimiento del agua en el suelo y de las dificultades prácticas que conlleva la aplicación de una serie de conocimientos básicos acerca de la física de los suelos, de la fisiología de las diferentes especies vegetales y al gran número de situaciones de orden geográfico, económico, social, político de genero y cultural, que se presentan cuando se diseña y construye un sistema de riego, especialmente si éste es por gravedad.

El objetivo principal de éste libro es presentar a los estudiantes de ingeniería, a los ingenieros dedicados a las labores de diseño, construcción y evaluación de sistemas de riego y en general a todas las personas que de alguna manera se encuentren interesados en profundizar en el tema del riego por gravedad, una serie de conceptos que permiten entender los principios básicos de su funcionamiento, intentando mostrar además las implicaciones que pueden presentarse en la administración de los mismos y los cuales son indispensables para mejorar los diseños y evaluaciones de dichos sistemas. Con esto se pretende incrementar la eficiencia de la construcción, operación, administración y evaluación de éstos sistemas.

El libro se encuentra dividido en diez capítulos, cada uno de los cuales se describe a continuación.

En el primero de ellos se hace una introducción al tema del riego y se desarrolla una síntesis histórica breve, acerca del desarrollo de la irrigación en la historia de la humanidad, destacando su importancia económica y cultural.

El segundo capítulo presenta la situación actual en el que se encuentra el riego en Colombia, mostrando la distribución de áreas bajo riego en el país, destacando las regiones beneficiadas con riego, la ubicación de los distritos de riego y la disponibilidad y el potencial y la forma como se encuentra distribuida el agua en el país.

El capítulo sobre la relación agua – planta, resalta el papel del agua para el desarrollo de los cultivos, destacando la importancia que tiene el conocimiento de la fisiología de la planta, en la utilización eficiente del agua.

Los capítulos cuarto y quinto, están enfocados a la revisión de los conceptos clásicos del riego, señalando la dinámica del movimiento del agua en el suelo.

El capítulo sexto presenta una metodología diferente para el diseño, programación y evaluación de los sistemas de riego por gravedad, además de introducir al estudiante en los temas del riego por pulsos, el manejo de politubulares, con orificios y los conceptos de la utilización del caudal reducido en sistemas de riego por surcos, con los cuales se busca incrementar la eficiencia en la aplicación del agua.

El capítulo ocho presenta una serie de indicadores para la evolución de distritos de riego. Este tema sobre el cual existe poca información en el país, se considera de suma importancia para el mejoramiento en la administración de los distritos, debido a que introduce al lector en una serie de pautas que permiten la evaluación desde diferentes enfoques, con el fin de optimizar el funcionamiento de los distritos de riego.

El Capítulo nueve muestra un ejemplo de la evaluación que se realizó a un proceso de transferencia de tres distritos de riego. El estudio realizado por un grupo de ingenieros, se enfoca a mostrar el impacto producido por dicha transferencia y resalta los beneficios y desventajas de este proceso, en el cual el estado Colombiano, le transfirió al sector privado, los distritos.

Finalmente en el capítulo diez, se presentan algunos conceptos académicos, con el fin de entender y conocer el impacto ambiental que los proyectos de riego y drenaje, pueden generar en el país y propone una serie de indicadores que ayuden a los planeadores y diseñadores de sistemas de riego.

El autor

ADELANTOS DE LA AGRICULTURA BAJO RIEGO

Entre las diversas costumbres ancestrales relacionadas con la producción de alimentos, ninguna se ha considerado más antigua y de mayor importancia que la irrigación. Ciertamente es un hecho avalado por descubrimientos históricos y arqueológicos, que este procedimiento fue un agente importante en el progreso de la civilización antigua. Enormes áreas mundiales de condiciones climáticas áridas y semiáridas deben su supervivencia al conocimiento de las prácticas de la irrigación. India, Pakistán, Irán, Mesopotamia, Egipto, los países cultivadores de arroz del Lejano Oriente, grandes regiones en América Latina como Perú y México y muchas otras regiones del mundo dependen primordialmente del alimento cultivado por medio de las prácticas de riego.

Por lo tanto, es muy sorprendente que, a pesar de los inmensos adelantos en todas las actividades y profesiones a través de miles de años de la civilización humana, la irrigación se haya quedado atrás, en una situación más o menos estancada.

Es difícil creer que muchas de las prácticas de irrigación, actualmente en uso, son idénticas a las practicadas en la antigüedad. Si por el momento hacemos a un lado algunos adelantos menores, tales como el empleo de concreto en lugar de la mampostería, la introducción de compuertas más perfeccionadas, aparatos de medición o quizá mejores revestimientos de los canales, básicamente estos cambios son pequeños e insignificantes y poco es lo que ofrecen para indicar que se ha abierto una brecha en la idea fundamental de la irrigación.

Los nuevos sistemas de irrigación actualmente proyectados en muchos países del mundo, difieren muy ligeramente de los antiguos sistemas de irrigación utilizados en Ceilán, Egipto e Irak.

En realidad, el progreso en la modernización de la irrigación ha sido muy lento. Un cambio muy notable en el concepto de la irrigación se efectuó a fines del siglo pasado, después de dos grandes acontecimientos: la invención de la maquinaria de bombeo y los adelantos logrados en el campo teórico.

La invención de la máquina de vapor y posteriormente del motor diesel y el motor eléctrico, seguidas del invento de una gran variedad de bombas, primero del tipo reciprocante y después de la bomba centrífuga con todas sus variantes, propiciaron un gran número de nuevas posibilidades en los procesos de elevar, incrementar la presión y esparcir el agua en los campos.

En el campo teórico, debe darse crédito a un grupo de físicos de suelos, quienes presentaron nuevas teorías y contribuyeron mucho a la comprensión de los procesos implicados en las relaciones de suelo-agua-planta, como por ejemplo: Slichter y King (1897), Briggs (1897); Shantz y otros en el comienzo del siglo y muchos otros de entonces a la fecha.

Es importante destacar a Veihmeyer y sus colaboradores, quienes, en los años 1927-1948, elaboraron métodos prácticos para la determinación cuantitativa de la dotación requerida de agua, e introdujeron el concepto del *Uso Adecuado del Agua*.

A pesar del hecho de que estudios posteriores arrojaron dudas sobre la teoría de Veihmeyer, que aseguraba que las plantas pueden usar equitativa y fácilmente el agua del suelo, dentro de la escala de la variación entre la capacidad de campo y un porcentaje de marchitamiento definido, la importancia de sus estudios, fue modernizar la perspectiva de la irrigación, con énfasis particular en los aspectos cuantitativos de la entrega y el reabastecimiento de agua en las parcelas agrícolas. Veihmeyer sugirió procedimientos para la medición de las dotaciones de agua requeridas y estableció especificaciones para los estudios de campo.

La medición de las dotaciones de agua guarda estrecha relación con el uso adecuado del agua y fue un paso natural hacia el desarrollo de la irrigación controlada.

La irrigación controlada debe adoptarse como práctica normal en los proyectos y en la aplicación del agua de riego y no solamente en las regiones de escasez de agua. Los ejemplos de salinidad y encharcamiento, que ocurren en vastas áreas en las que el agua es abundante, muestran el gran daño que puede ocasionarse por el uso inadecuado del agua cuando se aplica con despilfarro.

SITUACIÓN ACTUAL DEL RIEGO EN COLOMBIA

Colombia es un país que cuenta con una superficie superior a los cien millones de hectáreas, que se encuentran clasificadas con fines de riego, como se indica en las Tablas 2.1 y 2.2; en ellas se presenta la situación del riego en Colombia (1996), diferenciando la superficie irrigada por departamentos, considerando el sector público y privado.

POTENCIAL DE ADECUACIÓN DE TIERRAS EN COLOMBIA

Tabla 2.1 ÁREA POTENCIAL DE RIEGO EN COLOMBIA

	Hectáreas
Área con vocación agrícola	14'400.000
Área potencialmente adecuable Riego-Drenaje	6′600.000
Área adecuada actualmente (12%)	800.000
Área adecuada por la empresa privada	515.000
Área adecuada por el Estado	285.000
Costa	212.238
Centro –Oriente	292.899
Occidente (Valle – Tolima)	294.303
Orinoquía	5.419

DISTRIBUCIÓN GEOGRÁFICA DEL ÁREA DE RIEGO

Tabla 2.2 DISTRIBUCIÓN DEL ÁREA DE RIEGO EN COLOMBIA

	Área potencial	Riego publico	Riego privado	Área tota
Departamento	Irrigable (ha)	(ha)	(ha)	Riego (ha)
Antioquia	328.921		3.625	3.625
Atlántico	203.080	24.618	1.026	25.644
Bolívar	329.785	9.293	3.915	13.208
Boyacá	436.328	11.202	1.300	12.502
Caldas	55.216		2.765	2.765
Caquetá	150.822			C
Cauca	87.924		34.496	34.496
Cesar	860.600		45.860	45.860
Córdoba	224.092	52.871	3.170	56.041
Cundinamarca	409.475	21.000	18.172	39.172
Guajira	217.830		15.714	15.714
Huila	99.450	4.601	24.831	29.432
Magdalena	467.728	47.594	8.177	55.771
Nariño	173.029		56.515	56.515
Norte de santander	294.954	11.619	5.000	16.619
Meta	571.700		56.155	56.155
Risaralda	49.680			C
Santander	156.114	8.698	7.000	15.698
Tolima	322.226	55.790	25.700	81.490
Valle	303.635	10.700	202.113	212.813
Pequeña irrigación		25.920		25.920
Total	5.742.589	283.906	515.534	799.440

Con relación a los distritos de riego existentes es importante destacar, la diferencia que se presenta en la producción, cuando se comparan las áreas sembradas bajo condiciones de riego y secano. Es importante resaltar que las producciones reportadas bajo condiciones de riego, son superiores en órdenes de por lo menos tres veces mayor, comparadas con las superficies sembradas. Estas diferencias se presentan en la Tabla 2.3

ÁREA SEMBRADA Y VOLUMEN POR DISTRITOS EN VALORES PROMEDIOS

Tabla 2.3 DISTRIBUCIÓN DE PRODUCCIÓN AGRÍCOLA PARA LOS DISTRITOS DE RIEGO (1996)

Distrito	Área (ha)	Área (ha)	-			
	Riego	Secano	TOTAL	Riego	Secano	TOTAL
Brego	869,9	519,5	1.389,4	8.769,5	2.342,7	11.112,2
Coello	29.846,4	26.627,4	56.473,8	148.133,9	38.940,7	187.074,6
Juncal	4.295,6	640,7	4.936,3	25.394,5	777,2	26.171,7
Porvenir	320,2	337,2	657,4	852,3	843,6	1.695,9
Lebrija	947,6	10.409,9	11.357,5	8.301,0	21.077,0	29.378,0
La doctrina	1.008,5	2.393,9	3.402,4	4.708,9	3.824,3	8.533,2
Maria la baja	4.299,2	11.997,7	16.296,9	17.878,7	42.667,7	60.546,4
Monteria	1.423,2	62.002,8	63.426,0	8.091,1	132.749,2	140.840,3
Epelon	1.203,0	2.276,4	3.479,4	17.674,3	4.497,1	22.171,4
Recio	11.082,3	6.841,8	17.924,1	56.049,4	3.082,3	59.131,7
Rut	9.285,0	8.579,2	17.864,2	50.338,9	25.145,0	75.483,9
Saldaña	19.722,5	7.979,5	27.702,0	96.761,6	3.906,3	100.667,9
Amaca	1.558,8	1.187,0	2.745,8	11.986,6	4.719,3	16.705,9
San alfonso	1.440,6	155,5	1.596,1	7.885,6	282,2	8.167,8
San rafael	623,8	60,2	684,0	3.761,3	237,2	3.998,5
Sogamoso	545,0	12.287,6	12.832,6	2.645,0	31.748,7	34.393,7
Sta. Lucia	721,6	1.485,3	2.206,9	1.972,4	1.743,3	3.715,7
Sevilla	17.271,0	18.276,4	35.547,4	196.300,7	81.300,4	277.601,1
Julia	11.395,1	2.489,5	13.884,6	66.708,1	4.554,5	71.262,6
Anati		25.051,5	25.051,5		31.561,5	31.561,5
Sibundoy		8.349,6	8.349,6		23.571,0	23.571,0
Prado	831,5	6.770,5	7.602,0	5.444,3	13.731,3	19.175,6

OFERTA Y DEMANDA MUNDIAL DE AGUA

La oferta y demanda de agua en el planeta se presenta en las tablas 2.4 y 2.5

Tabla 2.4 OFERTA DE AGUA EN EL PLANETA

	Porcentaje	Volumen (km³)
Agua en la tierra	100	1.385.000.000
Agua salada	97.2	1.331.000.000
Agua estado sólido	2.1	28.8
Agua estado gaseoso	0.1	1.4
Agua utilizable	0.6	8.2
superficial	1.23	0.1
subterránea	98.77	8.1
humedad del suelo	50.000	
profundidad >800m	4.000.000	
profundidad <800m	4.000.000	
Dotación renovable agua dulce (mundial-año)	47.000	

DOTACIÓN DE AGUA DISTRIBUIDA POR REGIONES

Tabla 2.5 DISTRIBUCIÓN PORCENTUAL DE AGUA EN EL PLANETA

Dotación /habitante-año	Volumen disponible(m³)
Promedio mundial	7.400
Canadá	109.000
Oriente medio (9 países)	1.000
China	2.300
Colombia	12.000
Neta 28 países	< 1.000

USO MUNDIAL DEL AGUA

Tabla 2.6 DISTRIBUCIÓN PORCENTUAL DEL USO DEL AGUA A NIVEL MUNDIAL

Concepto	Porcentaje (%)
Riego	65
Industria	25
Consumo domestico	10

Precipitación promedia y caudal específico por regiones

ZONA	Caudal específico	Precipitación promedia	
	(l. km ⁻³)	(mm año ⁻¹)	
MUNDO	10	900	
SUR AMÉRICA	21	1.600	
COLOMBIA	58	3.000	
COLOMBIA (28%)		>2.000	

BALANCE HÍDRICO

La Tabla 2.7 presenta la distribución de la precipitación y escorrentía en Colombia y los porcentajes en volumen de escorrentía a nivel global.

Tabla 2.7 PRECIPITACIÓN Y ESCORRENTÍA POR ZONAS GEOGRÁFICAS

Balance hídrico	Volumen (Km³)
Precipitación anual en Colombia	3.425
Escorrentía anual en Colombia	2.133
Escorrentía a nivel mundial	3
Escorrentía en Sur América	12

RENDIMIENTO HÍDRICO PROMEDIO EN COLOMBIA

La Tabla 2.8 señala el rendimiento hídrico promedio para distintas cuencas regionales en Colombia

Tabla 2.8 RENDIMIENTO HÍDRICO PROMEDIO EN COLOMBIA

Cuencas Nacionales	Rendimiento Hídrico Promedio (l.s1. km-2)	
Pacífico	100	
Caribe	1 - 127	
Atrato	261	
Magdalena - Cauca	27 – (14 – 45)	
Orinoquía	21 - 70	
Amazoná	34	

ÍNDICE DE ARIDEZ MEDIO ANUAL EN COLOMBIA

Se presenta el índice de aridez en Colombia, lo cual indica la disponibilidad y deficiencias de agua en las distintas regiones del país.

Disponibilidad de agua	Región
Altamente deficitarias - 1%	ALTA GUAJIRA – HUILA
Deficitarias - 5%	BAJA GUAJIRA – SUCRE
	SABANAS CORDOBA
	CUENCAS RIO CATATUMBO
	RIO CHICAMOCHA
Deficitaria por periodos - 26%	CUENCAS
	RIO MAGDALENA – VICHADA
Normal - 25%	CUENCAS RIO NECHI - PUTUMAYO
	META - SIERRA SANTA MARTA
Excedentes - 43%	COSTA PACÍFICA – AMAZONIA
	CAQUETÁ – VICHADA

PÁGINA EN BLANCO EN LA EDICIÓN IMPRESA

RELACIONES AGUA - PLANTA

El método de riego más común practicado en todo el mundo es, sin duda, el riego por gravedad, que abarca más del 95% de la irrigación mundial.

Básicamente, el método consiste en derivar el agua de una fuente de agua superficial por medio de una obra de captación y conducirla por medio de canales principales o secundarios, que luego se subdivide en canales terciarios o de servicio para abastecer las parcelas individuales. El principio del riego dentro de las parcelas, ya sea dentro de melgas (donde una lámina de agua escurre hacia abajo guiada por bordos), en surcos o en ondulaciones, es el mismo. El agua se deja escurrir hacia abajo por gravedad, consumiendo parte del caudal que avanza para humedecer el suelo y así regarlo. La mera descripción de ese principio de riego señala sus desventajas. El mecanismo de esa distribución del agua está mal controlado. La relación cambiante entre el caudal de la corriente que avanza y el componente absorbido; los cambios normales en las proporciones de infiltración de los suelos al humedecerse; los cambios en las propiedades de la superficie por la humedad, hacen que el riego por gravedad sea bastante impreciso y conducen a un uso inadecuado del agua. Las aplicaciones de agua relativamente grandes usadas para la germinación y para humedecer las plantas jóvenes, por falta de habilidad para descargar cantidades más pequeñas, solamente agravan el problema. Las pérdidas debidas a derrames en las extremidades, desigualdades en la distribución ocasionadas por una defectuosa preparación del terreno; fugas en las compuertas y otras instalaciones de descarga, provocan conjuntamente las eficiencias relativamente bajas que son inherentes al riego por gravedad.

El exceso de agua descargada en el campo es una causa común de encharcamiento y salinización de los suelos.

Los estudios realizados en los Estados Unidos y en otras partes demuestran que, aun en condiciones ideales, con grandes extensiones niveladas y un alto