Develoing
Games on the
Raspberry Pi

App Programming with
Lua and LOVE

Seth Kenlon

Developing Games on
the Raspberry Pi

Seth Kenlon

Apress’

Developing Games on the Raspberry Pi: App Programming with
Lua and LOVE

Seth Kenlon
Wellington, New Zealand

ISBN-13 (pbk): 978-1-4842-4169-1 ISBN-13 (electronic): 978-1-4842-4170-7
https://doi.org/10.1007/978-1-4842-4170-7

Library of Congress Control Number: 2018966138

Copyright © 2019 by Seth Kenlon

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4169-1.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4170-7

This book is dedicated to all programmers
who work tirelessly on free (as in “liberty”) and open
software, not the least of whom are the Lua devs.

Table of Contents

About the AUthOrccccmmnnmmmnsssmnssss s xiii
About the Technical ReVIEWETccussesssssssassssnsssnsssassssassssnsssassssasssns Xv
Chapter 1: Getting Started with the Raspberry Piccccuvveeeemnnnnrcssssnns 1
Preparing YOUK Pi.....c.coccrcnieneninsesiesesse s sese s ssessssessessesessessessessssessessesaes 3
Installing Linux onto Your Pi with EtCherc.ccocvvvrininnnnnsne e sensenennens 4
Preparing Your Off-Brand SOCcccvvrrernnnnnienienssnnsesese s sesessessssessessenes 6
Using This Book Without @ SOC DeVICE..........ccvrernrerrnenereserinsesesesesssessssesenns 7

FIirSt BOOL......coiieiicserse s 8
Writing Your First Lua SCript.......ccovveivinnnsnnesnnesessse s ssssenens 10
Using Variables and USer INPUL..........cccooeernrennnennnnsenssesssesess e sessssessnnes 14
HOMEBWOIK ...t s 17
Chapter 2: Scripting With LOVE.........ccccussssnmnmsmsnssssssssssssssssssssssssssssnss 19
Establishing a Development Environmentcccvcvverinvninnencensenses e sesennas 19
Navigating the DesKIOp........couvrrerererernenere s 19
Installing Development Applications ... 21
Exploring Your DeSKIOP.......cccvvrinennnnrc s 23
Creating @ Graphical GAMEcccvverrrenerrnsesnsesese s sens 24
Load and Main LOOPcuceverererrnserrnesensesessssesessesessssessssessssessssssesessesssssssnsnns 27

LC T 0] 3ROSRSO 34
TaADIES .. —————————————— 36
Game and GUI LOGICcccvrrererreserinesersese e sesese s ss s e s sessnnes 38
MOUSE ClICK ... cerrreeerrierrsesesesssese s srs s sse e ss s s s e s sss e sessesnssssensnnes 40

TABLE OF CONTENTS

o= T ¢ 1011 o S 44
HOMEBWOIK......coiiiini i 45
Chapter 3: Modular Programming with LOVE...........cuoussesssssssssssens 47
ProjeCt DIF€CIOIYccveveerreerrsesesese e se s e 48
Classes and ODJECES......cucvrerererrersererrrsersere e s e sae s s e sse s saesessesaesnes 50
Randomized Cards ... 53
(T2 1]SS 60
{01110 Y= (0 63
WINNING ..o s 68
HOMEWOTK......ciiiiiiiirt s 71
Chapter 4: Analog Programmingccccusseesssssssssssssssssssssssssssnssssssnnnnss 73
L L1 T- T T 74
Experimental DESIgNc.ccvreeerenereereree e 75
Reration ONe........cccovriininn i ———— 76
Reration TWO ... 77
eration TAre ... ——— 80
Pseudo Code for Battlgjack...........cccrurernseseresmssssessnsesssssessesessssessssesessssessssesenns 81
DOCUMENTALION......coccciccc e ————— 82
HOMEWOIK.....ociiiiri i 84
Chapter 5: Database and Librariesc.cuusmsmsmsmsmsssssssassssnsssssssssssnans 85
Installing NeW LIDrariesc.ouvevenemnsesnesenesessse s ssssessssessssesesessesenns 87
Configuration FilESccucvrevererrrierenss s e sss s ssessssesse e ssessssessessessessssessesees 89
Setting the Package Path ... sessesse e sessessessens 90
DECK BUIAINGcoveeeereeeriecrerce e 94
HOMEWOTK......criiiiiiirt s 98

TABLE OF CONTENTS

Chapter 6: GraphiCscccivrssnmnnmmssssnsnmssssssssssssssssssssssssssessssnsnssssssnnnnes 99
DESIGN DY GENIE....ceeeeeee e e 99
Let the Fonts Do the TalKingccooccvvnininnininiesnsnese s 101
COIOr SCHEME ... 104
GFAPRICS .o s 106

Card Design With GIMP ..o 107
EXporting from GIMP ..o s 120
HOMEWOIK......ciiiiri 120
Chapter 7: Menu DeSignccccerrrmsssmnnmmssnns 123
Main FrameworK.........ovvmii s 124
SWItChING MOUESveveerrcerrrcsirese e 126
Menu Selection ... ———— 128
1 133
TrACKING ...c.eierre st s s n e 134
Adding FlES......cocrrersirre e s 135
RESTONNG ... e e 138
Chapter 8: Battling It Qut..........ccccoiimmmmmmncrnns s 141
Card TaDIE ... —————————— 142
GAME STALE ... ———— 144
DeCK BUIlAINGcverecirircerere e 150
Playable Cardsccvueerrmsesersnessssesssessssssessssesssssssssssesssssssssesssssssssssessssssessanes 154
Battle.......coiiiii s ———— 157
ViSUal EffECEScciverriiiiini s 159
Res0IVINg CONTlICTccevrrereresernse s 162

vii

TABLE OF CONTENTS

Chapter 9: Balance of POWETFccccummnsssssnnmsssssnsssssssssssssssssssssssssnns 167
Git COMMIL ... ———— 171
LEVEIING UP oo e s ss s e e s nnanis 172
01T o SR 175
Powerup Double Draw ... s e ens 183
Font and Ul CONSISTENCY.......cccuvrerrnserrnenmnesesrssesssssssss e sssssssssese s ssssesessssessnnes 184
Garbage CollECHION........cccevereererrerere e s s s e se s s e e e s sne e e e naeenens 186
HOMEBWOIK......cciiirirriii s 187

Chapter 10: Save Files and Game Statescoccemmmmrrrerssssssssnnnnnnnnas 189
1] T o N 189
USADIIIEY ..ot 193
Scaling AdjuStMENtS ... —————— 194
SAVE STAEScoviriiccir s ——————— 199
User Configurationccucvevererinienenessere s ses e se s s s sessessesnees 201
GAME DAL ... ———————— 203
Loading @ SAVE File........ccovcerererernesrsessssse s s s ssans 205
HOMEBWOIK......ciiiiniii s 210

Chapter 11: Soundcccnimmmsmmimmismemmn s ————— 211
FINAING AUIOccererieciercre st 211
LIMIMS .. e e 212
Building @ Sound EffeCt.........coivvrvriereninrrere s sese s sese e ssssesesse s 214
Listening to Your EffeCtScccvvrininnini s 216
Adjusting EXport LENgth.........cccoveerinnninnesessse s ssssesssseens 217
Creating MUSIC ...c.cvueveererereriererrere s s sse s s e s e e sresa s e s saesae e s e saesaess s e naesnens 218
SOUND COUE.....ccrurriririirrrisries s s 220

viii

TABLE OF CONTENTS

Fixing the Raspberry Pi Sound Settings.........cocvvvvrirvrninieniennsensesevessessensenns 221
HOMEBWOIK......cociiiririii s 224
Chapter 12: Roguelike Dungeon Crawler........coocememmmmreessssssssssssnnnnnas 225
What’s ROGUETIKE?ceeeeeeeriee s e snsnenens 225
It LOOKS GOOO ON PAPEN ...cvuerverreerersersessnsessessessssessessesssssssessessessssessessesssssssensees 227
ASSBLS ... —————————————————— 228
LT T 230
L 1S 231
MONSEEIS ...cvvcce e ———— 233
HEIO o ——————— 235
BOI ...ttt 237
FIOON THIES...vivieiciire s 238
ROOM....cuiiirii i ——————— 239
DOOKS.....ciirrii s ————— 242
ROGUE COUE.......ccerereir s e s 243
Draw FUNCHION.......coicirc s 250
LG 0 (= o S 253
Monster MOVEMENT ... - 257
Bolts and Updates..........cccrrinninneninsne s 259
HOMEWOIK.....ociiiinii s 261
Chapter 13: Game Distributioncccousmnssnismnimmmmnms—. 263
PACKAGING ..o.curetee s 263
VEISIONING ...cvivierriesesese e se s nn s 265
HElp MESSAQEcocereeieririrsie et s e s s se e s s s a e s s 267

ix

TABLE OF CONTENTS

EXECUaDIE ... ———————— 268
DiStriDULION. ... —————— 269
ONHNE ... ————— 270
Configuring SSH fOr Git........ccoivvrveriererrrerrere s s s e sne s 274
Pushing 0 Gil.......ccccoivninin s 275
RCNLIO oo —————— 277
LURFIS 1.t ————— 277
Mobile Market ... ————— 280
Installing LOVE 0N ANAIOIcvueevueerereneressssssssssssssssssssssssssssasssssssnssasssanss 280
Limitations of LOVE 0N MODIIES...........ccuuueeeeerruesesesssesssessssssssssssssssssssssssssanes 282
Chapter 14: Next STePSccccuureermrmsssnnnmsssssnssssssssnssssssssnssssssssnsnsssssnns 285
HOW £0 PractiCe.........couvirnmmnniis s 285
HOW 10 LEAIN......ciiiiriririnin s 286
How to Read Technical Documentation...........covnmnnn, 287
Leveraging OPen SOUICE.......cccuvvveriereninnisses s ses s ss e s sse e s ssssessesse s 288
Learning Other Languages..........cuoueevrenmnrenesnsesssesssesessssessssssesssessssessssssessens 289
HOMEWOIK......ciiiirrii i 290
Appendix A: Drag and Drop......cccccsreeesssssssssssnnnmsssssssssssssssnssssssssssnnnnns 293
Draggable ODJECL..........cc s 294
COUBceeeiie e s 294
Appendix B: USing Gitccccrrnmsnmmmmmssssnnmmmsssssnnmssssssssmsssssssssssssssssssss 297
GIt QAU ... —————————— 298
0L 11 S 300
Reverting Changes.........ccuuerrenernsmninessssse s s sss s sessessssssessanes 301

TABLE OF CONTENTS

Restoring with git reSel.......cccviirinn 303
Restoring with git CheCKOUL ... 303
GIt DrANCH.......ccccc e ———————— 306
0 L 1T S 309
GIT PUSH e ————————— 311
INdeX..iiieriisrim s ——————=——— 313

About the Author

Seth Kenlon is a teacher, artist, D&D dungeon master, free software

and free culture advocate, and UNIX geek. He has worked in the visual
effects (VFX) (The Hobbit, Deadpool, Valerian) and computing industries
(IBM, Red Hat), often at the same time. He is one of the maintainers of a
Slackware-based multimedia production project.

xiii

About the Technical Reviewer

Sai Yamanoor is an IoT (Internet of Things) applications engineer working
for an industrial gases company in Buffalo, NY. His interests, deeply rooted
in DIY and open-source hardware, include developing gadgets that aid
behavior modification. He has published two books with his brother and in
his spare time, he likes to contribute to open source projects. You can find
his project portfolio at http://saiyamanoor.com.

http://saiyamanoor.com/

CHAPTER 1

Getting Started with
the Raspberry Pi

Welcome to the exciting world of the Raspberry Pi and the Lua
programming language. Whether you're already a programmer looking
to learn about Lua, or the proud but confused new owner of a Raspberry
Pilooking for a fun project, or a budding freelancer looking to get into
mobile app development, or just a curious computer user looking to
learn more, this book is your gateway into an exciting new world of fun
with software.

To get through this book, you'll use two main tools: Lua and the
Raspberry Pi.

Note This book requires no previous experience with computers or
programming. Everything you need to know, you can learn from this
book and diligent practice.

Lua is a small, fast, modern programming language that can be used
for everything from system maintenance to graphics and standalone
games. It’s a leading scripting language in the video game and visual effects
industry, and it is used for front-end development in several popular game
engines. Learning Lua is not only a great way to learn programming, it’s a
pathway into the software development industry.

© Seth Kenlon 2019 1
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_1

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

The Raspberry Pi is, of course, a groundbreaking computer roughly
the size of a mobile phone. It costs just $35 USD. Against all odds, the
non-profit Raspberry Pi Foundation competes with dominating mega-
corporations by selling an educational product loaded with open source
software to students, teachers, and hobbyists like you. It’s a great,
affordable way to learn programming, open source, and how computers
really work.

You may have acquired a Raspberry Pi for any variety of reasons, but
here are the reasons that it was a good choice, and why it’s the platform
that this book uses:

¢ The Pi uses the ARM architecture, as opposed to the
x86 architecture made popular by AMD and Intel. Most
mobile phones use ARM chips, and mobile technology
is the fastest-growing market for games. You don’t have
to develop games on ARM to publish games for mobile,
but if you believe that knowing technology starts with
using that technology, then $35 for a mobile game dev
kit is a smart investment.

e The Raspberry Pi runs Linux, a free version of
UNIX. You might not know UNIX yet, but if you're
heading into the tech industry, the more you know
about it, the better. UNIX knowledge is invaluable
because most of the Internet is run on it, and it’s
the basis for Android phones, Steam machines, the
PlayStation 4, and most of the film and TV visual FX
industry. Besides that, it’s a lot of fun.

¢ When computers first came out, it was expected that
they would be tools that people could use to bring their
ideas to life. It didn’t matter whether your idea was
great or small, you could make a computer do what you
wanted it to do.

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

o Computers today are largely struggling to meet that
goal. While programming on a Mac or a Windows PC
is common, access to the full OS is restricted, and it
can be expensive to keep up with the latest releases.
There shouldn’t be a barrier into computing. Use this
book, a Raspberry Pi, and your passion for creativity
and discovery to prove that programming is still for
everyone.

e You can learn Windows or you can learn macQOS, and
either way, you learn either Windows or macOS. If you
learn Linux, however, you learn computing. There will
always be differences in how different platforms work,
but an open source system like Linux lets you gain
familiarity with the low-level computational basics
shared by all computers, whether desktop, laptop, or
mobile.

Preparing Your Pi

Believe it or not, one of the strengths of the Raspberry Pi is that it is low
power. If you develop on a low-powered computer, then you broaden
your audience because not everyone has the latest and greatest gaming
rig or mobile device. Indeed, developing on a Pi is perfect for targeting the
mobile market, because the Pi shares a lot with the internal hardware of
mobile phones.

In the same spirit of inclusiveness, you don’t actually have to have a
Raspberry Pi to follow along with this book. You can buy any System-on-
a-Chip (SoC) device; common ones include the BeagleBone, Banana Pi,
Odroid, and the Pine64.

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

This book is general enough to cover whatever SoC device you use and
any Linux or UNIX operating system. Technically, you can even use a spare
computer instead, although you’ll need to install Linux on it first or boot
from a Linux USB drive. The important thing is to get through this section
and end up with some computing device loaded with a UNIX or Linux
operating system.

The advantage of a genuine Raspberry Pi is that it is thoroughly
documented. There are lots of tutorials on raspberrypi.org to help
you through anything you don’t understand, and there’s little to no
variation in what you see on a Pi compared to what you see in this
book.

Depending on where you buy your Raspberry Pi, you might find that
the OS (called either Raspbian or NOOBS) is included in the box. That’s
fine for normal use, but when programming, it’s best to have access to the
latest development libraries. Raspbian isn’t known for providing the most
recent software tools, so this book uses a Linux OS called Fedberry, derived
from the popular Fedora distribution of Linux. You can either purchase
a spare microSD card to use with this book, or use the microSD card that
came with your Pi, as long as you accept that the contents of your card will
be replaced with a different OS.

If you purchased a Raspberry Pi that didn’t include the OS on an SD
card, or if you purchased a different SoC device that doesn’t come already
set up, then you have a computer that doesn’t know what to do when you
turn it on. It needs an operating system, and it’s a great learning experience
for you to install one.

Installing Linux onto Your Pi with Etcher

To install an operating system on your Pi or SoC device, you need
amicroSD card and an OS image file. OS images are available from
fedberry.org/#download. Use the Fedberry “minimal” image file.

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

Caution This process erases the card, so don’t use one containing
photos, videos, or other data that you care about.

There are many ways to get a disk image onto a microSD card. The

following is the easy method, and it’s the same whether you run Linux,

macOS, or Windows on your personal computer.

1.

If you have not already done so, download the
Fedberry LXQT image from https://github.
com/fedberry/fedberry/releases. This image
provides a basic OS with a few extra applications.
You will manually install a full development
environment later.

On your personal computer, download and install
the Etcher application from www.balena.io/
etcher/. For both Etcher and Fedberry, you

need a tool to unzip archives. If you run Linux on
your personal computer, then you already have
one; otherwise, download and install 7zip from
www.7-zip.org for Windows or Keka from

www . keka. io for macOS.

Put the microSD card into your computer. If your
computer doesn’t have an SD card slot, you must
purchase a microSD card reader.

Once the OS image has downloaded and Etcher has
been installed, launch the Etcher application.

In the Etcher window, select the Fedberry image file
from where it is saved on your hard drive, probably
in your Downloads directory (see Figure 1-1).

https://github.com/fedberry/fedberry/releases
https://github.com/fedberry/fedberry/releases
http://www.balena.io/etcher/
http://www.balena.io/etcher/
http://www.7-zip.org
http://www.keka.io

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

&

fedberry-..-27.1.raw Mass-Storage

“FETCHER @ resin.io

Figure 1-1. Etcher in action

6. Selectthe SD card as the destination.
7. And finally, click the Flash button.

You can now skip to the “Writing Your First Lua Script” section.

Preparing Your Off-Brand SoC

If you only have a SoC board that is not made by the Raspberry Pi
Foundation, then the OS images for the Raspberry Pi probably won’t work
on your device. But you can still use this book!

Your first step is to visit the website of your device’s manufacturer.
They probably offer an OS for the device they produce, and since they are
targeting their own device, the OS image is likely a prebuilt image to copy
to your SD card using the Etcher application. This process is described in
Installing Linux onto your Pi with Etcher.

If you cannot find an official image for your device, the next step is
to do an Internet search for the name of your device plus a query such
as “Linux image”. It helps to know which chip your device is based upon,

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

too, since sometimes generic OS images target the chip rather than every
possible brand name applied to a system built around that chip. Whether
you have an Allwinner, armv6, armv7, Tegra, or something else entirely,
there’s a good chance that somewhere on the Internet, there are a few
hardworking hackers supporting your device.

Finally, if all else fails, you can turn to the two most reliable OS
providers in the modern world: Debian Linux and NetBSD. These groups
justifiably pride themselves on providing an operating system that runs
on nearly every device you can think to put an OS onto (and a few that you
wouldn’t).

Debian Linux is available from debian.org. Depending on your
device, you may have to do a little research on wiki.debian.org/
InstallingDebianOn to understand how an install is done, but the good
news is that it’s almost certainly possible.

NetBSD is available from wiki.netbsd.org/ports/evbarm. The
install process for NetBSD is remarkably easy, but the setup afterward
is considerably more complex, especially if you're not familiar with
UNIX yet.

If this is the route you are taking, you should take a little extra time to
set up your system and to get familiar with it before continuing this book.
The instructions in this book are mostly universal, but instructions on
installing software or configuring sound outputs and other details may
differ depending on your device and operating system.

Using This Book Without a SoC Device

If you don’t have and cannot get a Raspberry Pi or other SoC, then you
can use a traditional computer to work through this book, even a very
old one. You'll get all the same benefits as those using a Pi: you'll learn
programming, you'll learn Linux, and you’ll learn all about the software
development process, but you will have to work a little harder to

get set up.

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

To set up a computer to use with this book, install Fedora Linux from
spins.fedoraproject.org/en/1xqt/ so that your environment mirrors
the one in this book.

Caution This erases all the content on your computer, so use a
spare computer that doesn’t contain data you care about.

It's out of the scope of this book, but there are many ways to run Linux
on a computer, and technically, any of them are probably acceptable for
this book. For instance, you can run Linux off of a USB drive or DVD using
porteus.org, or you can run Linux in a virtual machine using virtualbox.org.
Whatever you choose, you have to translate what is in this book for what
you are using. In other words, it’s easier to just get a Pi and follow along,
but it’s not strictly required.

If this is the route you are taking, you should take a little extra time to
set up your system and to get familiar with it before continuing this book.
The instructions in this book are mostly universal, but instructions on
installing software or configuring sound outputs and other details may
differ, depending on your device and operating system.

First Boot

Assuming that you have your Pi plugged into a monitor, keyboard, mouse,
and Ethernet, you can finally boot into your fresh, new Linux operating
system. The first time you boot, you are asked to configure your system.

1. Configure your network to connect wirelessly to the
Internet. If you are connected to the Internet over an
Ethernet cable, then you can skip this category.

2. Setyour time zone. To have your Pi get the correct
time and day from the Internet, enable NTP in the
upper-right corner of the time zone screen.

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

3. Setthe administrative password.

4. Create a user and set a user password. Set the
user as an administrator (see Figure 1-2). Take
note of your username and password. You will

need them often!

CREATE USER

Dm!:

Full name seth

User name | seth
Tip: Keep your user name shorter than 32 characters and do net use paces.
Make this user administrator

] Require 3 password to use this account

Strong

Figure 1-2. Setting up FedBerry with the Anaconda installer

5. Click the Finish Configuration button in the bottom
right of the main screen to continue booting.

Note From this point on, the term Piis meant to encompass
whatever device you are using to follow along with this book.

When Fedberry has booted, you are left at the login screen. You'll log in
to the desktop soon, but you got this book so that you could learn to code,
so it's worth looking behind the scenes. Press Ctrl+Alt+F3 to switch to a

text login screen instead.

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

Writing Your First Lua Script

The modern computing public likes to think that computers have evolved
into interactive virtual worlds, but programmers know the truth: computers—
whether it’s a server, a desktop, or a mobile phone—are merely highly
efficient calculators that get instructions in the form of plain text. When you
switch a Linux computer to a text console, you're seeing the not-so-secret

side of the operating system that responds to text commands. That’s great if
you're an experienced UNIX user, but it can be crippling if you don’t know
what commands exist, much less which commands to use. Throughout the
course of this book, you'll get familiar with useful commands for Linux. Most
commands you learn apply to any UNIX system, although some are particular
to Fedora. Instead of listing common commands and expecting you to
memorize them, however, this book uses and explains commands throughout
so that you get familiar with them by using them.

First, you need to log in with a username and password. Use the
username and user password that you created during setup. When you
type in your password, it appears that nothing is happening; that’s to be
expected, just keep typing.

Once you're logged in, you are given a shell prompt that ends with a
dollar sign ($). This means that your computer is ready for a command.

To program in Lua, you need to have Lua installed. In Linux, most
of the “obvious” software that users need is stored in repositories of
applications on remote servers. You can think of it as an app store
(although it predates app stores by at least a decade).

Fedberry includes Lua by default, but this is a good exercise
nevertheless, as it demonstrates how to confirm that an application you
need is indeed installed.

The Fedora dnf command searches and installs software from
Fedberry repositories. You will use this command a lot throughout this
book, so you will become familiar with it, but for now just type this:

$ sudo dnf install lua

10

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

Enter your password when prompted. Remember, when you type your
password, the cursor won’t move.

Note If you installed a different OS onto your Pi, then the command
is probably different. For example, on NetBSD the command is pkg
add lua53. Refer to the OS image’s documentation for help.

For your first foray into Lua, you're going to program a simple dice-
rolling game that pits the user against the computer to see who can roll the
highest number on a 20-sided virtual die.

So far, you've been controlling your computer with a language called
Bash. To switch to Lua, launch a Lua interpreter by typing

$ lua

It may not look that different, but you probably notice that your
shell prompt has changed from a $ to a > symbol. Not all programming
languages have an interactive prompt like this, but it’s a good way to get to
know a language before embarking on a big project with it.

Programming languages have lots of built-in functions that you can
use. These functions are called methods or, unsurprisingly, functions. They
are organized into libraries.

For instance, the print() function in Lua’s basic library prints text to
the screen. Try this:

> print("hello world")
hello world

You can also have Lua print numbers.

> print(23)

23

> print(21+(378/18))
42.0

11

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI
Or both.

> print("The answer is "..21+(378/18))
The answer is 42.0

Rolling Virtual Dice

For your first program, you need random numbers so that you can mimic
a die roll competition. Computers are producing numbers all the time, but
how do you access those numbers? Can you think of something within

a computer’s normal routine that would produce numbers? If you can’t
think of anything, try looking up from your screen at the room around you.
Is there anything in your physical space that could provide a more or less
random number at a glance?

After some thought, you might realize that computers usually keep
track of time, just like a clock in the real world does. It’s not perfect, but it’s
areliable source of numbers.

Lua has many libraries filled with specialized functions. The os library
contains the time function, which returns the current time, in seconds,
since 1 January 1970 (the UNIX Epoch). That’s a lot of numbers, especially
in the context of a dice game where you only need up to 20. Setting that
aside for now, try using the os.time() function yourself.

> os.time()
1524967695

When you use a function, you are “calling” it. The empty
parentheses at the end of the os.time() function call allows you
to send information to the function when calling it. The os.time()
function doesn’t require any information from you to do its job, so the
parentheses are left empty. Functions like print(), and other advanced
functions that you will use later (some of which you yourself will write),
require more information.

12

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

There are a few problems with using os.time()as a stand-in for a die
roll. The os.time() function returns a very large number, and it’s not very
random.

There are a few ways to take a large number and reduce it to something
within a given range. One easy way uses grade school math: take any
number and divide it by your maximum desired value, and use the
remainder (the “modulo” in computer terminology) as your result. For
instance, if you have the number 103 and divide it by 20, you get 5 with
a modulo of 3. In computer science, the % sign is used to do division and
return only the modulo. Try it in Lua.

> 103%20

3

> os.time()%20
6

> os.time()%20
12

The modulo of os.time() has some degree of variance, depending on
the time at which you call it. This introduces a perception of randomness.
You can test this by trying to predict what your “roll” will be just before
calling os.time(). It’s pretty difficult to predict.

Note Press the up arrow on your keyboard to recall the previous
Lua function call without all the typing.

After trying to predict your roll 20 or 30 times, do you see any problems
or patterns in the os.time() solution?

You might notice that making the same call to os.time() in rapid
succession betrays its very predictable pattern of incrementing steadily
once per second.

13

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

Using Variables and User Input

Computers are programmed. They don’t exactly produce random events,
because they only do exactly as they have been programmed. Yet few
computers are dormant; usually, they have been programmed to interact
and respond to human input. There’s nothing quite as unpredictable as
the human mind, so why not use it to introduce some randomness to the
dice roll?

It’s too obvious to just ask the human player for a random number,
especially if they know the goal of the game. If you know the goal of a
game is to roll 20 on a virtual 20-sided die, then any good gamer is going
to “randomly” choose 20 the majority of the time. So instead, you can ask
your human player for some input and then use that input as a seed of
randomness.

Ignoring that this is happening on a computer in a programming
language you don’t know yet, try to think of some ways you could trick a
player into providing you with a random value.

Here are some ideas:

e Ask the user to provide a three-digit number and add it
to os.time() as an offset.

o Ask the user for two numbers. Use the difference
between the two numbers as an offset.

e Ask the user for the name of an animal or a color.
Count the number of letters in the answer and use that
number as an offset.

e Ask for two numbers, divide their sum by 20, and use
the modulo as the offset.

14

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

You can probably imagine even more ways, but to implement any of
them, you need to know how to get input from your user. As you might
guess, getting input from a user is a common task in programming, so
Lua has a function for that as a part of its input/output library, called io.
The problem is that Lua doesn’t inherently know what to do with input.
Watch what happens if you use the read function, and then type hello
world as input.

> io.read()
hello world
hello world

Lua just repeats what you give it. That’s not very useful, and that’s
exactly why variables were invented. A variable is like an empty box, and
you can put anything into the box that you need to store for later. You can
put a word (or string in programming lingo), a number, or even an image
or sound effect. Variables are surprisingly easy to set and easy to use once
you need them.

> seed=io.read()
103

> seed%20

3.0

A new variable, in this example called seed, is created because you use
the = after a word that Lua otherwise does not recognize. Whatever io.
read gets from the user is placed into the variable you created. From then
on, you can call the variable just as you call functions, and use whatever is
inside.

Using variables, you can create interactive applications. Write a
dice-rolling application based on your new understanding of variables.
Of course, since you're running Lua as an interactive session, your
program gets written and runs all at the same time, but that’s enough
for a proof of concept.

15

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI
Here is a version of a simple dice rolling game:

> computer=os.time()

> seed=io.read()

104

> player=os.time()+seed

> print("The computer rolled "..computer%20)
The computer rolled 6

> print("You rolled "..player%20)

You rolled 18.0

You have written your first fully functional program! It’s not a fancy
game, and the only way to play it is to type it manually into a Lua prompt,
but the logic and the results are sound. In the next chapter, you will
create a Lua script file so that a more advanced version of this simple
dice game can be run like a normal application. In the meantime,
practice creating and using variables, and try to come up with alternative
random number engines.

When you're ready to leave the Lua prompt, call the Lua exit function.
> os.exit()

When you see a $ prompt again, you're back at your Bash shell.
To power off your Pi for the day, use the poweroff command.

$ sudo poweroff

16

CHAPTER 1 GETTING STARTED WITH THE RASPBERRY PI

Homework

I may as well admit to you that Lua actually already has a random number
function as part of its math library. Like your own versions of random
number generation, it too requires a seed, but it uses a lot of math tricks
and entropy to generate a number within whatever range you specify.
Here’s how it works:

> math.randomseed(os.time())
> math.random(1,20)

6

> math.random(1,20)

11

> math.random(1,20)

1

> math.random(1,20)

17

How did I find out that Lua had a random number function? How can
you find out what other features Lua has that I haven’t told you about? The
answer to both questions is documentation.

Any good programming language is fully documented so that
programmers know what the language can do. You're a programmer
now, so you should browse through Lua’s reference manual, available at
lua.org/manual/s5.3/#index. Much of it won’t make sense to you yet,
and there are several conventions of code documentation that can be
confusing, but knowing where to find the functions available to you is a
hugely important part of learning to code.

17

