SPRINGERBRIEFS IN SPEECH TECHNOLOGY STUDIES IN SPEECH SIGNAL PROCESSING, NATURAL LANGUAGE UNDERSTANDING, AND MACHINE LEARNING

Manjunath K.E.

Multilingual Phone Recognition in Indian Languages

SpringerBriefs in Speech Technology

Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning

Series Editor Amy Neustein, Fort Lee, NJ, USA SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typical topics might include:

- A timely report of state-of-the-art analytical techniques
- A bridge between new research results, as published in journal articles, and a contextual literature review
- A snapshot of a hot or emerging topic
- An in-depth case study or clinical example
- A presentation of core concepts that students must understand in order to make independent contributions

Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guidelines, and expedited production schedules.

The goal of the **SpringerBriefs in Speech Technology** series is to serve as an important reference guide for speech developers, system designers, speech engineers and other professionals in academia, government and the private sector. To accomplish this task, the series will showcase the latest findings in speech technology, ranging from a comparative analysis of contemporary methods of speech parameterization to recent advances in commercial deployment of spoken dialog systems.

More information about this series at http://www.springer.com/series/10043

Manjunath K. E.

Multilingual Phone Recognition in Indian Languages

Manjunath K. E. U R Rao Satellite Centre Indian Space Research Organisation Old Airport Road, Bengaluru Karnataka, India

ISSN 2191-737X ISSN 2191-7388 (electronic) SpringerBriefs in Speech Technology ISBN 978-3-030-80740-5 ISBN 978-3-030-80741-2 (eBook) https://doi.org/10.1007/978-3-030-80741-2

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

India is a land of many languages, among them 122 languages are spoken by at least 10,000 people each, with 22 of them constitutionally recognised. Several of the Indian languages do not have sufficient labelled data to develop a separate phone recogniser for themselves. This necessitates an investigation into alternative ways of performing phone recognition, such as multilingual phone recognition. A Multilingual Phone Recognition System (Multi-PRS) is a language-independent, universal Phone Recognition System (PRS) that can recognise the phonetic units present in a speech utterance independent of the language of the speech utterance.

In this book, various aspects of multilingual phone recognition such as development, analysis, performance improvement, and applications of Multi-PRSs are studied for six Indian languages - Kannada (KN), Telugu (TE), Bengali (BN), Odia (OD), Urdu (UR), and Assamese (AS). Among the six Indian languages considered, Chaps. 3, 4, and 5 use only four languages (KN, TE, BN, OD), while the Chap. 6 uses all the six languages. The International Phonetic Alphabets (IPA) based transcription is used for deriving a common multilingual phone-set by grouping the acoustically similar phonetic units from multiple languages. Both Gaussian Mixture Model (GMM)-Hidden Markov Models (HMM) and Deep Neural Network (DNN)-HMMs are explored for training the Multi-PRSs using Mel-frequency Cepstral Coefficients (MFCCs) as features under context independent and context dependent settings. The behaviour of Multi-PRSs across two language families namely -Dravidian and Indo-Aryan - is studied and analysed by developing separate Multi-PRSs for Dravidian and Indo-Aryan language families. The performance of Multi-PRSs is analysed and compared with that of the Monolingual Phone Recognition Systems (Mono-PRS).

Articulatory Features (AFs) are explored to improve the performance of Multi-PRSs. The AFs for five AF groups – place, manner, roundness, frontness, and height – are predicted from the MFCCs using DNNs. The oracle AFs, which are derived from the ground truth IPA transcriptions, are used to set the best performance realizable by the predicted AFs. The performance of predicted and oracle AFs are compared. In addition to the AFs, the phone posteriors are explored to further boost the performance of Multi-PRS. Multitask Learning (MTL) is explored to improve the prediction accuracy of AFs and thereby reducing the Phone Error Rate (PER) of Multi-PRS. Fusion of AFs is done using two approaches: (i) lattice rescoring approach and (ii) AFs as tandem features. It is found that the oracle AFs by feature fusion with MFCCs offer a remarkably low target PER of 10.4%, which is 24.7% absolute reduction compared to baseline Multi-PRS with MFCCs alone. The fusion of phone posteriors and the AFs derived from the MTL yields the best performance. The best performing system using predicted AFs has shown reduction of 3.2% in absolute PER (i.e. 9.1% reduction in relative PER) compared to baseline Multi-PRS.

Applications of multilingual phone recognition in code-switched and non-codeswitched scenarios are discussed. Two different approaches for multilingual phone recognition using code-switched and non-code-switched test sets are compared and evaluated. First approach is a front-end Language Identification (LID) system followed by monolingual phone recognisers (LID-Mono) trained individually on each of the languages present in multilingual dataset, while the second approach uses a common multilingual phone-set without requiring a front-end LID based switching. Bilingual code-switching experiments are conducted using the codeswitched test sets of Kannada and Urdu languages. The state-of-the-art i-vectors are used to perform LID in first approach. It is found that the performance of *common* multilingual phone-set based approach is superior compared to more conventional LID-Mono approach in both non-code-switched and code-switched scenarios. The performance of LID-Mono approach heavily depends on the accuracy of the LID system, and the LID errors cannot be recovered. However, the common multilingual phone-set based approach by virtue of not having to do a front-end LID switching and designed based on the common multilingual phone-set derived from several languages is not constrained by the accuracy of the LID system, and hence performs effectively on non-code-switched and code-switched speech, offering low PERs than the LID-Mono system.

This book is mainly intended for researchers working in the area of multilingual speech recognition. This book will be useful for the young researchers who want to pursue research in speech processing with an emphasis on multilingual speech recognition. Hence, this may be recommended as a text or reference book for the postgraduate-level advanced speech processing course. The book has been organised as follows:

Chapter 1 introduces basic concepts of multilingual speech recognition. The multilingual AFs and code-switched speech recognition are briefly introduced. Chapter 2 describes the prior work on multilingual speech recognition systems with primary focus on multilingual AFs and code-switched speech recognition. Chapter 3 describes the development, evaluation, and analysis of Multi-PRS for four Indian languages. Chapter 4 discusses the proposed approaches to derive the multilingual AFs from spectral features. Chapter 5 discusses the use of predicted multilingual AFs to improve the performance of Multi-PRS. Chapter 6 describes the applications of multilingual phone recognition in code-switched and non-code-switched scenarios. Two approaches for multilingual phone recognition are compared using code-switched and non-code-switched test sets. Chapter 7 provides

Preface

a brief summary and conclusion of the book with a glimpse towards the scope for possible future work.

I am grateful to my PhD supervisors Prof. V. Ramasubramanian and Prof. Dinesh Babu Jayagopi at the International Institute of Information Technology, Bangalore (IIITB), for their constant support, guidance, and encouragement to carry out this work. This book is based on my doctoral thesis work. I am also grateful to my MS supervisor Prof. K. Sreenivasa Rao at IIT Kharagpur for providing the speech corpora to carry out this work. I thank all the professors and research scholars of IIITB who have helped me to carry out this work. Special thanks to ISRO management and to my colleagues at URSC, ISRO for their cooperation and encouragement during the course of editing and publishing this book. Last but not the least, I am grateful to my parents, my in-laws, my wife, and my daughter for their constant support and encouragement. Finally, I thank all my friends and well-wishers.

Bengaluru, India

Dr. Manjunath K. E.

Contents

1	Introduction				
	1.1	1.1 Multilingual Phone Recognition		1	
	1.2	Articu	latory Features for Multilingual Phone Recognition	2	
	1.3	Appro	aches for Multilingual Phone Recognition	4	
	1.4	Code-	switched Phone Recognition using Multilingual		
		Phone	Recognition Systems	4	
	1.5	Object	tive and Scope of the Work	5	
	1.6	Propos	sed Organization of the Book	7	
	Refe	erences.		8	
2	Literature Review			13	
	2.1	Introdu	uction	13	
	2.2	Prior V	Work on Multilingual Speech Recognition	13	
	2.3	Prior V	Work on Multilingual Speech Recognition using		
		Articu	latory Features	18	
	2.4	Prior V	Work on Code-Switched Speech Recognition using		
		Multil	ingual Speech Recognition Systems	21	
	2.5	Summ	ary	23	
	Refe	erences .		23	
3	Dev	elopmer	nt and Analysis of Multilingual Phone Recognition		
		•		27	
	3.1	Introdu	uction	27	
		Experi	imental Setup	27	
		3.2.1	Multilingual Speech Corpora	28	
		3.2.2	Extraction of Mel-frequency Cepstral Coefficients	29	
		3.2.3	Training HMMs and DNNs	29	
	3.3	Develo	opment of Phone Recognition Systems	30	
		3.3.1	Development of Monolingual Phone Recognition Systems	30	
		3.3.2	Development of Multilingual Phone Recognition Systems	32	
		3.3.3	Development of Tandem Multilingual Phone		
			Recognition Systems	33	

	3.4	Performance Evaluation of Phone Recognition Systems		34	
		3.4.1	Performance Evaluation of Monolingual Phone		
			Recognition Systems	35	
		3.4.2	Performance Evaluation of Multilingual Phone		
			Recognition Systems	35	
		3.4.3	Performance Evaluation of Tandem Multilingual		
			Phone Recognition Systems	36	
	3.5	Discu	ssion of Results	37	
		3.5.1	Analysis and Comparison of the Results	37	
		3.5.2	Cross-Lingual Analysis	39	
	3.6	Summ	nary	44	
	Refe	rences		44	
4	Pred	liction (of Multilingual Articulatory Features	47	
	4.1		luction	47	
	4.2		Ilatory Features Specification	47	
	4.3		Ilatory Feature Predictors (AF-Predictors)	48	
	1.0	4.3.1	Development of Articulatory Feature Predictors	49	
		4.3.2	Oracle Articulatory Features	51	
		4.3.3	•	52	
	4.4		rmance Improvement of AF-Predictors using	-	
			task Learning (MTL)	54	
	4.5		hary	55	
				55	
_					
5	Aru 5.1		y Features for Multilingual Phone Recognition	57 57	
	5.1		sed Approaches for Multilingual Phone Recognition	57	
	5.2		Articulatory Features	57	
		5.2.1	Development of AF-Based Tandem Multilingual	57	
		J.2.1	Phone Recognition Systems	59	
		5.2.2	Fusion of AFs from Multiple AF Groups	61	
	5.3		task Learning Based AFs for Multilingual Phone	01	
	5.5		gnition	64	
	5.4		nary	65	
			141 y	65	
				05	
6			ns of Multilingual Phone Recognition in		
			ched and Non-code-Switched Scenarios	67	
	6.1		luction	67	
	6.2	-	imental Setup	67	
		6.2.1	Multilingual Speech Corpora	68	
		6.2.2	Code-Switched Test Set	68	
		6.2.3	Training Support Vector Machines (SVMs)	69	
		6.2.4	Extraction of i-vectors	70	

Contents

	6.3	Appro 6.3.1	baches for Multilingual Phone Recognition LID-switched Monolingual Phone Recognition	71
		())	(LID-Mono) Approach	72
		6.3.2	Multilingual Phone Recognition using Common	76
	6.4	Evolu	Multilingual Phone-set (Multi-PRS) Approach	75
	0.4	Evaluation and Comparison of LID-Mono and Multi-PRS		
		Appro 6.4.1	Non-Code-Switched Scenario	76 76
		6.4.1 6.4.2		78
	6.5			78 81
			nary	81
	Kele	rences .		01
7	Sum	mary a	nd Conclusion	85
	7.1	Summ	nary of the Book	85
	7.2	Contri	ibutions of the Book	86
	7.3	Future	e Scope of Work	87
	Refe	rence		88
A	Sup	port Ve	ctor Machines	89
B	Hida	len Ma	rkov Models for Speech Recognition	91
				92
C	Deep) Neura	al Networks for Speech Recognition	93
	C .1	FeedF	Forward Neural Networks	93
	C .2	Traini	ng Deep Neural Networks	96
	C .3	Interfa	acing DNN with HMM (DNN-HMMs)	96
	Refe	rences.		97
In	dev			99
	исл			,,

Acronyms

AF	Articulatory Feature
AF-PER	AF-Prediction Error Rate
AF-Predictor	Articulatory Feature Predictor
AF-Tandem	Combination of AFs as Tandem features
AS	Assamese
ASR	Automatic Speech Recognition
BN	Bengali
CD	Context-Dependent
CI	Context-Independent
DNN	Deep Neural Network
DP	Dynamic Programming
FFNN	Feed-Forward Neural Network
GMM	Gaussian Mixture Model
GMM-UBM	Gaussian Mixture Universal Background Model
HL	Hidden Layer
HMM	Hidden Markov Model
Hz	Hertz
IPA	International Phonetic Alphabet
ISA	Intrinsic Spectral Analysis
KN	Kannada
LFV	Language Feature Vector
LID	Language Identification
LID-Mono	LID-switched Monolingual Approach
LRA	Lattice Rescoring Approach
LVCSR	Large Vocabulary Continuous Speech Recognition
MFCC	Mel-frequency Cepstral Coefficient
MLP	Multi-layer Perceptron
Mono-PRS	Monolingual Phone Recognition System
ms	Millisecond
MSE	Mean Squared Error
MTL	Multitask Learning