
2

SCHRIFTENREIHE FÜR ANGEWANDTE TRAININGSWISSENSCHAFT

Ronny Lüdemann

Belastungsinduzierte Veränderungen der Kraft

Zum Einfluss konditioneller Belastungen im Ringen auf die Maximal- und Schnellkraft

MEYER & MEYER VERLAG

Belastungsinduzierte Veränderungen der Kraft

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mich bisher begleitet und bei dieser Arbeit unterstützt haben.

Vielen Dank den Trainerkollegen, den Trainingswissenschaftlern und Freunden, mit denen ich in Luckenwalde als Sportler und Trainer gewachsen bin. Alle haben mir zu dem Erfahrungsschatz verholfen, der mir bei der Themenfindung, der Planung und Durchführung der Untersuchungen und auch bei den Ergebnisinterpretationen geholfen hat. Diese Erfahrungen bleiben.

Auch bedanke ich mich bei den Kollegen am Institut für Angewandte Trainingswissenschaft, die mit mir diskutiert und mit ihrer Kritik einen wesentlichen Beitrag zum guten Gelingen dieser Arbeit geleistet haben. Sie haben damit natürlich auch alle ihren Anteil an dem, was hier "verzapft" wurde.

Hervorheben möchte ich jedoch insbesondere drei Personen. Zum einen ist das mein ehemaliger Trainerkollege Jörn Levermann. Ich habe mich gefreut, mit ihm und seiner Trainingsgruppe einen Praxispartner aus dem Spitzenbereich gefunden zu haben. Von der Zusammenarbeit bin ich nachhaltig beeindruckt. Zum anderen sind das meine Gutachter und Betreuer, Herr Professor Dr. paed. habil. Jürgen Krug und Herr Professor PD Dr. phil. Dirk Büsch. Ich schätze beide sehr und bin dankbar und stolz, dass ich sie im Rahmen dieser Forschungsarbeit an meiner Seite hatte.

Zuletzt gilt der Dank meiner Familie. Unterstützung ist nicht immer selbstverständlich. Bei mir war sie das.

Leipzig, Februar 2016

Die Reihe

In der neuen Schriftenreihe für Angewandte Trainingswissenschaft möchte das Institut für Angewandte Trainingswissenschaft (IAT) zeitnah und themenorientiert wichtige Veranstaltungen des IAT dokumentieren, aktuelle Forschungsergebnisse aus der angewandten Trainingswissenschaft präsentieren sowie wissenschaftliche Qualifizierungsarbeiten veröffentlichen, die unter dem Dach des IAT entstanden sind. Die Schriftenreihe folgt der bisherigen Zeitschrift für Angewandte Trainingswissenschaft, die von 1996-2014 vom Institut für Angewandte Trainingswissenschaft ebenfalls gemeinsam mit dem Meyer & Meyer Verlag Aachen herausgegeben wurde.

Band 1: Ulf Tippelt & Jürgen Wick (Hrsg.) – Angewandte Trainingswissenschaft im Forschungs- und Serviceverbund Leistungssport

Band 2: Ronny Lüdemann – Belastungsinduzierte Veränderungen der Kraft

Band 3: Thomas Moeller – Leistung und Training im Triathlon

Band 4: Ina Fichtner (Hrsg.) – Technologien im Leistungssport I (April 2016)

Schriftenreihe für Angewandte Trainingswissenschaft Band 2

Ronny Lüdemann

Belastungsinduzierte Veränderungen der Kraft

Zum Einfluss konditioneller Belastungen im Ringen auf die Maximal- und Schnellkraft

An der Sportwissenschaftlichen Fakultät der Universität Leipzig genehmigte

DISSERTATION

zur Erlangung des akademischen Grades

Doctor philosophiae (Dr. phil.)

vorgelegt von

Ronny Lüdemann

geboren am

16.12.1974, in Altdöbern

Gutachter:

Professor Dr. paed. habil. Jürgen Krug Professor PD Dr. phil. Dirk Büsch

Tag der Verleihung: 28.10.2014

Herausgeber der Schriftenreihe für Angewandte Trainingswissenschaft: Institut für Angewandte Trainingswissenschaft Leipzig

Redaktionskollegium: Dr. U. Tippelt, Dr. H. Sandner, B. Franz, K. Henschel Assistenz des Redaktionskollegiums: B. Kühn

Anschrift:

Marschnerstraße 29 D-04109 Leipzig

Tel.: 0341-4945-100 Fax: 0341-4945-400 iat@iat.uni-leipzig.de www.sport-iat.de

Belastungsinduzierte Veränderungen der Kraft

Bibliografische Information der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Details sind im Internet über http://dnb.ddb.de abrufbar.

Alle Rechte, insbesondere das Recht der Vervielfältigung und Verbreitung sowie das Recht der Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form – durch Fotokopie, Mikrofilm oder ein anderes Verfahren – ohne schriftliche Genehmigung des Verlages reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, gespeichert, vervielfältigt oder verbreitet werden.

© 2016 by Meyer & Meyer Verlag, Aachen Auckland, Beirut, Dubai, Hägendorf, Hongkong, Indianapolis, Kairo, Kapstadt, Manila, Maidenhead, Neu-Delhi, Singapur, Sydney, Teheran, Wien

Member of the World Sport Publishers' Association (WSPA)
Titelbild: ©picture-alliance/dpa

Druck: Beltz Druckpartner GmbH & Co. KG

ISBN 978-3-89899-932-8

E-Mail: verlag@m-m-sports.com

www.dersportverlag.de

Inhalt

		Seite
Abbildu	ngsverzeichnis	8
	nverzeichnis	10
Abkürz	ungsverzeichnis	13
1	Einleituna	14
1.1	Einordnung der Arbeit in die prozessbegleitende Trainings- und	
	Wettkampfforschung	14
1.2	Allgemeine Problem- und Zielstellung	16
2	Theoretische Analyse	18
2.1	Kraft und Kraftdiagnostik im Ringen	18
2.1.1	Struktur der Kraft	18
2.1.2	Maximalkraft und Maximalkraftdiagnostik im Ringen	20
2.1.3	Schnellkraft und Schnellkraftdiagnostik im Ringen	23
2.1.4	Die Kraft im Kontext der Ausdauer	26
2.1.5	Zusammenfassung	28
2.2	Befundlage zum Einfluss konditioneller Belastungen auf die Kraft	29
2.3	Das Belastungs- Beanspruchungs-Konzept	32
2.3.1	Belastungs-Beanspruchungs-Konzepte in der Arbeits- und	
	Trainingswissenschaft	32
2.3.2	Ansätze zur Entwicklung eines ringkampfspezifischen	
	Belastungs-Beanspruchungs-Konzepts	34
2.3.3	Zusammenfassung	35
2.4	Ringkampfspezifische Belastung und Belastungssimulation	36
2.4.1	Belastungsfaktor: Technik	36
2.4.2	Belastungsfaktor: Belastungsintensität	38
2.4.3	Belastungsfaktor: Belastungsdauer	38
2.4.4	Belastungsfaktor: Belastungshäufigkeit	39
2.4.5	Belastungsfaktor: Belastungsumfang	39
2.4.6	Belastungsfaktor: Belastungsdichte	39
2.4.7	Simulation der Wettkampfbelastung im Ringen	40
2.4.8	Zusammenfassung	40
2.5	Durch die konditionelle Belastung beeinflussbare physiologische	
	Faktoren der Maximal- und Schnellkraft sowie Ursprungsorte	
	muskulärer Ermüdung	41
2.5.1	Muskelfaserstruktur	41
2.5.2	Muskelfaserquerschnitt	43
2.5.3	Intra- und intermuskuläre Koordination	43
2.5.4	Energiestoffwechsel und metabolische Bedingungen	46
2.5.5	Ursprungsorte muskulärer Ermüdung	47
2.5.6	Zusammenfassung	49
2.6	Zusammenfassung und allgemeine Forschungshypothesen	50

		Seite
3	Experimentelle Untersuchungen	52
3.1	Anlage der Untersuchungsreihe	52
3.2	Experimentübergreifende Aspekte der Untersuchungsreihe	53
3.2.1	Konkretisierte Problem- und Aufgabenstellung	53
3.2.2	Abhängige Variablen, Kraftmessverfahren und Operationali-	
	sierungen	55
3.2.3	Belastungssimulation	57
3.2.4	Messverfahren zur Erfassung der kardiovaskulären und	
	metabolischen Beanspruchung	59
3.2.5	Versuchsplan	60
3.2.6	Inferenzstatistik	60
3.3	Experiment I – Zum Einfluss einer ringkampfnahen Belastung	
	auf die allgemeine statische Maximal- und Schnellkraft	61
3.3.1	Hypothesen	61
3.3.1.1	Hypothesen bezüglich der Veränderung bezüglich Fasm und	
	Fass über die Messzeitpunkte in Abhängigkeit der Belastung	61
3.3.1.2	Hypothesen bezüglich der Veränderung der Kraft in Abhängigkeit	
	von der Körperseite	61
3.3.2	Versuchspersonen	62
3.3.3	Untersuchungsablauf	62
3.3.4	Ergebnisse	63
3.3.4.1	Deskriptive Ergebnisse	63
3.3.4.2	Ergebnisse der Hypothesenprüfungen	64
3.4	Experiment II – Zum Einfluss einer wettkampfnahen Belastung	
	auf die allgemeine statische Maximal- und Schnellkraft	69
3.4.1	Hypothesen	69
3.4.1.1	Hypothesen bezüglich der Veränderung von Fasm und Fass über	
	die Messzeitpunkte in Abhängigkeit von der Belastung	69
3.4.1.2	Hypothesen bezüglich der Veränderung der Kraft in Abhängigkeit	
	von der Körperseite	70
3.4.2	Versuchspersonen	70
3.4.3	Untersuchungsablauf	70
3.4.4	Ergebnisse	71
3.4.4.1	Deskriptive Ergebnisse	71
3.4.4.2	Ergebnisse der Hypothesenprüfungen	72
3.5	Experiment III – Zum Einfluss einer ringkampfnahen Belastung	. –
	auf die spezielle statische Maximal- und Schnellkraft	76
3.5.1	Hypothesen bezüglich der Veränderung von Fssm und Fsss	
	über die Messzeitpunkte in Abhängigkeit der Belastung	76
3.5.2	Versuchspersonen	76
3.5.3	Untersuchungsablauf	77
3.5.4	Ergebnisse	77
-	o	-

		Seite
3.5.4.1	Deskriptive Ergebnisse	77
3.5.4.2	Ergebnisse der Hypothesenprüfungen	78
3.6	Experiment IV– Zum Einfluss einer ringkampfnahen Belastung	
0.0.4	auf die spezielle dynamische Schnellkraft	82
3.6.1	Hypothesen bezüglich der Veränderung von Fsds über die Mess-	00
2.6.2	zeitpunkte in Abhängigkeit der Belastung	82
3.6.2 3.6.3	Untersuchungsablauf Ergebnisse	82 82
3.6.3.1	Deskriptive Ergebnisse	82
3.6.3.2	Ergebnisse der Hypothesenprüfungen	83
3.7	Zusammenfassung und Interpretation der Ergebnisse	85
		00
4	Konsequenzen für die Trainingspraxis und die prozess-	0.7
	begleitende Trainings- und Wettkampfforschung	87
Literatur		90
Anhang		97
Anhang	A – Messwerte bezüglich Fasm und Fass im Experiment I	97
Anhang	B – Messwerte bezüglich Fasm und Fass im Experiment II	99
Anhang	C – Messwerte bezüglich Fssm und Fsss im Experiment III	101
Anhang	D – Messwerte bezüglich Fsds im Experiment IV	103
Anhang	E – Messwerte der kardiovaskulären und metabolischen	
	Beanspruchungsparameter im Experiment I	104
Anhang	F – Messwerte der kardiovaskulären und metabolischen	
	Beanspruchungsparameter im Experiment II	105
Anhang	G – Messwerte der kardiovaskulären und metabolischen	
	Beanspruchungsparameter im Experiment III	106
Anhang	H – Messwerte der kardiovaskulären und metabolischen	407
۸ مه مه	Beanspruchungsparameter im Experiment IV	107
•	I – Kennwerte der Zirkularitätsprüfungen J – Kennwerte der Varianzanalysen mit Messwiederholung	108 110
Annand	J – Nennwene der Vananzanarysen mit Messwiedemolund	110

Abbildungsverzeichnis

			Seite
Abb.	1.	Die duale Forschungsstrategie der prozessbegleitenden Trainings- und Wettkampfforschung (Pfützner, 2013)	15
Abb.	2.	Technikstruktur der Weltspitze im griechisch-römischen Stil bei den Olympischen Spielen 2012 (Lüdemann et al., 2012, S.159)	16
Abb.	3.	Einflussfaktoren auf die Kraft im Ringen	18
Abb.	4.	Arbeitsweisen, Kontraktionsformen und Arbeitscharaktere der Muskulatur (modif. nach Hartmann & Tünnemann, 1990, S. 24)	20
Abb.	5.	Kraft-Zeit-Kurve aus isometrischer Messung und Darstellung des Parameters "Maximalkraft"	22
Abb.	6.	Kraft-Zeit-Kurve aus isometrischer Messung und Darstellung der Parameter "Schnellkraftindex" und "Explosivkraft"	25
Abb.	7.	Geschwindigkeits-Zeit-Kurve und Darstellung des Parameters "maximale Geschwindigkeit"	26
Abb.	8.	Schema eines einfachen trainingswissenschaftlichen Belastung-Beanspruchungs- Konzepts ohne Rückwirkungsmechanismen im Trainingsprozess (modifiziert nach Büsch, 1993)	33
Abb.	9.	Schematische Darstellung der Beanspruchungsebenen im Ringen	35
Abb.	10.	Prozentuale Anteile ausgewählter Kampfhandlungen der Weltspitze im griechischrömischen Stil bei den Olympischen Spielen 2012 (Lüdemann et al., 2012, S. 161)	37
Abb.	11.	Modellhafte Anordnung der Leistungsveränderung durch unter Belastung auftretende Phänomene (Augste, 2006, S. 22)	49
Abb.	12.	Spezifik der Kraft- und Belastungsanforderungen im Rahmen der Experimente I–IV	53
Abb.	13.	Aufbau des Messplatzes "Iso-Bank" (Nowoisky & Lüdemann, 2010)	55
Abb.	14.	Aufbau des Messplatzes "Iso-Brücke"	56
Abb.	15.	Aufbau des Messplatzes "Messpuppe" (Nowoisky et al., 2012)	57
Abb.	16.	Verlauf von Fasm über die Messzeitpunkte in Abhängigkeit von der Belastung im Experiment I. Anmerkung: Die Darstellung der Standardabweichung erfolgt einseitig.	65
Abb.	17.	Verlauf von Fass über die Messzeitpunkte in Abhängigkeit von der Belastung im Experiment I. Anmerkung: Die Darstellung der Standardabweichung erfolgt einseitig.	65
Abb.	18.	Verlauf von Fasm über die Messzeitpunkte unter dem Einfluss des Treatments "oB" im Experiment I	66
Abb.	19.	Verlauf von Fass über die Messzeitpunkte unter dem Einfluss des Treatments "oB" im Experiment I	67
Abb.	20.	Verlauf von Fasm über die Messzeitpunkte in Abhängigkeit von der Körperseite im Experiment I. Anmerkung: Die Darstellung der Standardabweichung erfolgt einseitig.	68

Abb.	21.	Verlauf von Fass über die Messzeitpunkte in Abhängigkeit von der Körperseite im Experiment I. Anmerkung: Die Darstellung der Standardabweichung erfolgt einseitig.	68
Abb.	22.	Verlauf von Fasm über die Messzeitpunkte in Abhängigkeit von der Belastung im Experiment II. Anmerkung: Die Darstellung der Standardabweichung erfolgt einseitig.	73
Abb.	23.	Verlauf von Fass über die Messzeitpunkte in Abhängigkeit von der Belastung im Experiment II. Anmerkung: Die Darstellung der Standardabweichung erfolgt einseitig.	73
Abb.	24.	Verlauf von Fasm über die Messzeitpunkte in Abhängigkeit der Körperseite im Experiment II. Anmerkung: Die Darstellung der Standardabweichung erfolgt einseitig.	75
Abb.	25.	Verlauf von Fass über die Messzeitpunkte in Abhängigkeit der Körperseite im Experiment II. Anmerkung: Die Darstellung der Standardabweichung erfolgt einseitig.	75
Abb.	26.	Verlauf von Fssm über die Messzeitpunkte in Abhängigkeit von der Belastung im Experiment III. Anmerkung: Die Darstellung der Standardabweichung erfolgt einseitig.	79
Abb.	27.	Verlauf von Fsss über die Messzeitpunkte in Abhängigkeit von der Belastung im Experiment III. Anmerkung: Die Darstellung der Standardabweichung erfolgt einseitig.	80
Abb.	28.	Verlauf von Fssm über die Messzeitpunkte unter dem Einfluss des Treatments "oB" im Experiment III	81
Abb.	29.	Verlauf von Fsss über die Messzeitpunkte unter dem Einfluss des Treatments "oB" im Experiment III	81
Abb.	30.	Verlauf von Fsds über die Messzeitpunkte in Abhängigkeit von der Belastung im Experiment IV. Anmerkung: Die Darstellung der Standardabweichung erfolgt einseitig.	84
Abb.	31.	Verlauf von Fsds über die Messzeitpunkte unter dem Einfluss des Treatments "oB" im Experiment IV	85
Abb.	32.	Schematische Darstellung signifikanter Veränderungen der Maximal- und Schnell- kraftparameter über die Messzeitpunkte im Verlauf der konditionellen Belastungen in den jeweiligen Experimenten I bis IV	86

Tabellenverzeichnis

		Seite
Tab. 1.	Der konditionellen Fähigkeit zuzuordnende Art der Energiebereitstellung (vgl. Lehmann, 2000)	28
Tab. 2.	Einteilung der Skelettmuskelfasern [Haupttypen] (Mutschler et al., 2007)	42
Tab. 3.	Stufen der einzelnen Faktoren	60
Tab. 4.	Angaben zu den Versuchspersonen im Experiment I	62
Tab. 5.	Mittelwerte (M) und Standardabweichungen (SD) von Fasm und Fass zu den einzelnen Messzeitpunkten im Experiment I	63
Tab. 6.	Prozentuale Reduktionen von Fasm über die Messzeitpunkte im Vergleich zum Ausgangswert unter dem Einfluss des Treatments "rknB" im Experiment I	64
Tab. 7.	Prozentuale Reduktionen von Fass über die Messzeitpunkte im Vergleich zum Ausgangswert unter dem Einfluss des Treatments "rknB" im Experiment I	64
Tab. 8.	Angaben zu den Versuchspersonen im Experiment II	70
Tab. 9.	Mittelwerte (M) und Standardabweichungen (SD) von Fasm und Fass zu den einzelnen Messzeitpunkten im Experiment II	71
Tab. 10.	Prozentuale Reduktionen von Fasm über die Messzeitpunkte im Vergleich zum Ausgangswert unter dem Einfluss des Treatments "wknB" im Experiment II	72
Tab. 11.	Prozentuale Reduktionen von Fass über die Messzeitpunkte im Vergleich zum Ausgangswert unter dem Einfluss des Treatments "wknB" im Experiment II	72
Tab. 12.	Angaben zu den Versuchspersonen im Experimente III	76
Tab. 13.	Mittelwerte (M) und Standardabweichungen (SD) von Fssm und Fsss zu den einzelnen Messzeitpunkten im Experiment III	77
Tab. 14.	Prozentuale Reduktionen von Fssm über die Messzeitpunkte im Vergleich zum Ausgangswert unter dem Einfluss des Treatments "rknB" im Experiment III	78
Tab. 15.	Prozentuale Reduktionen von Fsss über die Messzeitpunkte im Vergleich zum Ausgangswert unter dem Einfluss des Treatments "rknB" im Experiment III	78
Tab. 16.	Mittelwerte (M) und Standardabweichungen (SD) von Fsds zu den einzelnen Messzeitpunkten im Experiment IV	83
Tab. 17.	Prozentuale Reduktionen von Fsds über die Messzeitpunkte im Vergleich zum Ausgangswert unter dem Einfluss des Treatments "rknB" im Experiment IV	83
Tab. 18.	Messwerte der Versuchspersonen bezüglich Fasm über die Messzeitpunkte im Experiment I	97
Tab. 19.	Messwerte der Versuchspersonen bezüglich Fass über die Messzeitpunkte im Experiment I	98
Tab. 20.	Messwerte der Versuchspersonen bezüglich Fasm über die Messzeitpunkte im Experiment II	99

Tab. 21.	Messwerte der Versuchspersonen bezuglich Fass über die Messzeitpunkte Experiment II	100
Tab. 22.	Messwerte der Versuchspersonen bezüglich Fssm über die Messzeitpunkte im Experiment III	101
Tab. 23.	Messwerte der Versuchspersonen bezüglich Fsss über die Messzeitpunkte im Experiment III	102
Tab. 24.	Messwerte der Versuchspersonen bezüglich Fsds über die Messzeitpunkte im Experiment IV	103
Tab. 25.	Herzfrequenzwerte im Verlauf der ringkampfnahen Belastung im Experiment I	104
Tab. 26.	Blutlaktatkonzentrationen im Verlauf der ringkampfnahen Belastung im Experiment I	104
Tab. 27.	Werte des respiratorischen Quotienten im Verlauf der ringkampfnahen Belastung im Experiment I	104
Tab. 28.	Herzfrequenzwerte im Verlauf der wettkampfnahen Belastung im Experiment II	105
Tab. 29.	Blutlaktatkonzentrationen im Verlauf der wettkampfnahen Belastung im Experiment II	105
Tab. 30.	Herzfrequenzwerte im Verlauf der ringkampfnahen Belastung im Experiment III	106
Tab. 31.	Blutlaktatkonzentrationen im Verlauf der ringkampfnahen Belastung im Experiment III	106
Tab. 32.	Werte des respiratorischen Quotienten im Verlauf der ringkampfnahen Belastung im Experiment III	106
Tab. 33.	Herzfrequenzwerte im Verlauf der ringkampfnahen Belastung im Experiment IV	107
Tab. 34.	Blutlaktatkonzentrationen im Verlauf der ringkampfnahen Belastung im Experiment IV	107
Tab. 35.	Werte des respiratorischen Quotienten im Verlauf der ringkampfnahen Belastung im Experiment IV	107
Tab. 36.	Kennwerte des Mauchly-Tests auf Sphärizität im Rahmen der Veränderungsprüfungen im Experiment I	108
Tab. 37.	Kennwerte des Mauchly-Tests auf Sphärizität im Rahmen der Prüfungen auf Nicht-Veränderung im Experiment I	108
Tab. 38.	Kennwerte des Mauchly-Tests auf Sphärizität im Rahmen der Veränderungsprüfungen im Experiment II	108
Tab. 39.	Kennwerte des Mauchly-Tests auf Sphärizität im Rahmen der Prüfungen auf Nicht-Veränderung im Experiment II	109
Tab. 40.	Kennwerte des Mauchly-Tests auf Sphärizität im Rahmen der Veränderungsprüfungen im Experiment III	109
Tab. 41.	Kennwerte des Mauchly-Tests auf Sphärizität im Rahmen der Prüfungen auf Nicht-Veränderung im Experiment III	109
Tab. 42.	Kennwerte des Mauchly-Tests auf Sphärizität im Rahmen der Veränderungsprüfung im Experiment IV	109