
Learn DSA Without Writing
a Single Line of Code
 ―
Armstrong Subero

Codeless
Data Structures
and Algorithms

CODELESS DATA
STRUCTURES AND

ALGORITHMS

LEARN DSA WITHOUT WRITING
A SINGLE LINE OF CODE

Armstrong Subero

Codeless Data Structures and Algorithms: Learn DSA Without Writing a
Single Line of Code

ISBN-13 (pbk): 978-1-4842-5724-1 ISBN-13 (electronic): 978-1-4842-5725-8
https://doi.org/10.1007/978-1-4842-5725-8

Copyright © 2020 by Armstrong Subero

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: Rita Fernando
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, New York, NY 100043. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484257241. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Armstrong Subero
Basse Terre, Moruga, Trinidad and Tobago

https://doi.org/10.1007/978-1-4842-5725-8

To all those who tinker to keep the world running.

Part I: Data Structures �1
Chapter 1: Intro to DSA, Types, and Big O � 3

Chapter 2: Linear Data Structures � 19

Chapter 3: Tree Data Structures� 31

Chapter 4: Hash Data Structures � 41

Chapter 5: Graphs � 51

Part II: Algorithms �61
Chapter 6: Linear and Binary Search � 63

Chapter 7: Sorting Algorithms� 71

Chapter 8: Searching Algorithms � 77

Chapter 9: Clustering Algorithms � 83

Chapter 10: Randomness � 93

Chapter 11: Scheduling Algorithms � 107

Chapter 12: Algorithm Planning and Design � 123

Appendix A: Going Further � 139

 Index � 141

Contents
About the Author �vii

Acknowledgments � ix

Introduction � xi

About the Author
Armstrong Subero started learning electron-
ics at the age of 8. From then on he got into
programming and embedded systems develop-
ment. Within the realm of programming, he has
a special interest in algorithms and data
structures and enjoys implementing them in
different programming languages and on
different processor architectures, particularly
resource-constrained systems. He currently
works at the Ministry of National Security in his
country, and he has degrees in computer science

and liberal arts and sciences from Thomas Edison State University. He is the
author of Programming PIC Microcontrollers with XC8 (Apress, 2018).

Acknowledgments
I want to thank my family.

I want to thank everyone who ever said anything positive to me or taught me
something. I heard it all, and it meant something.

I want to thank God most of all, because without God I wouldn’t be able to
do any of this.

Introduction
There is one question beginners and even good self-taught developers ask me
all the time: “How do I learn data structures and algorithms?” I have had to
answer this question so often that I thought I would write it down in a book
so that anyone interested in this topic could follow along and understand the
process.

The thing is, anyone can learn the basics of data structures and algorithms.
There really isn’t much to them. The hardest part of teaching someone this
topic is that they are likely to be using any language from the current “zoo” of
languages. They may be using Python, Java, C++, or even C or Rust. Whatever
the language they are using, it is important to be able to understand data
structures and algorithms at the fundamental level. As such, I decided to make
my book “codeless.” This is a book on algorithms and data structures that
doesn’t use a single line of code from any programming language.

As someone who must regularly change between different programing lan-
guages, take it from me, once you understand the concepts behind these
algorithms in a codeless way, then you will be able to apply them to whatever
language you are using.

There are also some people “devout” in their programming language who are
unwilling to look at any material that isn’t in their language of choice. As such,
I have written this book without offending anyone’s “beliefs.” I think there are
enough books on “data structures and algorithms in X language” that are
thousands of pages detailing programs and all their nuances for the language
you are using. I think such books would be fine complements to this one, as
this book will give you the “big picture,” and then you can look at whatever
book you want for the rest. You can learn about a concept here and then go
to that book to learn the programming details.

Everything is explained in plain English, and each chapter is short and to the
point. You will learn a lot without burning your brain out.

 Who Is This Book For?
This book is for people who want to understand data structures and algo-
rithms but don’t want unnecessary details about quirks of a language and
don’t have time to sit and read a massive tome on the subject. This book is

xii

for people who want to understand the concepts of algorithms and data
structures in plain English. I assume, though, that you have knowledge of at
least one programming language, preferably a C-based one such as C, C++,
Java, C#, or Python. The types and terminology used in this book are biased
toward people who have used one of these languages.

I assume you are good at thinking abstractly and at least have basic knowledge
of a programming language and of the basics of computer science (what a bit
is, what a byte is, etc.). I also assume you know basic mathematics, at least
algebra, though this book is by no means a “math-heavy” book. I use math
concepts only where they are necessary and explain them clearly.

 What Will I Need for This Book?
You won’t need anything except an open mind and time to read and
understand the concepts being presented. I wrote this book as if we were
having a coffee and I was explaining these concepts to you from the top of
my head. For that reason, you won’t need any compiler or text editor, just
a listening ear.

 What Will I Learn in This Book?
You will learn quite a lot in a short space of time about data structures and
algorithms. You will learn the concepts of data structures and algorithms with
a focus on the most relevant ones in simple, plain language. After completing
this book, you’ll understand which data structures and algorithms can be used
to solve which problems and will be able to confidently follow along with
discussions involving algorithms and data structures.

PART I – Data Structures

Chapter 1 goes into what algorithms and data structures are, and we discuss
primitive types and Big O notation.

Chapter 2 looks at the linear data structures of arrays and linked lists; we
also discuss stacks and queues.

Chapter 3 delves into trees and tree-based data structures.

Chapter 4 introduces you to hash-type data structures.

Chapter 5 briefly covers the basics of graphs.

Introduction

xiii

PART II – Algorithms

Chapter 6 introduces two common algorithms, that of linear search and
binary search.

Chapter 7 explores sorting algorithms, including bubble sort, selection sort,
insertion sort, merge sort, and quick sort.

Chapter 8 presents some search algorithms; we look at breath-first search,
Dijkstra’s algorithm, and the A∗ algorithm.

Chapter 9 introduces clustering algorithms, specifically the K-means algo-
rithm and K-nearest neighbor and get a taste of machine learning and neural
networks.

Chapter 10 teaches some basics about the concept of randomness.

Appendix A provides resources for going further.

Upon finishing this book, you will have a solid foundation in algorithms and
data structures and will be able to use this knowledge when writing and
designing your own programs.

 Errata and Suggestions
If you find any errors in this text, have suggestions, or want to ask a question
about your own project, you can contact me at armstrongsubero@gmail.com;
please, no spam.

Introduction

PA RT

I

Data Structures

© Armstrong Subero 2020
A. Subero, Codeless Data Structures and Algorithms,
https://doi.org/10.1007/978-1-4842-5725-8_1

C H A P T E R

1

Intro to DSA,
Types, and Big O
Every journey has a beginning. In this chapter, we will begin our journey by
talking about what data structures and algorithms are. I will introduce basic
types, and I will show you how easy Big O notation is to understand. If you
have ever read a dull, overly complex book on data structures and algorithms
(abbreviated to DSA), you will love how quickly this chapter teaches you
things!

 An Overview of Data Structures
and Algorithms

“Talk is cheap. Show me the code.”

—Linus Torvalds, Finnish software engineer and creator of Linux

Linus said this while replying on the Linux Kernel mailing list on August 25,
2000. This reply has become a famous quote among programmers. It is used
by developers whenever they don’t want to read anything and instead just jump
into coding. This approach is particularly taken by novices and poorly self-
taught programmers. They don’t plan, they think they know more than every-
one, and they think programming is all about the code. This couldn’t be further
from the truth. Code simply expresses your thoughts to solve a problem.

4 Chapter 1 | Intro to DSA, Types, and Big O

Nothing more. Therefore, the more you know, the more you can apply to
solve a problem.

Data structures and algorithms are simply more things to know to apply to
solve your problems. Despite some people using them interchangeably, data
structures and algorithms are actually very different things. It is possible to
learn data structures and algorithms without touching a programming lan-
guage. Programming essentially consists of thinking algorithmically and know-
ing the syntax of the programming language to solve problems. In this book,
we will focus on thinking algorithmically and avoid learning the syntax of any
programming language.

Before we discuss data structures and algorithms, I think we should talk a
little about data. Data can mean different things depending on the discipline
you are currently occupied with. However, data within the context of this
book refers to any information that is stored on your machine or that is being
handled or processed by it. Data should not be confused with information,
which is data that has been processed; however, within the context of com-
puting, many developers may use these terms independently to mean the
same thing.

 Data Structures
A data structure is a concept we use to describe ways to organize and store
types of data. Data structures are important because they not only provide a
way of storing and organizing data but also provide a way of identifying data
within the structure; additionally, they show the relationships of the data
within the structure. It is best to illustrate what a data structure is with an
example.

For example, let’s say we have some footwear, as depicted in Figure 1-1. We
have two boots and two shoes arranged alternately.

Figure 1-1. Two types of footwear

We can think of each side of the shoe as a unit of data. If we needed a way to
maintain this data arrangement, we would need a mechanism to provide some
ordering and identification of these shoes; this is what we may call a data
structure. A data structure may provide some mechanism to organize and
store this data, for example, by separating boots and shoes as shown in
Figure 1-2.

5

A data structure may also be able to take each item and, regardless of whether
it’s a shoe or boot, assign an identifier, for example, a number as shown in
Figure 1-3.

Figure 1-2. Separating boots and shoes

Figure 1-3. Assigning identifiers

So, if I wanted the “second shoe,” instead of wondering if this means from the
left or from the right, I can simply tell the data structure, “Give me the shoe
at index 2,” and I will get exactly what I wanted.

As basic as it may seem, this is all a data structure does, though there are
much more complex methods of storing, identifying, and showing the rela-
tionships within data. This explanation provides a good grasp of what a data
structure does. If you still aren’t clear what a data structure is, it is best to
think of a data structure as a container for data.

 Algorithms
An algorithm is a method of solving a problem by applying a sequence of steps
that will always work to solve the type of problem it was designed to solve.
Another way of saying this is that an algorithm is simply a method of solving a

Codeless Data Structures and Algorithms

6 Chapter 1 | Intro to DSA, Types, and Big O

problem in an ordered manner. We can even shorten it further to say an algo-
rithm is a procedure. Many people may have expanded or diminished perspec-
tives to describe what an algorithm is, but this definition will work for our
understanding.

One thing everyone will agree on is that algorithms are logical steps to accom-
plish a task. To accomplish this, an algorithm must be simple, precise, and
unambiguous. Though some programmers focus on using esoteric features of
programming languages that make an algorithm hard to read for other pro-
grammers, the simpler and more intuitive an algorithm is, the more powerful
and useful it will be.

We can describe algorithms with natural languages such as English, pseudo-
code, or a programming language. We can discuss algorithms at great length;
however, it is best to see how algorithms work with a good example. In our
example, we can show how algorithms operate with a pure English descrip-
tion, with no code needed.

We can gain an understanding of algorithms by looking at one in action. Let’s
say you need to put some fruit on a plate. You would, of course, grab a plate
and put some fruit on it, right? Well, imagine you were describing these same
steps to a robot. How would you do it? You would tell the robot to do some-
thing like the following:

 1. Go to the cupboard.

 2. Open the door.

 3. Take out a plate.

 4. Go to the fruit bowl.

 5. Put the fruit on the plate.

This seems like a logical sequence of steps, until you look around the kitchen
and realize that the robot left the cupboard door open. So, you decide to add
another step to the algorithm, as shown here:

 1. Go to the cupboard.

 2. Open the door.

 3. Take out a plate.

 4. Close the cupboard door.

 5. Go to the fruit bowl.

 6. Put the fruit on the plate.

