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CHAPTER 1

Introduction

Computers are a formidable extension of the human brain: a computer liberates us from
performing boring and repetitive tasks. Data visualization is a wonderful field where
computers nicely complement what the brain excels at.

Conveying information through interactive visualizations is both a sophisticated
engineering process and an art. When crafting a visualization, many decisions have to
be made based on a carefully evaluated design aspect or a personal intuition. Either
way, being able to quickly experiment with a new idea is key. Agile Visualization is about
leveraging creativity by reducing the cost associated with building visualizations.

Visualizing data is probably the easiest part of the field of data visualization.
Numerous books and sophisticated libraries exist for that very purpose. One
of challenges of data visualization is to identify the right abstractions to build a
visualization that is reusable, composable, extensible, navigable, and produced at a very
low cost. Roassal is a visualization engine for Pharo and Smalltalk that leverages the
experience of crafting and using data visualization.

Roassal is written in the Pharo programming language. All the examples provided in this
book are therefore made for Roassal and are written in the Pharo programming language.

Since there is no better way than programming to craft a visualization, readers are
expected to have some programming experience to fully enjoy Agile visualization. This
book is written for a large audience, and it provides the necessary technical background
as a starter for programming with Pharo.

Agile Visualization

Agile visualization promotes the creation of a visualization based on very short,
incremental steps. A data analysis is carried out by building a number of visualizations,
many of which are simply attempts and have a very short usage time. Reducing the
creation time of a visualization to a few seconds or minutes greatly increases the number
of different paths the data scientist can take to solve a given problem.

© Alexandre Bergel 2022
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Jackson Pollock, a famous American painter, once said: “Splatter painting celebrates
spontaneity, improvisation, and a highly physical approach to making art.” Colors are
thrown, mixed, and removed at will. This metaphor may be considered as a guiding line
of Agile visualization. Similar to Agile programming, feedback should always occur a
short time after the inception of a visualization.

The Pharo Programming Language

Roassal is developed in the Pharo programming language. All the source code provided
in this book is written in Pharo. Pharo is a dynamically typed programming language,
sharing some flavors with Smalltalk, Python, and Ruby. Pharo is easy to install, learn,
and use. Pharo has a very simple syntax, which means that the code is understandable as
soon as you have some programming knowledge. Pharo is both a programming language
and a powerful environment. This book provides a light introduction to the syntax of
Pharo and presents an overview on how to use and extend its environment.

If you do not know Pharo, here are a few pieces of advice. Pharo is easy to learn and
use. It comes with fantastic programming tools to make you intimately interact with
objects; an object being an elementary computational and logical unit. Resist the natural
tendency to map your knowledge and expectations into Pharo. Embracing the way of
thinking with objects is rich and enlightening. The Pharo programming environment is
now your new friend, and plenty of great adventures will soon come.

The https://pharo.org/download website gives a very detailed instruction set to
install Pharo. Installing Pharo is just a matter of a couple of clicks.

The Roassal Visualization Engine

Roassal is a visualization engine developed in Pharo. Roassal offers a simple API to build
a visualization and maps arbitrary domain-specific objects to visual elements. This
mapping process is at the core of Agile visualization and is extensively discussed in the
book.

Roassal has a great list of features that make it share some similarities with other
visualization engines, including D3.js and Matplotlib. However, Roassal naturally
produces interactive visualizations to directly explore and operate on the represented
domain objects. Furthermore, Roassal is integrated in the Pharo environment, which
leverages the experience of building visualization.
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At the moment this book is written, Roassal is the most commonly used visualization
engine in Pharo and in the Smalltalk communities. Although alternatives are possible,
including the Morphic framework or directly drawing in a Form object, Roassal offers a

large set of pluggable and composable tools.

Roassal License

Roassal is distributed under the MIT License, which means that you can:

o Use Roassal for commercial purposes. Roassal can be freely
distributed in a business-friendly manner, without any monetary
payment due to the authors of Roassal.

o Modify the original source code of Roassal and distribute it as a
separate project.

The MIT License is one of the most permissive software licenses available. However,
the MIT License imposes two restrictions:

¢ You cannot hold the original authors of Roassal liable for any damage

caused by using Roassal.

* You also cannot claim Roassal is your original work. Derivatives are
okay as long as the original authors get credit and their name stays on
the license.

Contributing to the Development of Roassal

Roassal is the result of more than ten years of hard work made by the authors of Roassal
and the Pharo community. We encourage you to contribute to Roassal as well. It is easy
to become a contributor of Roassal. There are many different ways to do so:

o Ifyou find a bug or an opportunity for improvement, you can open an
issue in the GitHub repository of Roassal that describes the issue.

o Ifyou can improve the codebase of Roassal, define a pull request.

The GitHub repository of Roassal is available at https://github.com/
ObjectProfile/Roassal3.
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Accompanying Source Code

All the source code provided in this book is kept in the following Git repository: https://
github.com/bergel/AgileVisualizationAPressCode.

It’s better to use the provided material instead of trying to manually transcript the
code given in the book.

Want to Have a Chat?

If you want to discuss Roassal, need help, or simply have a friendly chat, there are a
number of ways to get in touch. Roassal has its own channel on the Pharo Discord server.
The Pharo community extensively uses Discord to communicate. You can join the Pharo
Discord server by following the instruction provided at https://pharo.org/community.
After joining it, you can jump on to the channel #roassal and say “Hi!” A number of
friends’ channels are also in the Pharo Discord server:

o #roassal-scriptoftheday regularly provides short script that’s ready
to be executed. These scripts typically illustrate a particular aspect of
Roassal.

e #roassal-commit reflects the activity of the Roassal GitHub
repository by listing the commits made in the repository.

Adding the hashtag #Roassal and the @Roassal1l users to your tweets is also a great
way to advertise ideas. You can also use the mention @PharoProject since the Pharo
community will surely have an interest in your post. Finally, you can reach me by email
atalexandre.bergel@me.com.

Book Overview

Agile Visualization is divided into 15 chapters, each targeting a specific topic in the field
of visualizing and interacting with data in Pharo:

o Chapter 2 provides a tour of Roassal by presenting a few
visualizations.

o Chapter 3 is an introduction to the Pharo programming language.
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Chapter 4 discusses the notion of Agile visualization.

Chapter 5 presents the relevant components of Roassal.

Chapter 6 explains the Roassal Canvas.

Chapter 7 lists the shapes offered by Roassal.

Chapter 8 describes the line builder.

Chapter 9 details the composition mechanism of shapes.

Chapter 10 presents the normalizers and scales offered by Roassal.

Chapter 11 highlights the most relevant interactions supported by
Roassal.

Chapter 12 lists a number of commonly used layouts.

Chapter 13 describes the integration of Roassal in the Inspector
framework of Pharo.

Chapter 14 applies visualizations to explain the behavior of
reinforcement learning, a machine learning algorithm.

Chapter 15 details how visualizations can be automatically generated
from a GitHub repository using GitHub Actions.

As with any successful open source project, Roassal is driven by active community

effort. The positive aspect of being a successful open source project is that Roassal

is evolving every day (literally). The negative aspect is that documentation quickly

becomes obsolete. The book is written in a way that deep technical aspects are not

discussed while general concepts are largely presented. These general concepts are

much more stable over time.

Who Should Read This Book?

This book is designed to satisfy various facets of a large audience:

Data scientists -Readers familiar with Pharo will learn the essential
components of the Roassal visualization engine. After reading the
book, you will be able to apply visualization techniques to any
domain data. Many examples are provided with the book and they
can be used as a guide or as templates for analyses.
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o Designers of visualization engine - Designing and implementing
avisualization engine is an incredibly difficult task. Roassal went
through three complete rewrites to reach its current status. Readers
who want to implement an engine may definitely find valuable
resources regarding the design and implementation of a
visualization engine.
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CHAPTER 2

Quick Start

This chapter provides an overview of Roassal, as well as a few examples. The chapter
does not go into detail since that is something that will occur in forthcoming chapters.
Many short code snippets are provided and briefly described. You can copy and paste
these snippets directly into Pharo and each one illustrates a particular aspect of the
Roassal platform.

It is important to keep in mind that this chapter is just a tour of Roassal and Pharo.
If you are not familiar with Pharo, you might find the amount of code given here a
bit confusing. The next chapter serves as an introduction of the Pharo language and
explains many aspects of the language syntax.

All the code provided in this chapter is available at https://github.com/bergel/
AgileVisualizationAPressCode/blob/main/01-02-QuickStart.txt.

Installation

Roassal is the framework for the Pharo programming language. As such, the first step
to try the examples given in this chapter is to install Pharo. The Pharo website provides
all the necessary instructions to do so (https://pharo.org/download). Pharo can be
installed directly via the command line or using the Pharo launcher. Both ways are
equivalent and you may prefer one over the other based on your personal workflow.

Once you have installed Pharo, you need to open the Playground, which is a tool
offered by Pharo to execute code. You can think of the Playground as a UNIX terminal.
The Playground is opened from the top toolbar, as shown in Figure 2-1.

© Alexandre Bergel 2022
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Figure 2-1. Opening the Playground from the World menu

After selecting Playground from the menu, you'll see a window in which you can type
any Pharo instructions. Just type the following instructions (or copy and paste them if
you are reading an electronic version of this book):

[ Metacello new
baseline: 'Roassal3’;
repository: 'github://ObjectProfile/Roassal3’;
load: 'Full' ] on: MCMergeOrLoadWarning do: [ :warning | warning load ]

You can execute the code by pressing Cmd+D (if you are a macOS user) or Ctlr+D
(for Windows and UNIX users), or by pressing the green Do It button.

Loading Roassal should take a few seconds, depending on your Internet connection.
Once it’'s loaded, you may want to save your Pharo environment (a.k.a, the image in the

Pharo jargon) by choosing Pharo» Save from the toolbar menu. You are now ready to try
your first visualization.
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First Visualization

Most of the visualizations in this book are written as short scripts, directly executable

in the Playground. You can open a new Playground or simply reuse an already open
Playground (e.g., the one you used to load Roassal). In that case, you should erase th
contents of the Playground and paste in the new script.

Evaluate the following example in the Playground (see Figure 2-2).

¢ := RSCanvas new.
1 to: 100 do: [ :1i |
c add: (RSLabel new model: i) ].

RSLineBuilder line
shapes: c nodes;
connectFrom: [ :1i | i// 2].

RSClusterLayout on: c nodes.
c @ RSCanvasController.
c open

x -0 Playground * x=-0O a RSAthensMorph(129198336)

‘: B m -=

% Pubiah Bndop Pagm 1776

; 7978 777 TP“ .
¥ 38

£ := RSCanvas new. &1 12

e

1 to: 180 do: [ i | 82 o i 3 |
3 ¢ add: (RSLabel new text: i; model: ) 1. . v ®
4 84 . A8 3%
5 RSEdgeBuilder line - xR ? y / .'62,3
B shapes: ¢ nodes; 86 \ p—A
3 connectFrom: [ :i | i /f2]. 21— 10 " &7
5 " — 66
i 88 ' 2 = o
9 RSClusterLayout on: c nodes. 83 M 5 \ “16 &5
13 ¢ @ RSCanvasController. 2 / 1 3= 64
11 c open 9045 ] ® :
91 # —63
/ / o e 62
R—A—8 5 %0
93 o \ .61
AT - 18- 60
94 24 \ N
% 48 s B o
o ;
w P s 4 XA
3 [\ debs
100 5 553
€

Figure 2-2. Connecting numbers
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The script begins by creating a canvas using the RSCanvas class. The script adds 100
labels to the canvas, each representing a number between 1 and 100. Lines are built
as follows: for each number i between 1 and 100, a line is created from the element
representingi //2 and i. The expression a //b returns the quotient between a and b,
e.g.,9 //4 = 2and3 //2 = 1.Nodes are then ordered using a cluster layout.

As a short exercise, you can replace 100 with any other value. You can also
replace the RSClusterLayout class with RSRadialTreelLayout, RSTreelLayout, or
RSForceBasedLayout.

Visualizing the Filesystem

You will reuse the previous visualization to visualize a filesystem instead of arbitrary
numbers. Pharo offers a complete library to manipulate files and folders. Integrating files
into a Roassal visualization is easy. Consider the following script:

path := '/Users/alexandrebergel/Desktop’.
extensions :=
{ "pdf' -> Color red . 'mov' -> Color blue } asDictionary.
allFilesUnderPath := path asFileReference allChildren.
c := RSCanvas new.

allFilesUnderPath do: [ :aFile |
| s color |
s := RSEllipse model: aFile.
color := extensions at: aFile path extension
ifAbsent: [ Color gray ].
s color: color translucent.
s @ RSPopup @ RSDraggable.
c add: s ].

RSNormalizer size
shapes: c nodes;
from: 10; to: 30;
normalize: [ :aFile | aFile size sqrt ].
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RSLineBuilder line
shapes: c nodes;
connectFrom: #parent.

RSClusterLayout on: c nodes.
¢ @ RSCanvasController.
c open

*x -0 Playground - x =0 a RSAthensMorph(927524096) -
P B -

Dok pubish Bindnp Pages

path := '/usersfalexandrebergel/Desktop'.

extensions := { 'pdf' -» Color red . 'mov' - Color blue }

asDictionary. P ® §
allFilesUnderPath := path asFileReference allChildren. \ \ f &
4|e := RSCanvas new. W L | ]

6| allFilesUnderPath do: [ :aFile | _
| s color | LS

8 s := RSEllipse model: aFile. ;

9 color := extensions at: aFile path extension

10 ifabsent: [ Coler gray |.

1 s color: color translucent. o —

12 s @ RSPopup @ RSDraggable.

13 c add: s ].

15| RSNormalizer size

16 shapes: ¢ nodes; —

17 from: 18; to: 30; g £

13 normalize: [ :aFile | aFile size sgrt ]. 4 f b " g
19 / /

20| RSEdgeBuilder line , / .I o

21 shapes: ¢ nodes; A AN

2 connectFrom: #parent. e [y

1 \ i

24 | RSClusterLayout on: ¢ nodes.
25| c @ RSCanvasController.

26| c open

77

Figure 2-3. Visualizing the filesystem

Figure 2-3 shows the contents of the path /Users/alexandrebergel/Desktop,
which correspond to the contents of the desktop on macOS. The path variable contains
a location on your filesystem. Obviously, you need to change the path to execute the
script. Note that indicating a large portion of the filesystem may significantly increase
the computation time since recursively fetching file information is time-consuming. The
path asFileReference expression converts a string indicating a path as a file reference.
FileReference is a Pharo class that represents a file reference, typically locally stored on
hard disk. The allChildren message gets all the files recursively contained in the path.
The visualization paints files whose names end with . pdf in red and paints all videos
files ending with .mov in blue.
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Compared to the previous example, this visualization uses a normalizer to give each
circle a size according to the file size. The size varies from 10 to 30 pixels, and it uses a
square root (sqrt) transformation to cope with disparate sizes.

As an exercise, you can extend the color schema for specific files located on your
filesystem. Color rules must follow the pattern 'pdf'-> Color red and must be
separated by a period character.

Charting Data

Roassal offers a sophisticated library to build charts. Consider the following example,
showing the high of the COVID-19 pandemic during its first 250 days (see Figure 2-4).

url := 'https://raw.githubusercontent.com/ObjectProfile/",
'Roassal3Documentation/master/data/",
"covidDataUntil23-September-2020.txt".

rawData := OpalCompiler evaluate: ((ZnEasy get: url) contents).
countries := rawData collect: #first.

allData := rawData collect: #allButFirst.

color := NSScale category20.

chart := RSChart new.

chart extent: 400 @ 400.

chart colors: color.

allData do: [ :data | chart addPlot:(RSLinePlot new y: data) ].
chart xlabel: 'Days since epoch' offset: 0 @ 20.

chart ylabel: 'Contaminated' offset: -60 @ O.

chart title: 'Coronavirus confirmed cases'.

chart addDecoration: (RSHorizontalTick new fontSize: 10).

chart addDecoration: (RSVerticalTick new integerWithCommas; fontSize: 10).
chart ySqrt.

chart build.

b := RSLegend new.
b container: chart canvas.
countries with: chart plots do: [ :c : p |
b text: c withBoxColor: (chart colorFor: p) ].
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b layout horizontal gapSize: 30.
b build.
b canvas open

x -0 Roassal -

Coronavirus confirmed cases

linated

| Brazil B re Ecuador

Figure 2-4. The first 250 days of the pandemic in 2020

The url variable points to a dataset that contains the first 250 days of the
COVID-19 pandemic in 2020 caused by the SARS-CoV-2. Note that we split the URL
to accommodate the book formatting. The data stored in the covidDataUntil23-
September-2020. txt file is a simple serialization of the data to be rendered by the
charter. The RSChart class is the entry point of the charting library. Plots are added to
a chart and a few decorations are added. A legend is located below to associate curves
with countries.
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Sunburst

A sunburst is a visualization designed to represent hierarchical data structure. Consider
the following example (Figure 2-5).

sb := RSSunburstBuilder new.
sb sliceShape withBorder.
sb sliceColor: [ :shape | shape model subclasses isEmpty
ifTrue: [ Color purple ]
ifFalse: [ Color lightGray ] ].
sb explore: Collection using: #subclasses.
sb build.
sb canvas @ RSCanvasController.
RSLineBuilder sunburstBezier
width: 2;
color: Color black;
markerEnd: (RSEllipse new
size: 10;
color: Color white;
withBorder;
yourself);
canvas: sb canvas;
connectFrom: #superclass.
sb canvas open
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Figure 2-5. Visualizing the collection class hierarchy using a sunburst

This sunburst is a software visualization. Each arc represents a class, and the nesting
indicates class inheritance, which is highlighted with Bezier lines.

Graph Rendering

Roassal offers a wide range of tools to manipulate and render graphs. Consider the
following script (see Figure 2-6).
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x = 0O Roassal -
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Figure 2-6. Visualizing a graph

nodesModel := $a to: $s.

edges := #( #( $a $b 30 ) #( $b $s 1 ) #( $b $p 4 ) #( $b $c 30 )
#( $d $e 30 ) #( $d $f 20 ) #( $d $j 10 ) #( $e $a 15 )
#( $f $m 8 ) #( $g $h 20 ) #( $g $r 3 ) #( $i $a 14 )
#( $1 %k 4 ) #( $1 9d 3 ) #( $j $9 5 ) #( $k $1 10 )
#( Sk $g 5 ) #( Imn 7 ) #( $m $0 6 ) #( $n $c 5 )
#( $p $b 5 ) #( $q $1i 4 ) ).

graph := Dictionary new.

nodesModel do: [ :aNode |
graph at: aNode put: Set new ].

edges do: [ :edge |
fromNode := edge first.
toNode := edge second.
(graph at: fromNode) add: toNode ].
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canvas := RSCanvas new.

QUICK START

nodes := RSCircle models: (nodesModel) forEach: [:circle :model | circle

size: 20; color: Color verylLightGray. ].

nodes @ RSDraggable; @ RSPopup.
canvas addAll: nodes.

highlightable := RSHighlightable new.
highlightable highlightColor: Color red.
highlightable withEdges.

nodes @ highlightable.

1b := RSLineBuilder line.
1b canvas: canvas.
1b makeBidirectional.
1b moveBehind.
1b objects: nodesModel.
1b connectToAll: [ :aNumber | graph at: aNumber ].
canvas lines do: [ :line | | edge length |
edge := edges detect: [ :e |
e first = line model key
and: [ e second = line model value | ].
length := edge third sqrt * 2.
line width: length.
line attachPoint: (RSBorderAttachPoint new
endOffset: length).

line markerEnd: (RSShapeFactory arrow size: length * 2).

line markerEnd offset: length / -5.
].
(canvas nodes, canvas lines) @ (RSLabeled new
in: [ :1bl |
1bl location middle.
1bl shapeBuilder labelShape color: Color black ];
yourself).

RSForceBasedLayout new charge: -500; doNotUseProgressBar; on: nodes.

canvas @ RSCanvasController.
canvas open
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