Programming the Finite State Machine
with 8-Bit PICs in Assembly and C

Andrew Pratt

| LEARN) DESIGN) SHARE |

Programming the Finite State Machine

with 8-Bit PICs in Assembly and C

Andrew Pratt

an Elektor Publication

LEARN") DESIGN) SHARE

@ This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.

78 York Street

London W1H 1DP, UK

Phone: (+44) (0)20 7692 8344

© Elektor International Media BV 2020

First published in the United Kingdom 2020

@ All rights reserved. No part of this book may be reproduced in any material form, including
photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally
to some other use of this publication, without the written permission of the copyright holder except in
accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE.
Applications for the copyright holder’s written permission to reproduce any part of this publication should be
addressed to the publishers. The publishers have used their best efforts in ensuring the correctness of the
information contained in this book. They do not assume, and hereby disclaim, any liability to any party for
any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from

negligence, accident or any other cause.

@ British Library Cataloguing in Publication Data

Catalogue record for this book is available from the British Library

@® ISBN: 978-1-907920-92-9
EISBN: 978-3-89576-356-4
EPUB: 978-3-89576-357-1

Prepress production: DMC | dave@daverid.com

Printed in the Netherlands by Wilco

Elektor is part of EIM, the world’s leading source of essential technical information and electronics products for pro
engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops
and delivers high-quality content - via a variety of media channels (e.g., magazines, video, digital media, and social media)
in several languages - relating to electronics design and DIY electronics. www.elektor.com

LEARN") DESIGN) SHARE

e Table Of Contents

Table of Contents

e Preface 9
Chapter 1 e Getting Started 10
1.1 e Introduction. 10
1.2 e Practical Implementation. 11
1.2.1 e Choice of Operating System 11

1.2.2 e Machine Language and Assembly Source Files 11

1.2.3 e Using the Applications on Microsoft Windows 13

1.2.4 e Installing the Applications on Linux 14

1.2.5 ¢ The FTDI Lead and Testing the Programming Chain. 15

1.3 e Some Fundamentals 18
1.3.1 eBitsand Bytes 18

1.3.2 ¢ The Hexadecimal Numbering System 20

1.3.3 e Boolean LogiC. 21

1.3.4 e Bitwise logic. 21

1.3.5 ¢ PIC Architecture 22

1.3.6 ¢ Data Memory Organization 22

1.3.7 ¢ An Assembly Program Snippet o 23

1.4 e Program MemoOry 26
1.5e HelloWorld 27
1.5.1 e Some Key Points. e 27

1.5.2 ¢ Assembling the Program. 29
Chapter 2 e The Assembly Program as a Finite State Machine 32
2.1 e Introduction 32
2.2 e A State Machine Framework for Assembly Language. 32
2.3 e Timer0 33
2.4 e Interrupts 35
2.5 ¢ A More Complicated LED Flasher 41
2.6 e Running More Than One Machine ina Program 43
2.7 ¢ Driving a Seven Segment LED Display o 45
2.8 e The Differences Between the PIC 12F1822 and the 16F1823 51
2.9 e Interrupts and State Diagrams 52
Chapter 3 e Macros, Subroutines and Bank Switching 53
3.1 e Introduction 53
3.2 e Create Your Own Instruction. 54

Programming the Finite State Machine with 8-Bit PICs in Assembly and C

3.2.1eUseanlIncludeFile 55
3.2.2 e MOre MacroS. e 56
3.2.3 e Conditional Assembly. 60
3.3 e Subroutines. 61
3.3.1 ¢ An Example of a Subroutine 61
3.3.2 e Return Address and the Stack 63
3.3.3 e Calculating the Delay. 63
3.3.4 e Calling Subroutines from Subroutines. 64
3.4 e Bank Switching 65
Chapter 4 e Inputsand Outputs 67
4.1 e Introduction 67
4.2 e Serial Output to a Computer. 67
4.2.1 o TTL Level Serial Communications. 67
4.2.2 o Configuring the EUSART to TransmitaByte. 68
4.2.3 e Serial Output Example 69
4.3 e Serial Input from a Computer. 72
4.3.1 « Configuring the EUSART to Receive Bytes 73
4.3.2 e Interrupt Service Routine 74
4.3.3 e Serial Input Example 75
4.4 ¢ Analog Inputs 76
4.4.1 e Setting ADCONO and ADCON1. i 78
4.4.2 o Circuit and State Diagram 79
4.5 e Pulse with modulated outputs. 81
4.5.1 e LED with Pulsing Brightness 82
4.6 e Digital Inputs. 85
4.6.1 e Counting Input Pulses From a Switch 85
4.6.2 e First method eliminating the effect of switch bounce. 88
4.6.3 e A Better Method of Eliminating the Effect of Switch Bounce 90
Chapter 5 e Project Hardware Construction 93
5.1 e Introduction 93
5.2 ¢ Overview of the Suggested Method 93
5.3 e Cutting and Drilling the board. 94
5.4 e Populating and Wiring the Board 96
5.5 ¢ The Circuit Board Test Program. 97
5.5.1 ¢ Analog Configuration 99

e Table Of Contents

Chapter 6 e Binary Arithmetic. 103
6.1 e Introduction 103
6.2 e Binary Addition of Unsigned Numbers 103

6.2.1 ¢ Adding Two Eight Bit Positive Integers 104
6.2.2 e Serial Read Program Command Line Arguments. 107
6.2.3 ¢ Adding Two Sixteen Bit Positive Numbers 108
6.3 e Binary Subtraction of unsigned integers 111
6.4 ¢ Binary Subtraction with Negative Results, 113
6.5 e Negative numbersinbinary 114
6.6 ¢ Binary Multiplication 116
6.7 e Binary Division. e 119

Chapter 7 o Digital Voltmeter Project. 126
7.1 e Introduction e 126
7.2 e« The State Diagrams 126
7.3 o Scaling the Raw Analog Value. 133
7.4 e Extracting the individual figures for the display 135
7.5 e Detecting No Input Voltage 135
7.6 e« Recalibration 135

Chapter 8 e Troubleshooting and Planning 136
8.1 e Introduction 136
8.2 ¢« Have an Overview of the Project 136

8.2.1 e State Diagrams and Flow Charts 136
8.3 e Break Big Problems Down Into SmallerOnes. 137
8.4 ¢ Read Through Your Code in Detail and Add Comments 137
8.5 ¢ Debugging a Running Program 137
8.6 ¢ Traffic Lights 138

8.6.1 ¢ A Circuit Diagram 140

8.6.2 e Separate Different Problems 140

8.6.3 ¢ Producingthe Code 141
8.7 o Using Debug Macro on the Voltmeter Programmable. 148
8.8 ¢ A List of Things to Remember. 150

Chapter 9 e A Comparisonwith C 151
9.1 e Introduction 151
9.2 e The Microchip XC8 Compiler. 151

9.2.1 e XC8 for Microsoft Windows 151

9.2.2 ¢ XC8 for 32 Bit Debian-Based Distributions. 151

9.2.3 e XC8 for 64 Bit Debian-Based Distributions. 152

9.2.4 « XC8 for 64-Bit Fedora 152
9.3 e Introduction to C 153

Programming the Finite State Machine with 8-Bit PICs in Assembly and C

9.3.1eHelloWorldin C
9.3.2 e Using the XC8 Compiler in Microsoft Windows
9.3.3 e Using the XC8 Compiler in Linux
9.3.4 ¢ Emitted Code Assembly vs C.
9.3.5eInterruptsin C
9.3.6 e The __delay() functions
9.3.7 e Extending the If Statement. o
9.3.8 ¢ The Switch Statement

9.3.9 ¢ An Experiment to Measure Code Speed
9.4 e Serial Communication

9.4.1 e Serial Byte Transmission

9.4.2 e Serial Byte Reception.

Chapter 10 e Further C.

10.1 e Introduction. e
10.2 e Data TYPES o
10.3 e More on Functions.
10.4 o Integer Arithmetic.

10.4.1 e Transmitting a Four-Byte Integer

10.4.2 e The "for" loop
10.5 e The Voltmeterin C
10.5.1 e Turning Bits On and Off Using Bit Type
10.5.2 e Turning Bits On and Off Using Bitwise Operators

10.5.3 e Turning Bits On and Off Using Bitfields
10.6 ¢ Summary of Assembly, C, and Finite State Machines

e Preface

« Preface

This practical guide is aimed at electronics students and hobbyists. It is intended to
be a valuable aid in writing programs using Finite State Machines (FSMs) in assembly
language using 8-bit PIC microcontrollers. The last two chapters introduce the use of the
C programming language and make a direct comparison with development in Assembly.

An FSM is a way of writing a program to make it easier to produce and modify. The
machine is abstract in that it is just the structure of the program. This abstract machine
can be represented by drawing a diagram on paper. The diagram is independent of the
programming language used. The FSM chart gives a complete description of what the
program does. It can then be implemented as source code.

The book should appeal to those with an interest in the combination of electronics and
software and have an interest in how things work. The book will describe writing code
for two particular microcontrollers: The 12F1822 and 16F1823. Both are mid-range and
inexpensive. To read and write the programs to and from the PICs, all that is required is
an FTDI TTL level USB lead (TTL-232R-5V-WE) in addition to two programs that are both
available for free download as executable files and source code from Elektor. Microsoft
Windows or Linux can be used.

The PIC programs are written in assembly language. This goes against the conventional
wisdom of using a higher-level language such as C. One reason for this is that assembly
is a good way of learning what is happening at the lowest level. This is important as
microcontroller programming requires an understanding of the chip. Another reason for
using the finite state machine approach is that it makes assembly programs surprisingly
easy to follow. One of the main obstacles in the way of getting started with embedded
programming is the installation and learning of new software tools.

The emphasis of this book is on making things straightforward with as little complication
as possible. Therefore you can concentrate on understanding the code. Real projects aren’t
just about coding: our software has to do something real. As a consequence, a chapter
deals with a method of circuit board construction.

All coding is done in a text editor of your choosing. The command line is used for running
programs. If you are a Windows user, you might look at this as old fashioned. This is
actually an efficient way of doing things: simple scripts for repetitive tasks save lots of
mouse clicks. The last two chapters give an introduction to programming in C using the XC8
compiler. Again this is done using a text editor and the command line.

The intention has been to achieve results using an inexpensive microcontroller with simple
command line tools. Much emphasis is placed on using Microchip’s datasheet as this is the
best place to get correct detailed information.

Programming the Finite State Machine with 8-Bit PICs in Assembly and C

Chapter 1 « Getting Started
1.1 e Introduction

Don’t be put off by the technical-sounding words ‘Finite State Machine’ (FSM). The principle
of how they work is really easy to understand. Firstly, the machine is not an actual machine
that you have to build. It is merely a structure your program has. The idea is that the
program is broken down into a set number of states. When the program is in one of these
states, it can respond to a set of inputs or events resulting in the program jumping to a
different state. The outputs from the program depend only on the state (Moore machine)
or on the state and the inputs (Mealy machine). Let’s start with the basic ‘Hello World’
microcontroller program to flash an LED as an example of a state machine with two states,
LED ON and OFF.

Power On

State 0 Timer expires / Reset timer and turn LED off ~((tate 1

LED On LED Off

Timer expires / Reset timer and turn LED on

A

Figure 1-1 A two-state machine

Figure 1-1 displays what the program does and how to write it.
What the program does is:

After power up, the initial conditions are the LED is ON and the timer is reset and started.
After the timer expires, the LED turns OFF and the timer is reset and started.

After the timer expires again, the LED turns ON and the timer is reset and started.

This continues until the microcontroller is powered down

In this example, there is only one event that triggers a change of state: This being the
expiry of the timer. The effect of the expiry depends on the current state - it might jump
to the LED ON state or the LED OFF state. The fact that an input or event is only used
by the current state helps to make a more complicated program robust and easier to
follow. This example is a Mealy machine, where outputs or actions are determined by
the current state and inputs. On the state diagrams, the transitions between states are
shown by arrows. Alongside these are the input conditions that trigger transitions and the
resulting outputs. In a Moore machine, the outputs depend only on the current state of
the machine. The outputs would be shown on the diagram inside the states. This book is
specifically about practical programs. I will not try to adhere to strict definitions. As for how

e 10

Chapter 1 e Getting Started

to write the program, you have already done the important bit by planning. All that has
to be done now is to implement the diagram as code and this will be less prone to error
as you can concentrate on local detail. The book will mostly use the Mealy type machine.
Inputs causing a transition will be separated by a forward slash from the outputs. This will
be written next to the transition between two states. With regards to the FSM, inputs and
outputs (I/0) are not restricted to electrical I/0. They also include other types of change.
An input could be the timer timing out or an output could be the writing of a value to a
register in the CPU. FSMs can be written in just about any programming language.

1.2 e Practical Implementation

Microcontroller projects do not need to be expensive. The two PICs that are going to be
used throughout the book are the 12F1822 and 16F1823 variants. Both are cheap mid-
range devices, costing less than one pound in the UK at the time of writing. They are
available in the dual in-line package (DIP) form that is easy to solder or can be plugged
into a holder. The programs will be written in a text editor and assembled with the gpasm
open-source assembler. To load your programs into the PIC, you could use a programmer
such as PICKIT 3, but there is no need to buy one. Two programs have been written for this
book that can read and write using an FTDI USB lead TTL-232R-5V-WE. This same lead can
also be used for reading and writing data from PICs in later projects.

1.2.1 e Choice of Operating System

Microsoft Windows or Linux can be used for assembling and loading programs to the PICs.
There are two archive files available by way of a free download from the Elektor website:
One is for Windows and the other for Linux. These files contain all the source files for the
examples in the book and applications mentioned above. As described in the preface, the
command line method is used throughout the book for both Linux and Windows. The use
of the terminal with typed commands might seem like a throwback to the last century for
those who remember using DOS. It is, however, a very easy way of doing things, especially
for repetitive tasks like running assembler programs or loading the PIC with its program.
Tasks can be simplified with scripts to save typing and recent commands can be recalled
using the up and down keys. If you are using Linux, typing history will give a numbered list
of the previous commands you have used. They can be run again by using the exclamation
mark followed by the number. Auto-completion allows you to use the tab key to list possible
files. You never have to type the complete name. If you are happy writing source code
for an electronic device using text files then using the command line should be the logical
choice. Graphic User Interfaces (GUIs) have their advantages. However, if you are doing
something repetitive, a lot of mouse clicking or even using keyboard shortcuts is tedious
compared with running a script or recalling a previous command and its options.

1.2.2 e Machine Language and Assembly Source Files
The PIC microcontroller has to be programmed by loading the machine code into its flash

memory. The word ‘programmed’ in the last sentence means transferring machine code
from a file on a computer to the PIC as opposed to writing the code. The machine code is

o 11

Programming the Finite State Machine with 8-Bit PICs in Assembly and C

the raw byte values that it processes when running. This machine code is first assembled
into a file called a hex on your computer. It gets its name from the Intel Hex Format which
is a file standard for this purpose. The hex file is then written to the PIC using a combination
of a program on your computer and a hardware interface called a programmer. When
referring to machine code, this is not the finite state machine but the processor itself being
referred to as a machine.

It is possible to write your program by typing a hex file directly into a text editor. Manually
assembling machine instructions is too time-consuming to be considered a realistic task.
To make it easier, code is written in assembly language where short acronyms for machine
instructions are used to produce more readable code. The file that you type this way is the
source code and usually has the file suffix .asm. This file is then read by the assembler
application and written to the hex file as raw machine code.

It is generally accepted that it is better to write your programs in a higher-level language.
If you want to get things done quicker and with less chance of error, then this is absolutely
true. C language was invented to get away from the problems of programming in assembly
language. This book is about finite state machines implemented on simpler PICs. To write
code for a microcontroller, you have to understand what is going on at the level where
software meets hardware. Where C makes coding faster and easier, it also makes things
more complicated. You don’t, however, see this extra complication: it’s taken care of by the
compiler and linker. All of this gets in the way of understanding what your code is doing.
For the PICs used in this book, there are 49 available instructions. The ones commonly used
are quickly learnable. The beauty of assembly language is that you can see what’s going
on. The code you write is exactly the machine code that goes into the PIC. Once the source
code file is finished, it is converted to machine language by the assembler application: in
our case the program gpasm. The assembler reads your source code and outputs the hex
file. The hex file is then read by another application that writes to the PIC using some form
of hardware interface. Figure 1-2 below depicts this programming chain.

e 12

Chapter 1 e Getting Started

MACHINE O
MOV STATE_MO, W
BRw
GoTo Mo S z
GOTO Mo 51 s
- lol=
(Y=
BANKSEL TXREG
MOVFW COUNTER,_OF F
MOVWE TXREG
MOVLB 0
BANKSEL PORTA
BSF PORTA, 2 Source Code
CLRF COUNTER OFF
MOVLW 32"
SUBWF COUNTER_ON, w
BTFSS STATUS, C
GOTO MACHINE_ 0
INCF STA
GOTO MACHINE_D
s1 “led off
BANKSEL TXREG
MOVFW COUNTER_OFF
MOVWIE TXREG
BANKSEL FORTA
BCF FORTA, 2
CLRF COUNTER ON
W 20
SUBWF COUNTER_OFF, w
aTFSS STATUS
GOTO MACHINE 0 5 :
CURF STATE No
e Programming
ardware
(TTL-232R-5V-WE
Hex File
020000040000
020000000C28CA
0B000800200008150828090073
AS S e m b I e r 10001000081 1F 20AF 304090021000 117030090048
1000200007309500E03088002000F10123009E 1 680
100030005017 15058003C 01 110900030247 508 PROGRAMMING
Application e aaaun s
(gpasm) :gg:ggcgg&l;gﬁlsuﬂ7]620]1(]CAFJMICE&EB APPLI CATION
40001 X
02000E0DA4COE3 (program_writer)
02001000 FFFFO -
00000001 FF

Figure 1-2 Programming Chain

You can if you prefer, use MPLABX and PICKET 3 or 4 from Microchip. You may already have
these and be familiar with them. The next two paragraphs describe an alternative using the
applications provided in the download.

1.2.3 e Using the Applications on Microsoft Windows

First, you need to download and install gputils for Windows from here:
https://sourceforge.net/projects/gputils/files/gputils-win32/

The version used at the time of writing was 1.4.0. Although not the latest version, it was
chosen to be the same as used by the current Debian and Ubuntu. You can use the latest
version if like.

You will need the FTDI driver for your USB interface lead, and the installation of the file
FTD2XX.DLL. The best way to do this is to download the executable setup for Windows
from:

http://www.ftdichip.com/Drivers/D2XX.htm

At the time of writing, it is named CDM2128_Setup.zip. Inside the zip file is CDM2128
Setup.exe that will install the driver and the required DLL file. Install it before plugging in
the lead.

You need to unzip the file from the Elektor website into a convenient directory on your
computer. Please make sure that you download the correct file. The Linux version won't
work on Windows and vice versa. It's not just executables that are not compatible. Text
files have different line endings: Linux files have a new line character while Windows files

e 13

Programming the Finite State Machine with 8-Bit PICs in Assembly and C

have a carriage return and new line character at the end of each line. The file unzips several
directories. The working directory contains a batch file called terminal_here. Clicking on
this will open a virtual terminal. If you type dir and press return, the contents of the
directory will be displayed. Initially, the files in the working directory are executable. These
executables will be run from the command line. This only involves typing a couple of words
and pressing return. Later in this chapter, instructions will be given on how to use these
applications. For reading and writing PIC source files, you can use Windows’ text editor,
notepad, but any text editor will do, including notepad++.

1.2.4 ¢ Installing the Applications on Linux

The archive file for Linux is a tar file. This can be extracted by typing on the command line
tar -xvf <file name>.tar.

There are many variants of Linux. I won't try to cover the instructions in detail for all of
them. I will give instructions for two: Debian and Fedora. The details for Debian are also
applicable to Ubuntu and other Debian derivatives.

The assembler program gpasm is part of the GNU PIC Utilities (gputils) package. This can
be installed on Debian based Linux by opening a terminal window and typing:
sudo apt-get install gputils.

Of course, you have to be connected to the Internet. On Fedora, the command is sudo dnf
install gputils.

user@debian:~/programs/chap@l progs$ sudo apt-get install gputils

Figure 1-3a Installing gputils on Debian (Ubuntu etc)

For Fedora:

[user@localhost ~]% sudo dnf install gputils
Figure 1-3b Installing gputils on Fedora

To load the hex file contents into the PIC microcontroller and read back the loaded bytes,
the two programs that have been written especially for this book are called program_
writer_xx and program_reader_xx, where xx is 32 or 64. Both versions are provided: one
for 32-bit and one for 64-bit operating systems. These programs need to have the package
libftdil-dev installed to work. This can be installed on Debian by opening a terminal window
and typing sudo apt-get install libftdi1-dev .

luser@debian:~/programs/chap@l progss sudo apt-get install libftdil-dev

Figure 1-4a Installing libftdil-dev on Debian

e 14

Chapter 1 e Getting Started

For Fedora:

alhost 1% sudo dnf install libftdi
Figure 1-4b Installing libftdi on Fedora

These two applications have only been tested with these two PICs. Figure 1-5 shows the
directory trees for the Linux and Windows downloads.

/home/user/BOOK_FSM/programs_linux/ » ThisPC » Documents > programs_windows
Name ~
Name Da
E chap0l_source_linux
2 ﬁ chap02_source_linux chap01_source_windows 2
H p ¥,
[y chapo3_source_linux chap02_source_windows 2

: chap03_source_windows 2
ﬁ chap04_source_linux

chap04_source_windows 2/
ﬁ chap05_source_linux
ﬁ chap06_source_linux

ﬁ chap07_source_linux

chap05_source_windows 2
chap06_source_windows 2

chap07_source_windows 2

|5 chapos_source linux chap08_source_windows 2
5 chapos_source_linux chap09_source_windows 2
E chapl0_source_linux chap10_source_windows 2
ﬁ utilities_C_source_linux utilities_C_source_windows 2
55 working_linux_32 working_windows 2

ﬁ working_linux_64
Figure 1-5 Download directory tree for Linux and Windows

Once you have all the software installed, the next thing is to try it out using the hardware.
1.2.5 e The FTDI Lead and Testing the Programming Chain

All that is required is an FTDI TTL-232R-5V-WE USB wire end lead. They are readily available
from suppliers such as Farnell, RS Components, and Digi-Key. 1k resistors to pins 4, 6, and

7 are recommended for protection. The one connected to pin 5 is to limit the current flowing
through the LED.

e 15

Programming the Finite State Machine with 8-Bit PICs in Assembly and C

FTDI Lead Colours - Usage for programming
Red + 5V
Black 0OV

:

Green MCLR
Yellow In circuit programming data (ICSPDAT)
§ Orange In circuit programming clock (ICSPCLK)
° Brown Nor used.
Red 5V U/ Black ©
e
1k
Yellow

N 1 | —|

O ~ 701 L =
© TTL-232R-5V-WE
E 1k Orange

O « s[3 |]
— - —J USB to Computer

1k
_| — 1
4 S | I
1k
— Green //
| S

ov

Figure 1-6 In-Circuit Programming Diagram

The above circuit can quickly be connected to a plugin breadboard: see Figure 1-9. The LED
is not part of the programming circuit. It is there for the test program to demonstrate that
it is all correctly working. The test program test.hex is included in the Chap01_progs folder
of the archive file. It makes the LED flash on for a quarter of a second and off for three-
quarters of a second. You need to copy it to the working directory to use it.

If you are using Windows, click on the terminal_here batch file in the working directory to
open the terminal window. Type in the following and press return. See the upper pane in
Figure 1-7.

program_writer.exe test.hex

If you are using Linux, open a virtual terminal and navigate to the working directory. Type
the following and press return. See the lower pane in Figure 1-7.

sudo ./program_writer_64 test.hex

Note that in Linux you must prefix the executable file with ./ .This is the path to the present
directory. The sudo command will be required to acquire the privilege of opening the USB
port. Once the code is loaded into the PIC, the LED should start flashing. The code can
be verified by reading it back using the program program_reader: refer Figure 1-8. Only
a few lines of the output from these programs is shown in the screen dumps. Take care
to correctly connect the wires and get the LED the correct way round. The PIC has pin 1
marked with a dimple on the top surface.

e 16

Chapter 1 e Getting Started

C: \Uﬂerﬂ\ﬁndreu\Dncumentﬂ\FSH\uurklng windows >program_writer.exe test.hex
address
address
address
address
address

B, data from file 28@b
1. data from file a
a
a

28

» data from file
» data from file
. data from file
data from file
data from file
data from file
data from file
data from file
data from file

address
address
address
address
address
address

WINDOWS

user@debian: % sudo ./program writer B4 test.hex
[sudo] password for user:

= 0, data from file

= 1, data from file
from file
from file
from file
from file
from file
from file
from file
from file
from file

W
=
o

od

oo

SN D @@
=
=

%]
oo
o
oo

L R =L RS R W)

wom
-

s

Y
=2

o
-
=

o
o

LINUX
Figure 1-7 Writing the Hex File to the PIC: Windows and Linux 64 bit

C:sUserssAndrewvsDocuments»FSM\working_windows >program_reader.exe test.hex
B value from file microcontroller = 28@b ~ 280h

1 value from file microcontroller

2 wvalue from file microcontroller

3 value from file microcontroller

4 wvalue from file i

5 value from file microcontroller

6 value from file microcontroller

7?7 wvalue from file microcontroller

~

address

WINDOWS
% sudo
[udc] pa ssword for user:

B walue from file / microcontroller
value from file / microcontroller
value from fi " microcontroller
value from fi " microcontroller
value from file / microcontroller
value from file / microcontroller
value from file / microcontroller
value from file / microcontroller

LINUX

1
>
3
"'Il
5
6
7

Figure 1-8 Reading Back PIC Code: Windows and Linux

e 17

Programming the Finite State Machine with 8-Bit PICs in Assembly and C

Figure 1-9 PIugi breadboard

1.3 ¢ Some Fundamentals

Assuming that everything has so far worked, you can move on in the next chapter to
writing a first PIC program with confidence that it can be written to the controller. The rest
of this chapter is of benefit to those who are not familiar with PIC programming in assembly
language.

All that is required to write the code is a text editor. You should also have open a copy of
the datasheet for the 12F1822 and 16F1823 which can be downloaded free as a PDF file
from Microchip. The name of the document is DS40001413E. To get you on your way, I will
present a program that flashes an LED at about 5Hz. This is not the same program as test.
hex that was used to prove the programming chain above.

Writing code for a microcontroller requires knowledge of the inner workings of a device.
The controller is part of an electronic circuit. The code is an extension of the circuit that
you are building. If you browse through the datasheet, you’ll see that there are more than
four hundred pages. Trying to read a document like this can be overwhelming as it has not
been written as a teaching aid and is packed with information. We will start slowly with just
enough detail to start-off. We will add more as the projects get more advanced. Once you
start to become familiar with the layout of this manual, it is quite easy to find what you
want to know as you progress. I'm assuming that all of this is new to you and will try to
explain all you need to know to understand this first program.

1.3.1 e Bits and Bytes

Let’s start with the bit. The word bit is the contraction of binary digit. A bit is a basic unit of

e 18

Chapter 1 e Getting Started

information: it has only two states commonly referred to as 0 or 1. Physically these states
can be represented by say a voltage of OV or +5V. Any physical quantity that can have two
distinct values could be used. Now if two bits are placed next to each other, there are now
four permutations that bits can be in, 00, 01, 10, 11.

If three bits are used, there are eight permutations, 000, 001, 010, 011, 100, 101, 110,
111. Whenever a bit is added to the group, the number of permutations double. A byte is
normally a group of eight bits and these have 256 permutations. Each arrangement of bits
can be used to represent an integer. To start with we’ll look at positive integers and zero.
Negative integers can also be expressed but that’s for later.

Bits that are 1 are sometimes referred to as being on, and off when they are 0.

Each bit in a byte not only has a value of 0 or 1 but has a position in the byte. We give
weight to the positions so that the bit on the right end is worth 1 when it is on and 0 when
it is off. The next position has a weight of 2 so that bit is worth 2 when it is on and 0 when
it is off. Continuing this binary weighting to all eight bits in a byte, all the values from 0 to
255 can be allocated to bit states.

128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1 0

3 0 0 0 0 0 0 1 1

4 0 0 0 0 0 1 0 0

5 0 0 0 0 0 1 0 1

6 0 0 0 0 0 1 1 0

7 0 0 0 0 0 1 1 1

8 0 0 0 0 1 0 0 0

9 0 0 0 0 1 0 0 1

10 0 0 0 0 1 0 1 0
11 0 0 0 0 1 0 1 1
12 0 0 0 0 1 1 0 0
13 0 0 0 0 1 1 0 1
14 0 0 0 0 1 1 1 0
15 0 0 0 0 1 1 1 1
16 0 0 0 1 0 0 0 0
255 1 1 1 1 1 1 1 1

Table 1-1 Binary Weighting

e 19

