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CHAPTER 1

MapReduce and Its
Abstractions

In this chapter, you will learn about the technologies that existed before Apache Hadoop,
about how Hadoop has addressed the limitations of those technologies, and about the
new developments since Hadoop was released.

Data consists of facts collected for analysis. Every business collects data to
understand their business and to take action accordingly. In fact, businesses will fall
behind their competition if they do not act upon data in a timely manner. Because the
number of applications, devices, and users is increasing, data is growing exponentially.
Terabytes and petabytes of data have become the norm. Therefore, you need better data
management tools for this large amount of data.

Data can be classified into these three types:

e Small data: Data is considered small data if it can be measured in gigabytes.

e  Bigdata: Big data is characterized by volume, velocity, and variety.
Volume refers to the size of data, such as terabytes and more. Velocity
refers to the age of data, such as real-time, near-real-time, and
streaming data. Variety talks about types of data; there are mainly
three types of data: structured, semistructured, and unstructured.

e  Fastdata: Fast data is a type of big data that is useful for the real-time
presentation of data. Because of the huge demand for real-time or
near-real-time data, fast data is evolving in a separate and unique space.

Small Data Processing

Many tools and technologies are available for processing small data. You can use
languages such as Python, Perl, and Java, and you can use relational database
management systems (RDBMSs) such as Oracle, MySQL, and Postgres. You can even
use data warehousing tools and extract/transform/load (ETL) tools. In this section, I will
discuss how small data processing is done.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2337-6_1) contains supplementary material, which is available to
authorized users.

© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_1
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Assume you have the following text in a file called fruits:

Apple, grape
Apple, grape, pear
Apple, orange

Let’s write a program in a shell script that first filters out the word pear and then
counts the number of words in the file. Here’s the code:

cat fruits|tr '," '\n'|grep -v -i ‘'pear'|sort -f|uniq -c -i

This code is explained in the following paragraphs.

In this code, tr (for “translate” or “transliterate”) is a Unix program that takes two
inputs and replaces the first set of characters with the second set of characters. In the
previous program, the tr program replaces each comma (,) with a new line character
(\n). grep is a command used for searching for specific text. So, the previous program
performs an inverse search on the word pear using the -v option and ignores the case
using -1.

The sort command produces data in sorted order. The -f option ignores case while
sorting.

uniqis a Unix program that combines adjacent lines from the input file for reporting
purposes. In the previous program, uniq takes sorted words from the sort command
output and generates the word count. The -c option is for the count, and the -1 option is
for ignoring case.

The program produces the following output:

Apple 3
Grape 2
Orange 1

You can divide program functionality into two stages; first is tokenize and filtering,
and second is aggregation. Sort is supporting functionality of aggregation. Figure 1-1
shows the program flow.

Figure 1-1. Program flow

The previous program can be run on a single machine and on small data. Such
simple programs can be used to perform simple operations such as searching and sorting
on one file at a time. However, writing complex queries involving multiple files and
multiple conditions requires better data processing tools. Database management systems
(DBMS) and RDBMS technologies were developed to address querying problems with
structured data.
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Relational Database Management Systems

RDBMSs were developed based on the relational model founded by E. E Codd. There are
many commercial RDBMS products such as Oracle, SQL Server, and DB2. Many open
source RDBMSs such as MySQL, Postgres, and SQLite are also popular. RDBMSs store
data in tables, and you can define relations between tables.

Here are some advantages of RDBMSs:

e  RDBMS products come with sophisticated query languages
that can easily retrieve data from multiple tables with multiple
conditions.

e The querylanguage used in RDBMSs is called Structured Query
Language (SQL); it provides easy data definition, manipulation,
and control.

e RDBMSs also support transactions.

e  RDBMSs support low-latency queries so users can access
databases interactively, and they are also useful for online
transaction processing (OLTP).

RDBMSs have these disadvantages:

e  Asdata is stored in table format, RDBMSs support only
structured data.

e  You need to define a schema at the time of loading data.

e RDBMSs can scale only to gigabytes of data, and they are mainly
designed for frequent updates.

Because the data size in today’s organizations has grown exponentially, RDBMSs have
not been able to scale with respect to data size. Processing terabytes of data can take days.

Having terabytes of data has become the norm for almost all businesses. And new
data types like semistructured and unstructured have arrived. Semistructured data has
a partial structure like in web server log files, and it needs to be parsed like Extensible
Markup Language (XML) in order to analyze it. Unstructured data does not have any
structure; this includes images, videos, and e-books.

Data Warehouse Systems

Data warehouse systems were introduced to address the problems of RDBMSs. Data
warehouse systems such as Teradata are able to scale up to terabytes of data, and they are
mainly used for OLAP use cases.

Data warehousing systems have these disadvantages:

e Data warehouse systems are a costly solution.

e  They still cannot process other data types such as semistructured
and unstructured data.

e They cannot scale to petabytes and beyond.
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All traditional data-processing technologies experience a couple of common
problems: storage and performance.

Computing infrastructure can face the problem of node failures. Data needs to be
available irrespective of node failures, and storage systems should be able to store large
volumes of data.

Traditional data processing technologies used a scale-up approach to process a large
volume of data. A scale-up approach adds more computing power to existing nodes,
so it cannot scale to petabytes and more because the rest of computing infrastructure
becomes a performance bottleneck.

Growing storage and processing needs have created a need for new technologies
such as parallel computing technologies.

Parallel Computing

The following are several parallel computing technologies.

GFS and MapReduce

Google has created two parallel computing technologies to address the storage and
processing problems of big data. They are Google File System (GFS) and MapReduce.
GFS is a distributed file system that provides fault tolerance and high performance on
commodity hardware. GFS follows a master-slave architecture. The master is called
Master, and the slave is called ChunkServer in GFS. MapReduce is an algorithm based
on key-value pairs used for processing a huge amount of data on commodity hardware.
These are two successful parallel computing technologies that address the storage and
processing limitations of big data.

Apache Hadoop

Apache Hadoop is an open source framework used for storing and processing large data
sets on commodity hardware in a fault-tolerant manner.

Hadoop was written by Doug Cutting and Mark Cafarella in 2006 while working for
Yahoo to improve the performance of the Nutch search engine. Cutting named it after his
son’s stuffed elephant toy. In 2007, it was given to the Apache Software Foundation.

Initially Hadoop was adopted by Yahoo and, later, by companies like Facebook and
Microsoft. Yahoo has about 100,000 CPUs and 40,000 nodes for Hadoop. The largest
Hadoop cluster has about 4,500 nodes. Yahoo runs about 850,000 Hadoop jobs every
day. Unlike conventional parallel computing technologies, Hadoop follows a scale-out
strategy, which makes it more scalable. In fact, Apache Hadoop had set a benchmark by
sorting 1.42 terabytes per minute.

Most of Hadoop is written in Java, but it has support for many programming
languages such as C, C++, Python, and Scala through its streaming module. Apache
Hadoop was initially written for high throughput and batch-processing systems. RDBMS
technologies were written for frequent modifications in data, whereas Hadoop has been
written for frequent reads.


http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
http://sortbenchmark.org/
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Moore’s law says the processing capability of a machine will double every two years.
Kryder’s law says the storage capacity of disks will grow faster than Moore’s law. The
cost of computing and storage devices will go down every day, and these two factors can
support more scalable technologies. Apache Hadoop was designed while keeping these
things in mind, and parallel computing technologies like this will become more common
going forward.

The latest Apache Hadoop contains three modules, as shown in Figure 1-2. They are
HDFS, MapReduce, and Yet Another Resource Negotiator (YARN).

Apache
Hadoop

MapReduce

YARN

Figure 1-2. The three components of Hadroop

HDFS

The Hadoop distributed file system is used for storing large data sets. It divides files into
blocks and stores every block on at least multiple nodes. This is called a replication factor,
and by default it is 3. HDFS is fault-tolerant because it has more than one replica for every
block, so it can handle node failures without affecting data processing. A block of HDFS

is the same as an operating system block, but a HDFS block size is larger, such as 64 MB
or 128 MB. Unlike traditional storage systems, it is highly scalable. It does not require any
special hardware and can work on commodity hardware.



CHAPTER 1 " MAPREDUCE AND ITS ABSTRACTIONS

Assume you have a replication factor of 3, a block size of 64 MB, and 640 MB of data
needs to be uploaded into HDFS. At the time of uploading the data into HDFS, 640 MB
is divided into 10 blocks with respect to block size. Every block is stored on three nodes,
which would consume 1920 MB of space on a cluster.

HDFS follows a master-slave architecture. The master is called the name node, and
the slave is called a data node. The data node is fault tolerant because the same block
is replicated to two more nodes. The name node was a single point of failure in initial
versions; in fact, Hadoop used to go down if the name node crashed. But Hadoop 2.0+
versions have high availability of the name node. If the active name node is down, the
standby name node becomes active without affecting the running jobs.

MapReduce

MapReduce is key-value programming model used for processing large data sets. It has
two core functions: Map and Reduce. They are derived from functional programming
languages. Both functions take a key-value pair as input and generate a key-value pair as
output.

The Map task is responsible for filtering operations and preparing the data required
for the Reduce tasks. The Map task will generate intermediate output and write it to
the hard disk. For every key that is being generated by the Map task, a Reduce node is
identified and will be sent to the key for further processing.

The Map task takes the key-value pair as input and generates the key-value pair as
output.

(key1, value1l) ---------------- > Map Task---------------- > (Key2, Valuz)

The Reduce task is responsible for data aggregation operations such as count, max,
min, average, and so on. A reduce operation will be performed on a per-key basis. Every
functionality can be expressed in MapReduce.

The Reduce task takes the key and list of values as input and generates the key and
value as output.

(key2, List (value2))-------- > Reduce Task --------------- > (Key3, value3)

In addition to the Map and Reduce tasks, there is an extra stage called the combiner
to improve the performance of MapReduce. The combiner will do partial aggregation on
the Map side so that the Map stage has to write less data to disk.

You will now see how MapReduce generates a word count. Figure 1-3 depicts how
MapReduce generates the fruits word count after filtering out the word pear.
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Map Reduce
CQutput Reduce Qutput

apple,1 . ;
orange,1 R’
Sink
apple,3
grape, 1 -
5p;|e_1 R2 ——"lm—b orange 2

grape,1

Source

apple orange
grape,apple pear
apple orange

f
appled 4
orange R3 grape, 1
Figure 1-3. MapReduce generating a word count

Source and Sink are HDFS directories. When you upload data to HDFS, data is
divided into chunks called blocks. Blocks will be processed in a parallel manner on all
available nodes.

The first stage is Map, which performs filtering and data preparation after
tokenization. All Map tasks (M1, M2, and M3) will do the initial numbering for words that
are useful for the final aggregation. And M2 filters out the word pear.

The key and list of its values are retrieved from the Map output and sent to the
reducer node. For example, the Apple key and its values (1, 1, 1) are sent to the reducer
node R1. The reducer aggregates all values to generate the count output.

Between Map and Reduce, there is an internal stage called shuffling where the
reducer node for the map output is identified.

You will now see how to write the same word count program using MapReduce. You
first need to write a mapper class for the Map stage.

Writing a Map Class

The following is the Map program that is used for the same tokenization and data filtering
as in the shell script discussed earlier:

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Llonghritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class FilterMapper extends Mapper<Longhritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable offset, Text line, Context context) throws
I0Exception, InterruptedException {
//tokenize line with comma as delimiter
StringTokenizer itr = new StringTokenizer(line.toString(),",");
//Iterate all tokens and filter pear word
while (itr.hasMoreTokens()) {
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String strToken=itr.nextToken();
if(!strToken.equals("pear")){
//converting string data type to text data type of mapreduce

word.set(strToken);
context.write(word, one);//Map output

}

The Map class should extend the Mapper class, which has parameters for the input
key, input value, output key, and output value. You need to override the map () method.
This code specifies LongWritable for the input key, Text for the input value, Text for the
output key, and IntWritable for the output value.

In the map () method, you use StringTokenizer to convert a sentence into words.
You are iterating words using a while loop, and you are filtering the word pear using an if
loop. The Map stage output is written to context.

For every run of the map () method, the line offset value is the input key, the line is
the input value, the word in the line will become an output key, and 1 is the output value,
as shown in Figure 1-4.

grape,1
apple,1

v
~}
4

13,grape,apple pear

Figure 1-4. M2 stage

The map () method runs once per every line. It tokenizes the line into words, and it
filters the word pear before writing other words with the default of 1.

If the combiner is available, the combiner is run before the Reduce stage. Every Map
task will have a combiner task that will produce aggregated output. Assume you have two
apple words in the second line that is processed by the M2 map task.

The Map output without the combiner will look like Figure 1-5.

grape,1
apple 1
apple 1

¥
~
A

13 grape apple apple pear

Figure 1-5. Map output without the combiner



