| .
el
= IIIII_J

Beginning
Apache Pig
ﬁg Data Processing Made Easy

Balaswamy Vaddeman

ApPress’

Beginning
Apache Pig

Balaswamy Vaddeman

Apress’

Beginning Apache Pig: Big Data Processing Made Easy

Balaswamy Vaddeman
Hyderabad, Andhra Pradesh, India

ISBN-13 (pbk): 978-1-4842-2336-9 ISBN-13 (electronic): 978-1-4842-2337-6

DOI10.1007/978-1-4842-2337-6
Library of Congress Control Number: 2016961514
Copyright © 2016 by Balaswamy Vaddeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Celestin Suresh John

Technical Reviewer: Manoj R. Patil

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,
Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Prachi Mehta

Copy Editor: Kim Wimpsett

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress. com. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

The six most important people in my life:
The late Kammari Rangaswamy (Teacher)
The late Niranjanamma (Mother)
Devaiah (Father)

Radha (Wife)

Sai Nirupam (Son)

Nitya Maithreyi (Daughter)

Contents at a Glance

About the AUthorcccnvemmismn s ———— Xix

About the Technical ReVIeWErcccuvsmmsmmmsssmmsessssmsssssssmssssssnsnns XXi

Acknowledgments.......c.cccmmmmsemnnmnsssnnnmsssssnsnnssssssnmssssssnsnssnnnns Xxiii
Chapter 1: MapReduce and Its Abstractions...........cccusnneeeennnnnnnnnns 1
Chapter 2: Data TYPeS....ccccussseerrrssssnnsnsssssnsssssssssnssssssssnsssssssnnnsessans 21
Chapter 3: Grunt.........ccciinninsemnmmnnsessmmmsessmmmsessnsesssassmmm—- 33
Chapter 4: Pig Latin Fundamentalsccccuneemmmnnssennmnnsssensnnnn. 41
Chapter 5: Joins and Functions...........ccuvcsmsmmsmmmssssssssmsssnsssasssnss 69
Chapter 6: Creating and Scheduling Workflows Using
APAChE D0ZIC.....crssummrrrssssnnnssssssnnsssssssnnssssssssnsssssssnnsnsssssnnsnsssssnnnnnss 89
Chapter 7: HCatalog........cussmmssenmsssanssssanssssansssssnssssansssssnsssssnnsnsnns 103
Chapter 8: Pig Latin in Hue..........ccccimmnsemmmmmmsssnmnmmmsssssnmsssssssnnnnsns 115
Chapter 9: Pig Latin Scripts in Apache Falconccusseeennennas 123
Chapter 10: MACKOScccurrmsssemmmmssssssnsmssssssnssssssssnsssssssnnssssssnnnsnssss 137
Chapter 11: User-Defined Functions..........cccuseemmmssssnssssssssnsssnnsns 147
Chapter 12: Writing Eval Functionscccccuseemmnnsssssnnssssssssnnnans 157
Chapter 13: Writing Load and Store Functions..........usseeeennnnnnas 171
Chapter 14: Troubleshootingcccevnnemmnnmssssnnnnssssssssssssssnssenns 187
Chapter 15: Data Formats.........useeemmmmmnmnmmmmmsssssssnnmsssssssssssssnnns 201

CONTENTS AT A GLANCE

Chapter 16: Optimization..........cccuscmmismmmsssmmsssnsmsssssssssssssssssssnns 209
Chapter 17: Hadoop Ecosystem TooIS........ucccmmemmnnnssssssssnnsnnnnnnnns 225
Appendix A: Built-in Functions..........ccccunemmmmnnsssssmmmsssssmmssssssnns 249
Appendix B: Apache Pig in Apache Ambari.....ccccunsmemmennnnnessssnnns 257
Appendix C: HBaseStorage and ORCStorage Optionscccuue. 261
INA@X..iiieriiesrsmssrnssss s s —— 265

vi

Contents

About the Authorccccciiemmimissesnnsss s ———— Xix
About the Technical REVIEWErcuurssssssmmsssssssssssssssssssssssnnsnsssssnnnnss XXi
Acknowledgments.......cccuseemmmnsssnnnmmmsssssnmmssssssmsssssssnssssssnssessnnnns xxiii
Chapter 1: MapReduce and lts Abstractions..........ccccvnsssssseenennnnnns 1
Small Data ProCeSSINGccevvverrerrerrerrersessesses s sesssssesssssssssssssssssssssssessens 1
Relational Database Management SyStemS........cccccvvverererererererseresseree e seraereraens 3

Data Warehouse SYSIEMS.......cccevercereriererere e ree s ae e s e e saesesaenesaesenaens 3
Parallel ComMPULINGcccccveeriirererr e 4
GFS and MApPREAUCEcceeereerererrererererseessesessesessesssessesesssssssessssessssessssesssssssessssens 4

P oL T 1 Lo o 1o (010 oSS 4
Problems with MapRedUCEccocreerverrr e 13
02 Loz 1o 11 o O S 13
APACHE HIVE.......eoeeeee et 15
APACHE Pig.....ecceereccireree ittt 16
11T 11] 11PN 20
Chapter 2: Data TYPeS.....cccrrrrrrmsssssssmsnnnnmssssssssssssssnssssssssssssnnssnnnnnss 21
Simple Data TYPEScvcerrrrrerer e sa e nenens 22

] 22

[OMG e vvreeessreessseessseeessseesssnesssnssssnesssnssssessssensssseesssnssssessssenssssessssmessssesssssnssssessssnness 22

L0 LT 22
AOUDIE <.ceeoereeeeeeeseeesssessseessssesssessssssssssssssesss s sssesssssnssssessssssssssssssssssssssesssssssssnnees 23
CRATAITAYvecveieciecee et re s s s e s ae e e s r e e e e e e e e e e e e e sn e e e e e e e nn e e e nnenrennan 23

vii

CONTENTS

DOOIBAN......ceccici i —————— 23
1)L C2 T 1 S 23
AAtBHIME ...vcecee e ——————— 23
DIGINTRGRE ..o 24
DIGUECIMAL ... e 24
Summary of Simple Data TYPES.......cocccrererrrcrererre s 24
CompleX Data TYPESccecerververrerrerrerrerser s s s s e se s se e e se e e sesnenns 24
11 | 25
LU0 S 26
0 1o T 26
Summary of Complex Data TYPEScccceerrrererererrnsssesesssssesesessssesessssssssesesssssssssssnns 27
SCRBMA ... ————— 28
072 (] 3T SRS 28
(02T LT = (0 O 29
Comparison OPErators...........cccvververrersessessesses s ses s e sessesesenns 29
IdeNntifiers ... ————— 30
Boolean Operators..........cccceeeeereeseesessessss e sss s 31
SUMMANY ...t n s r e 3
Chapter 3: Grunt..........cccvcinismnrsnn s ———— 33
Invoking the Grunt Shell...........coerrecir e 33
L0011 3T 34
The fS COMMANG.......ovviirrisir s —————— 34
The Sh COMMANG.......cocviiriminir e ————— 35
Utility COmMmaNdscceeeeeeerecesie e 36
NP e ————————————— 36
1Y o] o O 36
411 OO 36
| OO 37

viii

CONTENTS

] P 37
ClBA..c.cece e —————— 38
T 38
T 39
Summary of COMMANGS.........ccocererriiernsrrenrse s 39
Auto-COMPIELION......cceeerer e 40
SUMMANY ...t snesr s s sr s sn s snssn s sn s sn e nnennennnnnnnans 40
Chapter 4: Pig Latin Fundamentalsc.ccusemmnnnsnennnnssssnsnnnsnnns 41
Running Pig Latin Code..........ccocvervrcrsrrr s snn s 41
GIUNE SNEIL ... 41
Pig m€ e ———————————————— 42
T TN 42
Embed Pig Code in @ Java Program..............cccoreenenenssncsenesesesesesse e sesesnns 42
3 T OO 44
Pig Operators and Commands...........cccuueerrseresessesnsesessssesssssssessssenns 44
0 o 45
Y 0] - P 47
(011] T 48
VEISION o.eeetereseesesssseesesesssse e ssss e e e s sse e e s s se e e s sse e e s sae e e e ssnse e e nsnsesnnnsnsnsnnnnnns 48
FOreach GENEIatec.oovceeerererercrrrre e 48
L1 PPN 50
] | OO 51
- 51
£ o 1 PSSP 52
SAMPLEootetireeerrsrssese e e e sa s s s e s e s e s pe e nnns 53
FLATTEN. ... e s se s s nesasssnssnsnsnnns 53
1] 0] g 54
0123 1 T TP 54
ISHNCL.....veccceececcr s 55

ix

CONTENTS

3 Y O 55
] 0o 56
L0310 = S S O 57
L1310 OO 59
SIBAM ..t ————————— 61
MAPREDUCE ..ottt s 62
CUBE ...ttt e e e s e e 63
Parameter Substitution ... 65
SPATAM .. ———————————————————————— 65
“PATAMFIIEveveecretre e 66
31111 4P 7S 67
Chapter 5: Joins and FUNclions.........ccucccmmnnssemmnmmsssssnsssssssssnssssnans 69
JOIN OPEIAtOrS......cverererere st 70
EQUI JOINS ...ttt 70
(0010011 oSSR 72
CROSSoceeeeeeeeeeessessesseseses et es s e s n s 73
1] 110 74
SHNG FUNCLIONS ...ttt e 74
Mathematical FUNCHONS ... 76
Date FUNCLIONS.......cccoviiiii 78
EVAL FUNCHIONS ... 80
Complex Data Type FUNCLIONS..........ccoceericrnirr et sesnens 81
Load/Store FUNCHIONS.........cccoiii s 82
SUMMANY ...t n s r e 87
Chapter 6: Creating and Scheduling Workflows Using
APache 00ZI......cusseemrrmssssnnmnssssansnssssssnsnssssssnsnssssssnnnsssssnnnnsesssnnnness 89
TyPes 0f 00Zie JODS.......cocvververierierierrerser st 89

WOTKEIOW...eeeieceereesies e reesesrsessse s s s ss e s s ss e sas s s s s e sas s sne s s s sa s s a e s s e sansnessnesansnness 89

CONTENTS

Using a Pig Latin Script as Part of a Workflow...........cccceevvverrrrercennne, 91
WHting jOD.PrOPEIEIEScceueeereerrerereerererereres e ree e rae e s rae e sae e sae e saesas e sae e sasenans 91
WOKFIOW. XML ..ottt 91
Uploading Files 10 HDFS ...t rerae e se e reesessesessesesassassesassenns 93
Submit the 00zie WOrKfIOWccourirniiiinnnsssssssns 93

Scheduling a Pig SCript......cccovvrrierrrc s 94
Writing the job.properties Filecccvievnccrccnccrc e 94
Writing coordinator.Xml ... 94
Upload Files 10 HDFS ..o sessssessssessesassessssessssessssesssssssssassesssnenns 96
Submitting Coordinator............cccevierrne s —————— 96

BUNAIE ...t 96

00zie Pig COMMAN........ccocvverrerrerrrrer e ae e 96

Command-Line INterface..........c.covrrmnsnsnnnnnnssess s 98
Job Submitting, Running, and Suspending..........ccccecvnnienrnninnnnnnnseseresesesesenenns 98
LT T L0 O 98
REtrieViNg LOGSccoeeererircrircrre e s se s sn s s s 98
Information ADOUL @ JOD ... ————— 98

00zie User INterface.........c.cvvvnriernnesessssessssnssssssese s ssssnsssssssssnes 99

Developing Oozie Applications Using HUe...........ccceevverrercercersenseniennens 100

SUMMANY ..ot r s e n s 100

Chapter 7: HCatalog.........ccuseemmmmssssnnsnmssssnnsssssssssnssssssssnsssssssnnnnsss 103

Features of HCatalog.........ccccovevrrirennicsssre s ses e 103

Command-Line INterface...........ccevvernnmiicnnncsssssssesssesssesesessssssensens 104
SHOW COMMANG........ceieeeieriecii s 105
Data Definition Language Commandsccocererenenerennnsnesesssesssesessssssesssssseaes 105

dfs and set COmmMaNGs..........covurrmmmmnsnn 106

xi

CONTENTS

L1 L2105 (02 0T 107
Executing Pig Latin Codeccovrerervererrererrereseresesesesesessessssessssessssessesessessssenens 108
Running a Pig Latin Script from @ File.........ccccevvevrverrrerrrere e sererese s ereseneas 108
HCatLoader EXAMPIEccoeeerererererererrereeserseserseseseseseressessssessssessesessenessessssesans 109
Writing the Job Status t0 @ Directoryccoceevevrcerrverr e res e seree e 109

HCatLoader and HCAtSLOrer ... 110
Reading Data from HCatalogcccevrererrnniescninnssessness e sesesssssesesessnses 110
Writing Data to HCAtalogc.cccuererrnnicninins s sese e sesesessssnens 110
RUNNING COUEcueiriecririre ettt et e s 111
Data Type Mappingccccceeerrenirienners e sr e sessesssseenas 112

SUMMANY ..ot 113

Chapter 8: Pig Latin in Hue.......cccocccnisemmmssemmmsssmsssssssssssssssssnssssnns 115

Pig MOAUIE ...t 115
MY SCIIPTS..c.erieeeeeerrseere e e ne s 116
Pig HEIPET ...ttt e 117
AULO-SUGUESTION ... 117
UDF USAQE iN SCIIPL.....cccotreieerereresesesesssseese s sesss e e sssessssssessssssssssssssens 118
QUETY HISTOMYvcvctetcectcistst st se et sr ettt sr st npsr e s nr e nrnens 118

File BIOWSEFcerercerisce s s sesns e 119

JOD BrOWSEN ... 121

SUMMANY ..o e 122

Chapter 9: Pig Latin Scripts in Apache Falconc..cccuviumnnnanns 123

(111] S 124
INEEITACES. ... s 124
LOCALIONS ... e e 125

FBBA e ————————————— 126
FEEU TYPES ... ettt 126
FrEOUEBNCYeeeeeecte ettt sttt s 126

xii

CONTENTS

Late ArTiVal.......oovnnininiric s ———— 127
CIUSTE .. 127
PIOCESSveeiceessnesssessssessse s s ssresssessse s s sn e s sne s se e s n e snne s s ne s s nesnessnnnssnesnns 128
CIUSTRE ... ————— 128
111 = 128
(=T TP 129
WOTKFIOW....ooeeeecececteeeeeseee s a s nsnsn s nsnsnsnsnnnns 129
0 8 TSRS 129
BINEILY o ————————— 129
Web Interface........ccovnniinn 130
SBAICH ...t ——————————————— 131
Create an ENtity ..o 131
NOTIfICAtIONSccciciiirr e ———————— 131
MIFTOT .o ————— 131
Data Replication Using the Falcon Web Ul...........cccccvveeviicennienennnnens 131
Create Cluster ENtItIesc.cococececererecrcrcese e 132
Create MIrror JOD ... s 132
Pig Scripts in Apache Falcon.........c.cccvvvvnrnnnrnsen s ses e 134
00zi€ WOKFIOWcocvriiinirinisisssssss s snes 134
T TS) 135
SUMMANY ...t sr s sn s sn e r e n s nn s n e nn e n s 136
Chapter 10: MACIrOSccurrusssnnnnmmssssnnssssssssssssssssssssssssssnssssssnnnnsssss 137
SHUCTUTE ... ———— 137
MACK0 USE CASEc.cerverrrernrrrseresessessssesssssssessssesssssssessssnsssssssssnsssssens 138
MACIO TYPES ..cvvereertreerer st s s s e s n e sn e s sne e s ne s 138
INtErNAl MACKOcceiciiciii s 139
EXtErnal MACKOcocoverirmsmnmsisinmsisissimsssssssss s 140

xiii

CONTENTS

APYIUN e e sn e e sne e en e e nennnenne 141
Macro Chainingccccereererensernnesesesse s s sseses e snssessens 141
MACKO RUIES ...t 142
Define BEfOre USAQE........oveerererecirisneese s e s sesesessnnas 142
Valid Macro ChainNing..........cccceererrenenerenesesesesssesesessssesesessssssssessssssssessssssssssssassanns 143
No Macro Within Nested BIOCK ... 143
No Grunt Shell CommaNs...........cociinnnnn s 143
INVISIDIE REIALIONS........ccceereiecerire s 143
MaCIr0 EXAMPIES......cocceerierrerrrerrer s sersseesssesssessnesssessseessnessnesssnssanes 144
Macro Without Input Parameters IS POSSIbIE..........ccvccvrvererrererrereserenereresserenenens 144
Macro Without Returning Anything Is Possible.........ccccvvvrvrerrerrerercrerereneen, 144
SUMMAIY ...t sa e s r e e nn e enas 145
Chapter 11: User-Defined Functions.........cusceemennnnnssssssssssssnnnnnnns 147
User-Defined FUNCLIONS...........ccoeiinnicncncne e 148
L 1 TN 148
B T T 1T o | P 150
Other LANQUAGES ...c.covvrreecirirneirisss et sess st s e s et sss s e s ssssssessstssssesesens 152
Other LIDraries........ocveeiennnciesens s s sssssssesnas 154
PIgOYBANK.......cecoceeereeeere e 154
APACHE DALAFUceceeererecrer s 155
1111] 4P 155
Chapter 12: Writing Eval Functions...........ccccuseemmnnsssssnnnssssssnnnnans 157
MapReduce and Pig FEAtUuresccocvvrrrrerrerrensessessesses s 157
Accessing the Distributed CaChe.........cccceecerererererererreres e ree e re s sessesaeenaens 157
ACCESSING COUNTEIScveuereeereeeraerereresserssserssersesessesesserassesassessssessessssessssssssssanns 158
REPOriNG PrOgreSS.....ccoveereerererererererersersssessesessesessessssessssessessssssssssssssessssessssesaes 159
Output Schema and Input Schema in UDF..........cccoovevrenervererrerersereesereesessesessenes 159
Examples of Output and Input SChemas.........ccccveeerverrvererrere s s ereseneas 161

xiv

CONTENTS

Other EVAL FUNCHIONS ... 162
Y[o] 162
ACCUMUIALON ... 168
Filter FUNCHONSccvitcsscn s 168

1141 1P 169

Chapter 13: Writing Load and Store Functions...........ccccusueennrnns 171

Writing @ Load FUNCLION ..ot 171
Loading Metadata............cccceeriernrerincinsie e 174
Improving Loader Performance...........ccccceenernessncsssesesese e sessessssessssesssssnnes 176
Converting from bYIEAITaYccccvcrrnerernnnse s sssss s 176
Pushing Down the Predicatecccccoveieeniennicnsscnsscre e enas 177

Writing a Store FUNCLION........cocvcrcrcrrr e 178
Writing Metadata..........ooeeeeeererecenirrecscssr e 182
DiStributed CACNEccceveeeeeerereecrir s 183
Handling Bad RECOIUScccoruireercrirrecrirsee e s 184

Accessing the Configurationcccceeevernnennners s 185

Monitoring the UDF RUNEIMEccccvcrcrrerserseres e e 185

1T S 186

Chapter 14: Troubleshootingcccevnsemmrrnssssnsnmssssssnsssssssnsnnnns 187

HIUSEIALE ...t 187

(0L 03 188

UMD e ——————————— 188

EXPIAIN....ci i e 188
Plan TYPES....ecveccrererreeesesseeseses e e s s s snsnnn s 189
MOUES ...t e e pnn s 193

0L =T] o SRS 195

EITOr TYPES ..o 197

XV

CONTENTS

011 1 £ 198
SUMMANY ... e n e e enas 199
Chapter 15: Data Formats.........ucccmmmmnnnnmmmmmsssssssnnnsssssssssssssssnnnens 201
COMPIESSIONeeveerecrreererse s se s e e sa s se s ne e nn s enas 201
SEUENCE Fileoeeeririeeierire e 202
0 1< 203
Parquet File Processing Using Apache Pig ... 204
ORGC.... et n e nn 205
310 S 207
L0 | T 207
Predicate PUSHAOWN...........cccociicr s 207
Data TYPES ...veerecrrcrrrerrr et e enan 207
BENETILS ...t s 208
SUMMANY ..ot 208
Chapter 16: Optimization........cccurcemmmnssesnnmmnsssnnmmssssnesssssmm. 209
AdVanced JOINScccieeeiernneiesesse s s s 209
SMAI FIlBS ...ttt 209
User-Defined Join Using the Distributed Cache............cccovvverenernsescnesensescnenennnnes 210
Big KBYS.....ceireceerereseese st e 212
SOMEA DALA......cooe e s 212
BESt PracCtiCescccoerrrererrrnirirse s 213
Choose Your Required Fields EQrlyccccvveververrrerereresereresseressereesesaesessenessenes 213
Define the Appropriate SCheMa..........ccceceeecererre s eeas 213
Filter Data.........cocoimminiicss s 214
Store Reusable Data..........ccou v 214
Use the Algebraic INTErfACEcccovveververerere et re e eees 214
Use the Accumulator Interface ..., 215
Compress Intermediate Data...........cccceoveervererrerr s 215

xvi

CONTENTS

Combine SMall INPULES.......cooerereere e sa s 215
Prefer a Two-Way Join over Multiway JOins.........cccccorvvrennennnennsesnsessesessesennes 216
Better EXecution ENGINE..........ccceverrenensessnnsessnsessesssessssessessssessesnnsens 216
ParalleliSm.........cceinnn s ———— 216
Job StatistiCs........covriinri i ————— 217
RUIBS ..o 218
Partition Filter Optimizer.........coooeoeeensescnrsesesessee s es 218
MErge fOrEACHcoveeccerrrccrcrr e n s 218
Constant CalCUIALONcoceeeeeerererereeree e 219
Cluster Optimization...........ccccverererernre s e 219
DISK SPACE ...cvreerreerrerereererseresersssessesersesessessssesassessssessesessssessensssesassessssesssnessssnaes 219
Separate Setup fOr ZOOKEEPENcovererverrrrereerereserserssersssersesessesessessssessssessesees 220
SCREUUIET ...t —————— 220
Name NOdE HEAP SiZEcccvevererrereereree e rerereseressersssessesessesessesassessesesassesasnenaes 220
Other Memory SELHNYScccveveererrererere e res e ras e rse s e e sas e sas e sassesasenaes 221
SUMMANY ...t sn s sn e n s sn e sn e n e nr e sn s nnnn s 222
Chapter 17: Hadoop Ecosystem TooIS.........ccuseemmrnssssnnnsssssnnnnnnsns 225
APACNE ZOOKEEPET.......cereereererrersersessessessessessessesssssesssssssnsssesssssesssssnsans 225
TErMINOIOQY ...coveeererrcre et p e r e r e e re e nnn e 225
D1 0] 0] [T L0 226
Command-Line INterface.........c.cocovrrrininsisinnninnssssssss s 227
Four-Letter Commands..........cocvvnnninninmnnmnnnssssssssss s 229
MeaSUNING TIMEcoveceieeererrer e sr e a s r e s r e e enas 230
072 TS0 [11 o SRR 230
DefiNiNg @ SOUICEcccevrrrrecrererree e r e a s 230
DefiNiNg @ SiNKoveeeeeerrreercrrr e 232
PIPBS . e s 233
TYPES Of OPEratiONScveeeeererreererrree s sa s enns 233

xvii

CONTENTS

A= T 1 LIRS - o G 237
0] - PP 238
SL. cevuevereeesssseeessssseeesssssesess s R R RRR RS 240

APACNE TEZ ... e 245

] (2] (0SS RN 245
ArCHITECIUIE ...t 246
{031 T] 247
PUShAOWN OPErations.........cccoceerereermrrsseesesessesese s e s sese s sesesessanes 247

SUMMANY ... s 247

Appendix A: Built-in Functions..........ccccunemmmmmnsssssmmnssssssnmssssssnn 249

Appendix B: Apache Pig in Apache Ambari........ccoimsssnnnnssssannnnas 257

Modifying Propertiescccooeeeverrssssss e 258

SErVice CRECK ..o s 258

TS 22 11T 0 o 259
Pig STATUS ...c.cevrcecer et e g s 259
Check All Available SErVICES..... ..o vrrrererrrerereresesrsesrsesesesesesesesesesesssesessssssssssssnens 259

1141] 12 S 260

Appendix C: HBaseStorage and ORCStorage Optionscccueuu. 261

L2 R Lo] (o] Vo LSS 261
Row-Based CONAItioNSccovreermrrnnenesesessesesesess s sesesessssssesessssssssssesssns 261
Timestamp-Based Conditions.........c.ooveecrernenesenensnesesesssesese s sesesesseenens 262
Other CONAILIONScccovveeeerereesere e 262

00023 (0] 1o 1< 263

INA@X.uueeiisismnssssnnsssssnnssssnnssssnssssnnsssssnnssssnnssssnnssssnnnsssnnnsssnnssssnnnnnsnnnss 265

xviii

About the Author

Balaswamy Vaddeman is a thinker, blogger, and
serious and self-motivated big data evangelist with
10 years of experience in IT and 5 years of experience
in the big data space. His big data experience covers
multiple areas such as analytical applications, product
development, consulting, training, book reviews,
hackathons, and mentoring. He has proven himself
while delivering analytical applications in the retail,
banking, and finance domains in three aspects
(development, administration, and architecture) of
Hadoop-related technologies. At a startup company, he
developed a Hadoop-based product that was used for
delivering analytical applications without writing code.
In 2013 Balaswamy won the Hadoop Hackathon
event for Hyderabad conducted by Cloudwick
Technologies. Being the top contributor at

Stackoverflow.com, he helped countless people on big data topics at multiple web

sites such as Stackoverflow.com and Quora.com. With so much passion on big data, he
became an independent trainer and consultant so he could train hundreds of people and
set up big data teams in several companies.

Xix

http://stackoverflow.com/#_blank
http://stackoverflow.com/#_blank
http://quora.com/#_blank

About the Technical
Reviewer

Manoj R. Patil is a big data architect at TatvaSoft, an

IT services and consulting firm. He has a bachelor’s

of engineering degree from COEP in Pune, India. He

is a proven and highly skilled business intelligence

professional with 17 years of information technology

experience. He is a seasoned BI and big data consultant

with exposure to all the leading platforms such as

Java EE, .NET, LAMP, and so on. In addition to

authoring a book on Pentaho and big data, he believes

in knowledge sharing, keeps himself busy in corporate

training, and is a passionate teacher. He can be

reached at on Twitter @manojrpatil and athttps://

in.linkedin.com/in/manojrpatil on LinkedIn.
Manoj would like to thank his family, especially

his two beautiful daughters, Ayushee and Ananyaa, for

their patience during the review process.

XXi

https://in.linkedin.com/in/manojrpatil
https://in.linkedin.com/in/manojrpatil

Acknowledgments

Writing a book requires a great team. Fortunately, I had a great team for my first project.
I am deeply indebted to them for making this project reality.

I'would like to thank the publisher, Apress, for providing this opportunity.

Special thanks to Celestin Suresh John for building confidence in me in the initial
stages of this project.

Special thanks to Subha Srikant for your valuable feedback. This project would have
not been in this shape without you. In fact, I have learned many things from you that
could be useful for my future projects also.

Thank you, Manoj R. Patil, for providing valuable technical feedback. Your
contribution added a lot of value to this project.

Thank you, Dinesh Kumar, for your valuable time.

Last but not least, thank you, Prachi Mehta, for your prompt coordination.

xxiii

CHAPTER 1

MapReduce and Its
Abstractions

In this chapter, you will learn about the technologies that existed before Apache Hadoop,
about how Hadoop has addressed the limitations of those technologies, and about the
new developments since Hadoop was released.

Data consists of facts collected for analysis. Every business collects data to
understand their business and to take action accordingly. In fact, businesses will fall
behind their competition if they do not act upon data in a timely manner. Because the
number of applications, devices, and users is increasing, data is growing exponentially.
Terabytes and petabytes of data have become the norm. Therefore, you need better data
management tools for this large amount of data.

Data can be classified into these three types:

e Small data: Data is considered small data if it can be measured in gigabytes.

e Bigdata: Big data is characterized by volume, velocity, and variety.
Volume refers to the size of data, such as terabytes and more. Velocity
refers to the age of data, such as real-time, near-real-time, and
streaming data. Variety talks about types of data; there are mainly
three types of data: structured, semistructured, and unstructured.

e Fastdata: Fast data is a type of big data that is useful for the real-time
presentation of data. Because of the huge demand for real-time or
near-real-time data, fast data is evolving in a separate and unique space.

Small Data Processing

Many tools and technologies are available for processing small data. You can use
languages such as Python, Perl, and Java, and you can use relational database
management systems (RDBMSs) such as Oracle, MySQL, and Postgres. You can even
use data warehousing tools and extract/transform/load (ETL) tools. In this section, I will
discuss how small data processing is done.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2337-6_1) contains supplementary material, which is available to
authorized users.

© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_1

http://dx.doi.org/10.1007/978-1-4842-2337-6_1

CHAPTER 1 " MAPREDUCE AND ITS ABSTRACTIONS

Assume you have the following text in a file called fruits:

Apple, grape
Apple, grape, pear
Apple, orange

Let’s write a program in a shell script that first filters out the word pear and then
counts the number of words in the file. Here’s the code:

cat fruits|tr '," '\n'|grep -v -i ‘'pear'|sort -f|uniq -c -i

This code is explained in the following paragraphs.

In this code, tr (for “translate” or “transliterate”) is a Unix program that takes two
inputs and replaces the first set of characters with the second set of characters. In the
previous program, the tr program replaces each comma (,) with a new line character
(\n). grep is a command used for searching for specific text. So, the previous program
performs an inverse search on the word pear using the -v option and ignores the case
using -1.

The sort command produces data in sorted order. The -f option ignores case while
sorting.

uniqis a Unix program that combines adjacent lines from the input file for reporting
purposes. In the previous program, uniq takes sorted words from the sort command
output and generates the word count. The -c option is for the count, and the -1 option is
for ignoring case.

The program produces the following output:

Apple 3
Grape 2
Orange 1

You can divide program functionality into two stages; first is tokenize and filtering,
and second is aggregation. Sort is supporting functionality of aggregation. Figure 1-1
shows the program flow.

Figure 1-1. Program flow

The previous program can be run on a single machine and on small data. Such
simple programs can be used to perform simple operations such as searching and sorting
on one file at a time. However, writing complex queries involving multiple files and
multiple conditions requires better data processing tools. Database management systems
(DBMS) and RDBMS technologies were developed to address querying problems with
structured data.

CHAPTER 1 © MAPREDUCE AND ITS ABSTRACTIONS

Relational Database Management Systems

RDBMSs were developed based on the relational model founded by E. E Codd. There are
many commercial RDBMS products such as Oracle, SQL Server, and DB2. Many open
source RDBMSs such as MySQL, Postgres, and SQLite are also popular. RDBMSs store
data in tables, and you can define relations between tables.

Here are some advantages of RDBMSs:

e RDBMS products come with sophisticated query languages
that can easily retrieve data from multiple tables with multiple
conditions.

e The querylanguage used in RDBMSs is called Structured Query
Language (SQL); it provides easy data definition, manipulation,
and control.

e RDBMSs also support transactions.

e RDBMSs support low-latency queries so users can access
databases interactively, and they are also useful for online
transaction processing (OLTP).

RDBMSs have these disadvantages:

e Asdata is stored in table format, RDBMSs support only
structured data.

e You need to define a schema at the time of loading data.

e RDBMSs can scale only to gigabytes of data, and they are mainly
designed for frequent updates.

Because the data size in today’s organizations has grown exponentially, RDBMSs have
not been able to scale with respect to data size. Processing terabytes of data can take days.

Having terabytes of data has become the norm for almost all businesses. And new
data types like semistructured and unstructured have arrived. Semistructured data has
a partial structure like in web server log files, and it needs to be parsed like Extensible
Markup Language (XML) in order to analyze it. Unstructured data does not have any
structure; this includes images, videos, and e-books.

Data Warehouse Systems

Data warehouse systems were introduced to address the problems of RDBMSs. Data
warehouse systems such as Teradata are able to scale up to terabytes of data, and they are
mainly used for OLAP use cases.

Data warehousing systems have these disadvantages:

e Data warehouse systems are a costly solution.

e They still cannot process other data types such as semistructured
and unstructured data.

e They cannot scale to petabytes and beyond.

CHAPTER 1 " MAPREDUCE AND ITS ABSTRACTIONS

All traditional data-processing technologies experience a couple of common
problems: storage and performance.

Computing infrastructure can face the problem of node failures. Data needs to be
available irrespective of node failures, and storage systems should be able to store large
volumes of data.

Traditional data processing technologies used a scale-up approach to process a large
volume of data. A scale-up approach adds more computing power to existing nodes,
so it cannot scale to petabytes and more because the rest of computing infrastructure
becomes a performance bottleneck.

Growing storage and processing needs have created a need for new technologies
such as parallel computing technologies.

Parallel Computing

The following are several parallel computing technologies.

GFS and MapReduce

Google has created two parallel computing technologies to address the storage and
processing problems of big data. They are Google File System (GFS) and MapReduce.
GFS is a distributed file system that provides fault tolerance and high performance on
commodity hardware. GFS follows a master-slave architecture. The master is called
Master, and the slave is called ChunkServer in GFS. MapReduce is an algorithm based
on key-value pairs used for processing a huge amount of data on commodity hardware.
These are two successful parallel computing technologies that address the storage and
processing limitations of big data.

Apache Hadoop

Apache Hadoop is an open source framework used for storing and processing large data
sets on commodity hardware in a fault-tolerant manner.

Hadoop was written by Doug Cutting and Mark Cafarella in 2006 while working for
Yahoo to improve the performance of the Nutch search engine. Cutting named it after his
son’s stuffed elephant toy. In 2007, it was given to the Apache Software Foundation.

Initially Hadoop was adopted by Yahoo and, later, by companies like Facebook and
Microsoft. Yahoo has about 100,000 CPUs and 40,000 nodes for Hadoop. The largest
Hadoop cluster has about 4,500 nodes. Yahoo runs about 850,000 Hadoop jobs every
day. Unlike conventional parallel computing technologies, Hadoop follows a scale-out
strategy, which makes it more scalable. In fact, Apache Hadoop had set a benchmark by
sorting 1.42 terabytes per minute.

Most of Hadoop is written in Java, but it has support for many programming
languages such as C, C++, Python, and Scala through its streaming module. Apache
Hadoop was initially written for high throughput and batch-processing systems. RDBMS
technologies were written for frequent modifications in data, whereas Hadoop has been
written for frequent reads.

http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
http://sortbenchmark.org/

CHAPTER 1 © MAPREDUCE AND ITS ABSTRACTIONS

Moore’s law says the processing capability of a machine will double every two years.
Kryder’s law says the storage capacity of disks will grow faster than Moore’s law. The
cost of computing and storage devices will go down every day, and these two factors can
support more scalable technologies. Apache Hadoop was designed while keeping these
things in mind, and parallel computing technologies like this will become more common
going forward.

The latest Apache Hadoop contains three modules, as shown in Figure 1-2. They are
HDFS, MapReduce, and Yet Another Resource Negotiator (YARN).

Apache
Hadoop

MapReduce

YARN

Figure 1-2. The three components of Hadroop

HDFS

The Hadoop distributed file system is used for storing large data sets. It divides files into
blocks and stores every block on at least multiple nodes. This is called a replication factor,
and by default it is 3. HDFS is fault-tolerant because it has more than one replica for every
block, so it can handle node failures without affecting data processing. A block of HDFS

is the same as an operating system block, but a HDFS block size is larger, such as 64 MB
or 128 MB. Unlike traditional storage systems, it is highly scalable. It does not require any
special hardware and can work on commodity hardware.

CHAPTER 1 " MAPREDUCE AND ITS ABSTRACTIONS

Assume you have a replication factor of 3, a block size of 64 MB, and 640 MB of data
needs to be uploaded into HDFS. At the time of uploading the data into HDFS, 640 MB
is divided into 10 blocks with respect to block size. Every block is stored on three nodes,
which would consume 1920 MB of space on a cluster.

HDFS follows a master-slave architecture. The master is called the name node, and
the slave is called a data node. The data node is fault tolerant because the same block
is replicated to two more nodes. The name node was a single point of failure in initial
versions; in fact, Hadoop used to go down if the name node crashed. But Hadoop 2.0+
versions have high availability of the name node. If the active name node is down, the
standby name node becomes active without affecting the running jobs.

MapReduce

MapReduce is key-value programming model used for processing large data sets. It has
two core functions: Map and Reduce. They are derived from functional programming
languages. Both functions take a key-value pair as input and generate a key-value pair as
output.

The Map task is responsible for filtering operations and preparing the data required
for the Reduce tasks. The Map task will generate intermediate output and write it to
the hard disk. For every key that is being generated by the Map task, a Reduce node is
identified and will be sent to the key for further processing.

The Map task takes the key-value pair as input and generates the key-value pair as
output.

(key1, value1l) ---------------- > Map Task---------------- > (Key2, Valuz)

The Reduce task is responsible for data aggregation operations such as count, max,
min, average, and so on. A reduce operation will be performed on a per-key basis. Every
functionality can be expressed in MapReduce.

The Reduce task takes the key and list of values as input and generates the key and
value as output.

(key2, List (value2))-------- > Reduce Task --------------- > (Key3, value3)

In addition to the Map and Reduce tasks, there is an extra stage called the combiner
to improve the performance of MapReduce. The combiner will do partial aggregation on
the Map side so that the Map stage has to write less data to disk.

You will now see how MapReduce generates a word count. Figure 1-3 depicts how
MapReduce generates the fruits word count after filtering out the word pear.

CHAPTER 1 © MAPREDUCE AND ITS ABSTRACTIONS

Map Reduce
CQutput Reduce Qutput

apple,1 . ;
orange,1 R’
Sink
apple,3
grape, 1 -
5p;|e_1 R2 ——"lm—b orange 2

grape,1

Source

apple orange
grape,apple pear
apple orange

f
appled 4
orange R3 grape, 1
Figure 1-3. MapReduce generating a word count

Source and Sink are HDFS directories. When you upload data to HDFS, data is
divided into chunks called blocks. Blocks will be processed in a parallel manner on all
available nodes.

The first stage is Map, which performs filtering and data preparation after
tokenization. All Map tasks (M1, M2, and M3) will do the initial numbering for words that
are useful for the final aggregation. And M2 filters out the word pear.

The key and list of its values are retrieved from the Map output and sent to the
reducer node. For example, the Apple key and its values (1, 1, 1) are sent to the reducer
node R1. The reducer aggregates all values to generate the count output.

Between Map and Reduce, there is an internal stage called shuffling where the
reducer node for the map output is identified.

You will now see how to write the same word count program using MapReduce. You
first need to write a mapper class for the Map stage.

Writing a Map Class

The following is the Map program that is used for the same tokenization and data filtering
as in the shell script discussed earlier:

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Llonghritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class FilterMapper extends Mapper<Longhritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable offset, Text line, Context context) throws
I0Exception, InterruptedException {
//tokenize line with comma as delimiter
StringTokenizer itr = new StringTokenizer(line.toString(),",");
//Iterate all tokens and filter pear word
while (itr.hasMoreTokens()) {

CHAPTER 1 " MAPREDUCE AND ITS ABSTRACTIONS

String strToken=itr.nextToken();
if(!strToken.equals("pear")){
//converting string data type to text data type of mapreduce

word.set(strToken);
context.write(word, one);//Map output

}

The Map class should extend the Mapper class, which has parameters for the input
key, input value, output key, and output value. You need to override the map () method.
This code specifies LongWritable for the input key, Text for the input value, Text for the
output key, and IntWritable for the output value.

In the map () method, you use StringTokenizer to convert a sentence into words.
You are iterating words using a while loop, and you are filtering the word pear using an if
loop. The Map stage output is written to context.

For every run of the map () method, the line offset value is the input key, the line is
the input value, the word in the line will become an output key, and 1 is the output value,
as shown in Figure 1-4.

grape,1
apple,1

v
~}
4

13,grape,apple pear

Figure 1-4. M2 stage

The map () method runs once per every line. It tokenizes the line into words, and it
filters the word pear before writing other words with the default of 1.

If the combiner is available, the combiner is run before the Reduce stage. Every Map
task will have a combiner task that will produce aggregated output. Assume you have two
apple words in the second line that is processed by the M2 map task.

The Map output without the combiner will look like Figure 1-5.

grape,1
apple 1
apple 1

¥
~
A

13 grape apple apple pear

Figure 1-5. Map output without the combiner

