
Index

● 495

books booksbooks

#
Main program lo

op. Send the temp
erature to smartp

hone

#
while True:

buf = uart.readli
ne() # Read data

dat = buf.decode(
'UTF-8') # Decode

n = dat.find("T?"
) # T? received?

if n > 0:
T = GetTemperatur

e() # Get the temperature

Tstr = "T=" + str
(T) # Insert T=

Tlen = str(len(Ts
tr)) # Length

Dt = "AT+CIPSEND=
"+Tlen + "\r\n" #

 AT command to se
nd

uart.write(Dt)
 # Send to ESP-01

utime.sleep(2)
Wait 2 sec

uart.write(Tstr)
Send data

Raspberry Pi Pico Essentials • D
ogan Ibrahim

Dogan Ibrahim

Raspberry Pi Pico
Essentials

Prof. Dr. Dogan Ibrahim has a
BSc, Hons. degree in Electronic
Engineering, an MSc degree in
Automatic Control Engineering,
and a PhD degree in Digital Signal
Processing.

Dogan has worked in many
industrial organizations before
he returned to academic life. He
is the author of over 70 technical
books and has published over 200
technical articles on electronics,
microprocessors, microcontrollers,
and related fields.

Elektor International Media BV
www.elektor.com

Program, build, and master over 50 projects with
MicroPython and the RP2040 microprocessor

The Raspberry Pi Pico is a high-performance microcontroller module
designed especially for physical computing. Microcontrollers differ from
single-board computers, like the Raspberry Pi 4, in not having an operating
system. The Raspberry Pi Pico can be programmed to run a single task very
efficiently within real-time control and monitoring applications requiring
speed. The ‘Pico’ as we call it, is based on the fast, efficient, and low-cost
dual-core ARM Cortex-M0+ RP2040 microcontroller chip running at up to
133 MHz and sporting 264 KB of SRAM, and 2 MB of Flash memory. Besides
its large memory, the Pico has even more attractive features including a
vast number of GPIO pins, and popular interface modules like ADC, SPI,
I2C, UART, and PWM. To cap it all, the chip offers fast and accurate timing
modules, a hardware debug interface, and an internal temperature sensor.

The Raspberry Pi Pico is easily programmed using popular high-level langua-
ges such as MicroPython and or C/C++. This book is an introduction to
using the Raspberry Pi Pico microcontroller in conjunction with the Micro-
Python programming language. The Thonny development environment
(IDE) is used in all the projects described. There are over 50 working and
tested projects in the book, covering the following topics:

> Installing the MicroPython
on Raspberry Pi Pico using a
Raspberry Pi or a PC

> Timer interrupts and external
interrupts

> Analogue-to-digital converter
(ADC) projects

> Using the internal temperature
sensor and external tempera-
ture sensor chips

> Datalogging projects
> PWM, UART, I2C, and SPI

projects
> Using Wi-Fi and apps to

communicate with smartphones
> Using Bluetooth and apps to

communicate with smartphones
> Digital-to-analogue converter

(DAC) projects

All projects given in the book have been fully tested and are working.
Only basic programming and electronics experience is required to follow
the projects. Brief descriptions, block diagrams, detailed circuit diagrams,
and full MicroPython program listings are given for all projects described.
Readers can find the program listings on the Elektor web page created to
support the book.

Raspberry Pi Pico
Essentials
Program, build, and master over 50 projects with
MicroPython and the RPi ‘Pico’ microprocessor

Hello World!
Breadboard
Brushed-DC

S
m

ar
tp

h
o

n
e

7-
se

gm
en

t

Bl
ue

to
ot

h

D
A

C
 &

 A
D

C

Autorun
B

M
E

-2
8

0

S
e

n
so

rs E
E

P
R

O
M

RP
20

40
RS-232

TMP102
Wi-Fi
GPIO

U
A

RT

App

I2C
I2 S

IoT

LC
D

LED
PWM

TR
IED •

T

E S T E
D

•

Raspberry Pi Pico Essentials
Program, build, and master over 50 projects with

MicroPython and the RP2040 microprocessor

●

Dogan Ibrahim

● 4

● This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.
PO Box 11, NL-6114-ZG Susteren, The Netherlands
Phone: +31 46 4389444

● All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this
publication, without the written permission of the copyright holder except in accordance with the provisions of the
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to
reproduce any part of the publication should be addressed to the publishers.

● Declaration
The Author and the Publisher have used their best efforts in ensuring the correctness of the information contained
in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by
errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other
cause.

● British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

● �ISBN 978-3-89576-427-1	 Print
ISBN 978-3-89576-428-8	 eBook
ISBN 978-3-89576-429-5	 ePub

● �© Copyright 2021: Elektor International Media B.V.
Prepress Production: D-Vision, Julian van den Berg

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro

engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops

and delivers high-quality content - via a variety of media channels (including magazines, video, digital media, and social

media) in several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

http://www.elektormagazine.com

﻿

● 5

Preface . 9

Chapter 1 • Raspberry Pi Pico Hardware . 11

1.1 Overview . 11

1.2 Pico hardware module . 11

1.3 Comparison with the Arduino UNO . 13

1.4 Operating conditions and powering the Pico . 14

1.5 Pinout of the RP2040 microcontroller and Pico module . 14

1.6 Other RP2040 microcontroller-based boards . 16

	 1.6.1 Adafruit Feather RP2040 . 16

	 1.6.2 Adafruit ItsyBitsy RP2040 . 17

	 1.6.3 Pimoroni PicoSystem . 17

	 1.6.4 Arduino Nano RP2040 Connect . 18

	 1.6.5 SparkFun Thing Plus RP2040 . 18

	 1.6.6 Pimoroni Pico Explorer Base . 19

	 1.6.7 SparkFun MicroMod RP2040 Processor . 20

	 1.6.8 SparkFun Pro Micro RP2040 . 20

	 1.6.9 Pico RGB Keypad Base . 20

	 1.6.10 Pico Omnibus . 21

	 1.6.11 Pimoroni Pico VGA Demo Base . 21

Chapter 2 • Raspberry Pi Pico Programming . 23

2.1 Overview . 23

2.2 Installing MicroPython on the Pico . 23

	 2.2.1 �Using a Raspberry Pi 4 to aid installing MicroPython on the Pico 23

	 2.2.2 Using a PC (Windows 10) to help install MicroPython on Pico 29

Chapter 3 • �Raspberry Pi Pico Simple Hardware Projects 48

3.1 Overview . 48

3.2 Project 1: Flashing LED – Using the on-board LED . 48

3.3 Project 2: External flashing LED . 51

3.4 Project 3: Flashing SOS in Morse . 53

3.5 Project 4: Flashing LED – using a timer . 55

3.6 Project 5: Alternately flashing LEDs . 56

3.7 Project 6: Changing the LED flashing rate – using pushbutton interrupts 58

Content

Raspberry Pi Pico Essentials

● 6

3.8 Project 7: Alternately flashing red, green, and blue LEDs — RGB 63

3.9 Project 8: Randomly flashing red, green, and blue LEDs — RGB 65

3.10 Project 9: Rotating LEDs . 66

3.11 Project 10: Binary-counting LEDs . 69

3.12 Project 11: Christmas lights (random flashing 8 LEDs) 72

3.13 Project 12: Electronic dice . 74

3.14 Project 13: Lucky day of the week . 78

3.15 Project 14: Door alarm with 7-colour flashing LED . 80

3.16 Project 15: 2-digit, 7-segment display . 84

3.17 Project 16: 4-digit, 7-segment display seconds counter 93

3.18 LCDs . 98

3.19 Project 17: LCD functions – displaying text . 100

3.20 Project 18: Seconds counter — LCD . 104

3.21 Project 19: Reaction timer with LCD . 106

3.22 Project 20: Ultrasonic distance measurement . 108

3.23 Project 21: Height of a person (stadiometer) . 112

3.24 Project 22: Ultrasonic reverse parking aid with buzzer 114

Chapter 4 • Using Analogue-To-Digital Converters (ADCs) 117

4.1 Overview . 117

4.2 Project 1: Voltmeter . 117

4.3 Project 2: Temperature measurement – using the internal temperature sensor . . 119

4.4 Project 3: Temperature measurement – using an external temperature sensor . . 120

4.5 Project 4: ON/OFF temperature controller . 122

4.6 Project 5: ON/OFF temperature controller with LCD . 125

4.7 Project 6: Measuring the ambient light intensity . 128

4.8 Project 7: Ohmmeter . 130

4.9 Project 8: Internal and external temperature . 133

4.10 Project 9: Using a thermistor to measure temperature 135

Chapter 5 • Data Logging . 140

5.1 Overview . 140

5.2 Project 1: Logging the temperature data . 140

5.3 Project 2: Reading the logged data . 142

﻿

● 7

Chapter 6 • Pulse Width Modulation (PWM) . 144

6.1 Overview . 144

6.2 Basic theory of pulsewidth modulation . 144

6.3 PWM channels of the Raspberry Pi Pico . 146

6.4 Project 1: Generate a 1000 Hz PWM waveform with 50% duty cycle 147

6.5 Project 2: Changing the brightness of an LED . 148

6.6 Project 3: Varying the speed of a brushed DC motor . 149

6.7 Project 4: Frequency generator with LCD . 150

6.8 PROJECT 5: Measuring the frequency and duty cycle of a PWM waveform 152

6.9 PROJECT 6: Melody maker . 154

Chapter 7 • Serial Communication (UART) . 158

7.1 Overview . 158

7.2 Raspberry Pi Pico UART serial ports . 160

7.3 Project 1: Sending the Raspberry Pi Pico internal temperature to an Arduino Uno 160

7.4 Project 2: Receiving and displaying numbers from the Arduino Uno 165

7.5 Project 3: Communicating with the Raspberry Pi 4 over the serial link 166

Chapter 8 • The I2C Bus Interface . 170

8.1 Overview . 170

8.2 The I2C Bus . 170

8.3 I2C pins of the Raspberry Pi Pico . 171

8.4 Project 1: I2C port expander . 172

8.5 Project 2: EEPROM memory . 177

8.6 Project 3: TMP102 temperature sensor . 182

8.7 Project 4: BMP280 temperature and atmospheric pressure sensor 188

8.8 Project 5: Display BMP280 temperature and atmospheric pressure on an LCD . . . 196

Chapter 9 • The SPI Bus Interface . 198

9.1 Overview . 198

9.2 Raspberry Pi Pico SPI ports . 199

9.3 Project 1: SPI Port expander . 200

Chapter 10 • Wi-Fi with the Raspberry Pi Pico . 206

10.1 Overview . 206

10.2 Project 1: Controlling an LED from a smartphone using Wi-Fi 206

Content

Raspberry Pi Pico Essentials

● 8

10.3 Project 2: Displaying the internal temperature on a smartphone using Wi-Fi . . . 212

Chapter 11 • Bluetooth with the Raspberry Pi Pico . 217

11.1 Overview . 217

11.2 Raspberry Pi Pico Bluetooth interface . 217

11.3 Project 1: Controlling an LED from your smartphone using Bluetooth 217

11.4 Project 2: Sending the Raspberry Pi Pico's internal temperature to
 the smartphone . 222

Chapter 12 • Using Digital-to-Analogue Converters (DACs) 225

12.1 Overview . 225

12.2 The MCP4921 DAC . 225

12.3 Project 1: Generating squarewave signal with amplitude under +3.3 V 226

12.4 Project 2: Generating fixed voltages . 231

12.5 Project 3: Generating a sawtooth signal . 233

12.6 Project 4: Generating a triangular signal . 235

12.7 Project 5: Arbitrary periodic waveform . 237

12.8 Project 6: Generating a sinewave . 239

12.9 Project 7: Generating an accurate sinewave signal using timer interrupts 242

Chapter 13 • Automatic Program Execution after the Raspberry Pi Pico Boots . . 245

Appendix A • Bill of Components . 247

Index	 . . 248

● 9

Preface

Preface

Traditionally, a computer was built using a microprocessor chip and many external support
chips. A microprocessor includes a Central Processing Unit (CPU), an Arithmetic and Logic
Unit (ALU), and timing and control circuitry — and as such it is not particularly useful on
its own. A microprocessor must be supported by many external chips such as memory,
input/output, timers, interrupt circuits etcetera, before it becomes a useful computer. The
disadvantage of this type of design was that the chip count was large, resulting in complex
design and wiring, and high power consumption.

A microcontroller on the other hand is basically a single chip computer including a CPU,
memory, input/output circuitry, timers, interrupt circuitry, clock circuitry, and several other
circuits and modules, all housed in a single silicon chip. Early microcontrollers were limited
in their capacities and speed and they consumed considerably more power. Most of the ear-
ly microcontrollers were 8-bit processors with clock speeds in the region of several MHz and
offered only hundreds of bytes of program and data memories. These microcontrollers were
traditionally programmed using the assembly languages of the target processors. 8-bit mi-
crocontrollers are still in common use, especially in small projects where large amounts of
memory or high speed are not the main requirements. With the advancement of chip tech-
nology we now have 32-bit and 64-bit microcontrollers with speeds in the region of several
GHz and offering several GB of memory space. Microcontrollers are nowadays programmed
using a high-level language such as C, C#, BASIC, PASCAL, JAVA, etc.

The Raspberry Pi Pico is a high-performance microcontroller, designed especially for phys-
ical computing. Readers should realize that microcontrollers are very different from sin-
gle-board computers like the Raspberry Pi 4 (and other family members of the Raspberry
Pi). There is no operating system on the Raspberry Pi Pico. Microcontrollers like the Rasp-
berry Pi Pico can be programmed to run a single task and they can be used in fast real-time
control and monitoring applications.

The Raspberry Pi Pico is based on the fast and very efficient dual-core ARM Cortex-M0+
RP2040 microcontroller chip running at up to 133 MHz. The chip incorporates 264 KB of
SRAM and 2 MB of Flash memory. What makes the Raspberry Pi Pico very attractive is its
large number of GPIO pins, and commonly used peripheral interface modules, such as SPI,
I2C, UART, PWM, plus fast and accurate timing modules.

Perhaps the biggest advantage of the Raspberry Pi Pico compared to other many microcon-
trollers in the marketplace is its very low cost, large memory, and fast and accurate timing
modules. At the time of writing this book the cost of a single unit was around $6.

Raspberry Pi Pico can easily be programmed using some of the popular high-level languag-
es such as MicroPython, or C/C++. There are many application notes, tutorials, and data-
sheets available on the Internet covering the use of the Raspberry Pi Pico.

Raspberry Pi Pico Essentials

● 10

This book is an introduction to using the Raspberry Pi Pico microcontroller with the Micro-
Python programming language. The Thonny development environment (IDE) is used in all
the projects in the book, and readers are recommended to use this IDE. There are over
50 working and tested projects in the book, covering almost all aspects of the Raspberry
Pi Pico.

The following sub-headings are given for each project to make it easy to follow:

•	Title
•	Brief Description
•	Aim
•	Block Diagram
•	Circuit Diagram
•	Program Listing with full description

I hope your next microcontroller-based projects make use of the Raspberry Pi Pico, and this
book becomes useful in the development of your projects.

Dr Dogan Ibrahim
London, February, 2021

● 11

Chapter 1 • Raspberry Pi Pico Hardware

Chapter 1 • Raspberry Pi Pico Hardware

1.1 Overview
The Raspberry Pi Pico is a single-board microcontroller module developed by the Raspberry
Pi Foundation. This module is based on the RP2040 microcontroller chip. In this Chapter we
will be looking at the hardware details of the Raspberry Pi Pico microcontroller module in
some detail. From here on, we will be calling this microcontroller module "Pico" for short, in
for appreciation and recognition though of its official name: Raspberry Pi Pico.

1.2 Pico hardware module
The "Pico" is a very low-cost, $4 microcontroller module based on the RP2040 microcon-
troller chip having a dual Cortex-M0+ processor. Figure 1.1 shows the front view of the Pico
hardware module which is basically a small board. At the centre of the board is the tiny,
7×7 mm RP2040 microcontroller chip housed in a QFN-56 package. At the two edges of
the board there are 40 gold-coloured metal GPIO (General-Input-Output) pins with holes.
Soldering pins to these holes enables external connections to be easily made to the board.
The holes are marked starting with number 1 at the top left corner of the board and the
numbers increase downwards up to number 40 which is at the top right-hand corner of the
board. The board is breadboard-compatible (i.e. 0.1-inch pin spacing), and after soldering
the pins, the board can be plugged on a breadboard for easy connection to the GPIO pins
using jumper wires. Next to these holes you will see bumpy circular cut-outs which can be
plugged in on top of other modules without having any physical pins fitted.

Figure 1.1: Front view of the Pico hardware module.

At one edge of the board there is the micro-USB B port for supplying power to the board as
well as for programming it. Next to the USB port there is an on-board user LED that can be
used during program development. Next to this LED sits a button named as BOOTSEL that
is used during programming of the microcontroller as we will see in next Chapters. At the
other edge of the board, next to the Raspberry Pi logo, there are 3 connectors that can be
used for debugging your programs.
Figure 1.2 shows the back view of the Pico hardware module. Here, all the GPIO pins are
identified with letters and numbers. You will notice the following types of letters and num-
bers:

Raspberry Pi Pico Essentials

● 12

GND	 -	 power supply ground (digital ground)
AGND	 -	 power supply ground (analogue ground)
3V3	 -	 +3.3 V power supply (output)
GP0 – GP22	 -	 digital GPIO
GP26_A0 – GP28_A2	 -	 analogue inputs
ADC_VREF	 -	 ADC reference voltage
TP1 – TP6	 -	 test points
SWDIO, GND, SWCLK	 -	 debug interface
RUN	 -	� default RUN pin. Connect LOW to reset the RP2040.
3V3_EN	 -	� this pin by default enables the +3.3V power supply.	

+3.3 V can be disabled by connecting this pin LOW.
VSYS	 -	� system input voltage (1.8 V to 5.5 V) used by the on-

board SMPS to generate +3.3 V supply for the board.
VBUS	 -	 micro-USB input voltage (+5 V)

Figure 1.2: Back view of the Pico hardware module.

Some of the GPIO pins are used for internal board functions. These are:

GP29 (input)	 -	 used in ADC mode (ADC3) to measure VSYS/3
GP25 (output)	 -	 connected to on-board user LED
GP24 (input)	 -	 VBUS sense - HIGH if VBUS is present, else LOW
GP23 (output)	 -	 Controls the on-board SMPS Power Save pin

The specifications of the Pico hardware module are as follows:

•	32-bit RP2040 Cortex-M0+ dual core processor operating at 133 MHz
•	2 Mbyte Q-SPI Flash memory
•	264 Kbyte SRAM memory
•	26 GPIO (+3.3V compatible)
•	3× 12-bit ADC pins
•	Serial Wire Debug (SWD) port
•	Micro-USB port (USB 1.1) for power (+5V) and data (programming)
•	2× UART, 2 x I2C, 2 x SPI bus interface
•	16× PWM channels
•	1× Timer (with 4 alarms), 1× Real-Time Counter
•	On-board temperature sensor

● 13

Chapter 1 • Raspberry Pi Pico Hardware

•	On-board LED (on port GP25)
•	MicroPython, C, C++ programming
•	Drag & drop programming using mass storage over USB

The Pico's GPIO hardware is +3.3 V compatible and it is therefore important to be careful
not to exceed this voltage when interfacing external input devices to the GPIO pins. +5 V
to +3.3 V logic converter circuits or resistive potential divider circuits must be used if it is
required to interface devices with +5 V outputs to the Pico GPIO pins.
Figure 1.3 shows a resistive potential divider circuit that can be used to lower +5 V to +3.3 V.

Figure 1.3: resistive potential divider circuit.

1.3 Comparison with the Arduino UNO
The Arduino UNO is one of the most popular microcontroller development boards used by
students, practicing engineers, and hobbyists. Table 1.1 shows a comparison of the Raspber-
ry Pi Pico with the Arduino UNO. It is clear from this table that the Pico is much faster than
the Arduino UNO, having larger flash and data memories, providing more digital input/output
pins, and sporting an on-board temperature sensor. The Arduino UNO operates at +5 V and
its GPIO pins are +5 V compatible. Perhaps some advantages of the Arduino UNO include
having a built-in EEPROM memory, and having a 6-channel ADC rather than a 3-channel.

Feature Raspberry Pi Pico Arduino UNO
Microcontroller RP2040 Atmega328P
Core and bits Dual core, 32-bit, Cortex-M0+ Single-core 8-bit
RAM 264 Kbytes 2 Kbytes
Flash 2 Mbytes 32 Kbytes
CPU speed 48 MHz to 133 MHz 16 MHz
EEPROM None 1 KByte
Power input +5 V through USB port +5V through USB port
Alternative power 2–5 V via VSYS pin 7–12 V
MCU operating voltage +3.3 V +5 V
GPIO count 26 20
ADC count 3 6
Hardware UART 2 1
Hardware I2C 2 1
Hardware SPI 2 1
Hardware PWM 16 6
Programming languages MicroPython, C, C++ C (Arduino IDE)
On-board LED 1 1
Cost $4 $20

Table 1.1: Comparison of Raspberry Pi Pico and Arduino UNO.

Raspberry Pi Pico Essentials

● 14

1.4 Operating conditions and powering the Pico
The recommended operating conditions for the Pico are:

•	Operating temperature: –20ºC to +85ºC
•	VBUS voltage: +5 V ±10%
•	VSYS voltage: +1.8 V to +5.5 V

An on-board SMPS is used to generate the +3.3 V to power the RP2040 from a range of
input voltages from 1.8 V to +5.5 V. For example, 3 alkaline size-AA batteries can be used
to provide +4.5 V to power the Pico.
The Pico can be powered in several ways. The simplest method is to plug the micro-USB
port into a +5 V power source, such as the USB port of a computer or a +5 V power adapt-
er. This will provide power to the VSYS input (see Figure 1.4) through a Schottky diode. The
voltage at the VSYS input is therefore VBUS voltage minus the voltage drop of the Schottky
diode (about +0.7 V). VBUS and VSYS pins can be shorted if the board is powered from an
external +5 V USB port. This will increase the voltage input slightly and hence reduce rip-
ples on VSYS. VSYS voltage is fed to the SMPS through the RT6150 which generates fixed
+3.3 V for the MCU and other parts of the board. VSYS is divided by 3, and is available at
analogue input port GPIO29 (ADC3) which can easily be monitored. GPIO24 checks the
existence of VBUS voltage and is at logic HIGH if VBUS is present.
Another method to power the Pico is by applying external voltage (+1.8 V to +5.5 V) to the
VSYS input directly (e.g., using batteries or external power supply). We can also use the
USB input and VSYS inputs together to supply power to Pico, for example to operate with
both batteries and the USB port. If this method is used, then a Schottky diode should be
used at the VSYS input to prevent the supplies from interfering with each other. The higher
of the voltages will power VSYS.

Figure 1.4: Powering the Pico.

1.5 Pinout of the RP2040 microcontroller and Pico module
Figure 1.5 shows the RP2040 microcontroller pinout, which is housed in a 56-pin package.
The Pico module pinout is shown in Figure 1.6 in detail. As you can see from the illustration,
most pins have multiple functions. For example, GPIO0 (pin 1) doubles as the UART0 TX,
I2C0 SDA, and the SPI0 RX pin.

● 15

Chapter 1 • Raspberry Pi Pico Hardware

Figure 1.5: RP2040 microcontroller pinout.

Figure 1.6: Raspberry Pi Pico pinout.

Figure 1.7 shows a simplified block diagram of the Pico hardware module. Notice that the
GPIO pins are directly connected from the microcontroller chip to the GPIO connector. GPIO
nos. 26-28 can be used either as digital GPIO or as ADC inputs. ADC inputs GPIO26-29
have reverse-biased diodes to 3 V and therefore the input voltage must not exceed 3V3 +

Raspberry Pi Pico Essentials

● 16

300 mV. Another point to note is that if the RP2040 is not powered, applying voltages to
GPIO26-29 pins may leak through the diode to the power supply (there is no problem with
the other GPIO pins and voltage can be applied when the RP2040 is not powered).

Figure 1.7: Simplified block diagram.

1.6 Other RP2040 microcontroller-based boards
During the writing of this book, some third-party manufacturers have been developing mi-
crocontrollers based on the RP2040 chip. Some examples are given in this section.

1.6.1 Adafruit Feather RP2040
This microcontroller board (Figure 1.8) has the following basic specifications:

•	RP2040 32-bit Cortex-M0+ running at 125 MHz
•	4 MB Flash memory
•	264 KB RAM
•	4× 12-bit ADC
•	2× I2C, 2× SPI, 2× UART
•	16× PWM
•	200 mA LiPo charger
•	Reset and Bootloader buttons
•	24 MHz crystal
•	+3.3 V regulator with 500 mA current output
•	USB type-C connector
•	on-board red LED
•	RGB NeoPixel
•	on-board STEMMA QT connector with optional SWD debug port

● 17

Figure 1.8: Adafruit Feather Rp2040.

1.6.2 Adafruit ItsyBitsy RP2040
The ItsyBitsy RP2040 (Figure 1.9) is another RP2040-based microcontroller board from
Adafruit. Its basic features are very similar to Feather RP2040. It has USB-micro B connec-
tor and provides +5 V output.

Figure 1.9: Adafruit ItsyBitsy RP2040.

1.6.3 Pimoroni PicoSystem
This is a miniature gaming board (Figure 1.10) developed around the RP2040 microcontrol-
ler. Its basic features are:

•	133 MHz clock
•	264 KB SRAM
•	LCD screen
•	joypad
•	buttons
•	LiPo battery
•	USB-C power connector

Chapter 1 • Raspberry Pi Pico Hardware

Raspberry Pi Pico Essentials

● 18

Figure 1.10: Pimoroni PicoSystem.

1.6.4 Arduino Nano RP2040 Connect
This board (Figure 1.11) offers 16 MB flash, 9-axis IMU, and a microphone. It has a very
efficient power supply section equipped with Wi-Fi/Bluetooth.

Figure 1.11: Arduino Nano RP2040 Connect.

1.6.5 SparkFun Thing Plus RP2040
This development platform (Figure 1.12) provides an SD card slot, 16 MB flash memory, a
JST single-cell battery connector, a WS2812 RGB LED, JTAG pins, and Qwiic connector. Its
basic features are:

•	133 MHz speed
•	264 KB SRAM
•	4× 12-bit ADC
•	2× UART, 2× I2C, 2× SPI
•	16× PWM
•	1× timer with 4 alarms

● 19

Figure 1.12: SparkFun Thing Plus RP2040.

1.6.6 Pimoroni Pico Explorer Base
This development board (Figure 1.13) includes a small breadboard and a 240 × 240 IPS LC
display with 4 tactile buttons. A socket is provided on the board to plug-in a Raspberry Pi
Pico board. The basic features of this development board are:

•	piezo speaker
•	1.54-inch IPS LCD
•	4× buttons
•	2× half-bridge motor drives
•	two breakout I2C sockets
•	easy access to GPIO and ADC pins
•	mini breadboard
•	no soldering required
•	Raspberry Pi Pico not supplied

Figure 1.13: Pimoroni Pico Explorer Base.

Chapter 1 • Raspberry Pi Pico Hardware

Raspberry Pi Pico Essentials

● 20

1.6.7 SparkFun MicroMod RP2040 Processor
This board (Figure 1.14) includes a MicroMod M.2 connector for access to the GPIO pins.

Figure 1.14: SparkFun MicroMod RP 2040 Processor.

1.6.8 SparkFun Pro Micro RP2040
This board (Figure 1.15) includes a ES2812B addressable LED, boot button, reset button,
Qwiic connector, USB-C power interface, PTC fuse, and castellated GPIO pads.

Figure 1.15: SparkFun Pro Micro RP2040.

1.6.9 Pico RGB Keypad Base
This board is equipped with 4×4 rainbow-illuminated keypad (Figure 1.16) with APA102
LEDs. The basic features are:

•	4×4 keypad
•	16× APA102 RGB LEDs
•	keypad connected via I2C I/O expander
•	GPIO pins labelled

● 21

Figure 1.16 Pico RGB Keypad Base.

1.6.10 Pico Omnibus
This is an expansion board (Figure 1.17) for the Pico. The basic features of this board in-
clude:

•	GPIO pins labelled
•	two landing areas with labelled (mirrored) male headers for attaching add-ons
•	4× rubber feet
•	compatible with Raspberry Pi Pico
•	fully assembled
•	dimensions approx. 94 × 52 × 12 mm

Figure 1.17: Pico Omnibus.

1.6.11 Pimoroni Pico VGA Demo Base
This board (Figure 1.18) has VGA output and SD card slot. The basic features are:

•	powered by Raspberry Pi Pico
•	15-pin VGA connector
•	I2S DAC for line out audio

Chapter 1 • Raspberry Pi Pico Hardware

Raspberry Pi Pico Essentials

● 22

•	PWM audio output
•	SD card slot
•	Reset button
•	headers to install your Raspberry Pi Pico
•	three user switches
•	no soldering required

Figure 1.18: Pimoroni Pico VGA Demo Base.

Chapter 2 • Raspberry Pi Pico Programming

● 23

Chapter 2 • Raspberry Pi Pico Programming

2.1 Overview
At the time of writing this book, the Raspberry Pi Pico accepts programming with the fol-
lowing programming languages:

•	C/C++
•	MicroPython
•	assembly language

Although the Pico by default is set up for use with the powerful and popular C/C++ lan-
guage, many beginners find it easier to use MicroPython, which is a version of the Python
programming language developed specifically for microcontrollers.
In this Chapter we will learn how to install and use the MicroPython programming language.
We will be using the Thonny text editor which has been developed specifically for Python
programs.
Many working and fully tested projects will be given in the next Chapters using MicroPython
with our Pico. Use of the C language will also be discussed in later Chapters with some
projects.

2.2 Installing MicroPython on the Pico
MicroPython must be installed on the Pico before the board can be used. Once installed,
MicroPython stays on your Pico, unless it is overwritten with something else. Installing
MicroPython requires an Internet connection, and this is required only once. Since the Pico
has no Wi-Fi connectivity, we will need to use a computer with Internet access. This can be
done either by using a Raspberry Pi (e.g. Raspberry Pi 4), or by using a PC. In this section
we will see how to install using both methods.

2.2.1 �Using a Raspberry Pi 4 to aid installing MicroPython on the Pico
The steps are as follows.

•	Boot your Raspberry Pi 4 and log in to Desktop.
•	Make sure your Raspberry Pi is connected to the Internet.
•	Hold down the BOOTSEL button on your Pico.
•	Connect your Pico to one of the USB ports of the Raspberry Pi 4 using a

micro-USB cable while holding down the button.
•	Wait a few seconds and release the BOOTSEL button.
•	You should see the Pico appear as a removable drive. Click OK in the

Removable medium is inserted window (Figure 2.1).

Raspberry Pi Pico Essentials

● 24

Figure 2.1: Click OK.

•	In the File Manager window, you will see two files with the names
INDEX.HTM and INFO_UF2.TXT (Figure 2.2).

Figure 2.2: Notice two files.

•	Double-click on file INDEX.HTM and scroll down.
•	You should see the message Welcome to your Raspberry Pi Pico displayed

in a web page (Figure 2.3).

Figure 2.3: Displayed message.

Chapter 2 • Raspberry Pi Pico Programming

● 25

•	Click on the Getting started with MicroPython tab and click Download UF2
file to download the MicroPython firmware. You should see the downloaded
file at the bottom of the screen. This will take only a few seconds (Figure 2.4).

Figure 2.4: Download the UF2 file.

•	Close your browser window by clicking on the cross icon located at the top right
corner.

•	Open the File Manager by clicking on menu, followed by Accessories.
•	Open the Downloads folder (under /home/pi) and locate the file

with the extension: .uf2. This file will have a name similar to:
micropython-20-Jan-2021.uf2 (Figure 2.5)

Figure 2.5: Locate the file with extension: ".uf2".

•	Drag and drop this file to Raspberry Pi Pico's removable drive which is named:
RPI-RP2 (at the top left side of the screen – see Figure 2.5).

•	After a while, the MicroPython firmware will be installed onto the internal
storage of Pico and the drive will disappear.

•	Your Pico is now running MicroPython.
•	Powering-down the Pico will not erase MicroPython from its memory.

Using the Thonny text editor from Raspberry Pi
Thonny is a free Python Integrated Development Environment (IDE) developed specifically
for Python. It has built-in text editor and debugger and a number of other utilities that can
be useful during program development.
In this section we will learn how to use Thonny by invoking it from Raspberry Pi. You should
leave your Pico connected to Raspberry Pi. We will create a one-line program to display the
message Hello from Raspberry Pi Pico.

Raspberry Pi Pico Essentials

● 26

The steps are given below.

•	Click Menu, followed by Programming on your Raspberry Pi Desktop and then
click Thonny Python IDE (see Figure 2.6). The author had version 3.3.3 of
Thonny installed on his Raspberry Pi 4.

Figure 2.6: Start Thonny on your Raspberry Pi.

•	Click on the label Python at the bottom right-hand corner of Thonny (Figure
2.7).

Figure 2.7: Click on Python in the bottom right-hand corner.

•	Click to select MicroPython (Raspberry Pi Pico) as shown in Figure 2.8.

Figure 2.8: Select: Raspberry Pi Pico.

•	You should see the version number of your MicroPython displayed in the bottom
part of the screen where Shell is located (Figure 2.9).

