AutoUni – Schriftenreihe

Frederik Weiß

Optimale Konzeptauslegung elektrifizierter Fahrzeugantriebsstränge

Eine computergestützte Methodik zur Beschleunigung des Auslegungsprozesses

AutoUni – Schriftenreihe

Band 122

Reihe herausgegeben von/Edited by

Volkswagen Aktiengesellschaft AutoUni Die Volkswagen AutoUni bietet Wissenschaftlern und Promovierenden des Volkswagen Konzerns die Möglichkeit, ihre Forschungsergebnisse in Form von Monographien und Dissertationen im Rahmen der "AutoUni Schriftenreihe" kostenfrei zu veröffentlichen. Die AutoUni ist eine international tätige wissenschaftliche Einrichtung des Konzerns, die durch Forschung und Lehre aktuelles mobilitätsbezogenes Wissen auf Hochschulniveau erzeugt und vermittelt.

Die neun Institute der AutoUni decken das Fachwissen der unterschiedlichen Geschäftsbereiche ab, welches für den Erfolg des Volkswagen Konzerns unabdingbar ist. Im Fokus steht dabei die Schaffung und Verankerung von neuem Wissen und die Förderung des Wissensaustausches. Zusätzlich zu der fachlichen Weiterbildung und Vertiefung von Kompetenzen der Konzernangehörigen, fördert und unterstützt die AutoUni als Partner die Doktorandinnen und Doktoranden von Volkswagen auf ihrem Weg zu einer erfolgreichen Promotion durch vielfältige Angebote – die Veröffentlichung der Dissertationen ist eines davon. Über die Veröffentlichung in der AutoUni Schriftenreihe werden die Resultate nicht nur für alle Konzernangehörigen, sondern auch für die Öffentlichkeit zugänglich.

The Volkswagen AutoUni offers scientists and PhD students of the Volkswagen Group the opportunity to publish their scientific results as monographs or doctor's theses within the "AutoUni Schriftenreihe" free of cost. The AutoUni is an international scientific educational institution of the Volkswagen Group Academy, which produces and disseminates current mobility-related knowledge through its research and tailor-made further education courses. The AutoUni's nine institutes cover the expertise of the different business units, which is indispensable for the success of the Volkswagen Group. The focus lies on the creation, anchorage and transfer of knew knowledge.

In addition to the professional expert training and the development of specialized skills and knowledge of the Volkswagen Group members, the AutoUni supports and accompanies the PhD students on their way to successful graduation through a variety of offerings. The publication of the doctor's theses is one of such offers. The publication within the AutoUni Schriftenreihe makes the results accessible to all Volkswagen Group members as well as to the public.

Reihe herausgegeben von/Edited by

Volkswagen Aktiengesellschaft AutoUni Brieffach 1231 D-38436 Wolfsburg http://www.autouni.de

Weitere Bände in der Reihe http://www.springer.com/series/15136

Frederik Weiß

Optimale Konzeptauslegung elektrifizierter Fahrzeugantriebsstränge

Eine computergestützte Methodik zur Beschleunigung des Auslegungsprozesses

Mit einem Geleitwort von Prof. Dr.-Ing. Thomas von Unwerth

Frederik Weiß Wolfsburg, Deutschland

Zugl.: Dissertation, Technische Universität Chemnitz, 2017.

Einreichungstitel: "Methodik zur optimalen Konzeptauslegung elektrifizierter Fahrzeugantriebsstränge"

D93

Die Ergebnisse, Meinungen und Schlüsse der im Rahmen der AutoUni – Schriftenreihe veröffentlichten Doktorarbeiten sind allein die der Doktorandinnen und Doktoranden.

AutoUni – Schriftenreihe ISBN 978-3-658-22096-9 ISBN 978-3-658-22097-6 (eBook) https://doi.org/10.1007/978-3-658-22097-6

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Geleitwort

Frederik Weiß entwickelt im Rahmen seiner Dissertation eine Methodik zur optimalen Konzeptauslegung elektrifizierter Fahrzeugantriebsstränge. Der Fokus möglicher Optimierungsziele liegt dabei neben den Fahrleistungen auf den Herstellungskosten und dem Kraftstoff-/ Energieverbrauch bzw. der elektrischen Reichweite. In Anbetracht sinkender Schadstoffgrenzwerte und einer folglich immer stärkeren Elektrifizierung von Antrieben kommen sowohl dem betrachteten Antriebsportfolio als auch dem Ziel sinkender Kosten und steigender Reichweiten eine hohe praktische Bedeutung zu. Auch theoretisch sind die behandelten Optimierungs- und Modellierungsansätze von großer Relevanz. Insbesondere die Reichweitensteigerung durch geeignete Betriebsstrategien von Hybridfahrzeugen ist in der Literatur Gegenstand diverser Untersuchungen.

Der Forschungsbedarf ergibt sich aus der Variantenvielfalt alternativer Antriebskonzepte, wie z. B. den Parallelhybriden und Brennstoffzellenfahrzeugen sowie deren möglicher Auslegungen, die vom Vollhybriden bis zum Range-Extender reichen. Dem begegnet der Verfasser mit einem systematischen Entscheidungsprozess, der die Methodik auf eine allgemeingültige, wissenschaftlich begründete Basis stellt. Die Umsetzung erfolgt für eine Auswahl an Antriebsstrangarchitekturen, die ein breites Spektrum der elektrifizierten Antriebskonzepte abdecken. Es schließen sich Herleitungen und Umsetzungen von Modellierungsansätzen und Optimierungsalgorithmen an. Ein neu entwickelter Ansatz einer rechenzeitoptimierten Betriebsstrategie ermöglicht darüber hinaus den objektiven Vergleich unterschiedlicher Antriebskonzepte bezüglich des Kraftstoffverbrauchs.

Ein wesentlicher Beitrag der Arbeit ist die Beschreibung und Modellierung der Wechselwirkungen von Komponenteneigenschaften im Antriebsstrang. Dafür wird erstmals im Rahmen einer Antriebsstrangoptimierung das Zeitverhalten der elektrischen Antriebskomponenten abgebildet. Die beispielhafte Optimierung eines Mischhybriden zeigt auf, dass bereits in der frühen Entwicklungsphase Anforderungen an die Reproduzierbarkeit der Fahrleistungen berücksichtigt werden können. Bei der Antriebsstrangoptimierung eines Brennstoffzellenfahrzeugs stehen die wechselseitigen Einflüsse der Komponentenspannungen im Fokus. Hier wird u. a. deutlich, dass in diesem Fall ein batterieseitiger Gleichspannungswandler sinnvoll und aus Kostensicht für diesen Antrieb eine Auslegung als Plug-In Hybrid mit leistungsstarker Traktionsbatterie optimal ist. Damit trägt die vorliegende Arbeit zum Verständnis von Kosten und Nutzen unterschiedlicher Antriebsstrangauslegungen bei.

Insgesamt handelt es sich um eine richtungsweisende Arbeit, die dem Ingenieur und Techniker als Basis und Orientierung für weiterführende Optimierungsansätze im Bereich der Fahrzeugantriebsentwicklung dienen mag. Ich wünsche dem Werk viele geneigte Leser, die mit Hilfe der hierin gewonnenen Erkenntnisse die Zukunft der Antriebstechnologien mitgestalten.

Prof. Dr.-Ing. Thomas von Unwerth

Vorwort

Diese Arbeit entstand im Rahmen meiner Tätigkeit als Doktorand in der Abteilung Antriebssysteme der Konzernforschung der Volkswagen AG.

An dieser Stelle möchte ich mich bei allen Personen bedanken, die durch ihre Unterstützung zum Gelingen dieser Dissertation beigetragen haben.

Mein besonderer Dank gilt Herrn Professor Dr.-Ing. T. von Unwerth, Leiter der Professur Alternative Fahrzeugantriebe der TU Chemnitz, für die Betreuung und Begutachtung der Dissertation sowie für die vielen Anregungen und Diskussionen. Weiterhin bedanke ich mich bei Professor Dr.-Ing. R. Mayer, Leiter der Professur Fahrzeugsystemdesign der TU Chemnitz, für die Übernahme der Rolle des Zweitgutachter.

Danken möchte ich auch meinen Vorgesetzten und allen Kollegen, Diplomanden und Praktikanten der Abteilung Antriebssysteme der Konzernforschung der Volkswagen AG, die mich durch die gute Zusammenarbeit, die Beantwortung fachlicher Fragen, einen konstruktiven Meinungsaustausch sowie ihre Hilfsbereitschaft unterstützt haben. Die Möglichkeit, sich auf kurzem Wege mit Experten zu allen Aspekten des Fahrzeugsantriebsstrangs austauschen zu können, hat wesentlich zum Gelingen der Arbeit beigetragen.

Mein besonderer Dank gilt dabei meinen Betreuern seitens der Volkswagen AG, Dr.-Ing. Oliver Ludwig und Dr.-Ing. Hendrik Schröder, die mir mit zahlreichen Anregungen, Ideen und ihrem Wissen zur Seite standen. Insbesondere die vielen fachlichen Diskussionen waren in diesem Zusammenhang eine große Bereicherung für mich.

Meinen Eltern danke ich herzlich für die Förderung meiner Ausbildung und für den stets bedingungslosen Rückhalt.

Abschließend bedanke ich mich ganz besonders bei meiner Frau für die Unterstützung, das Verständnis und die vielen motivierenden Worte während der gesamten Promotionsdauer.

Frederik Weiß

Inhaltsverzeichnis

Ab	obildu	ingsverz	zeichnis	XIII
Та	beller	werzeic	hnis	XVII
Ab	okürz	ungs- ui	nd Formelverzeichnis	XIX
1	Einl	eitung .		1
2	Stan	d der T	echnik	3
	2.1	Ansätz	e in der Literatur	3
	2.2	Handlu	Ingsbedarf und Zielsetzung	6
	2.3	Einord	nung in den Fahrzeugentwicklungsprozess	8
	2.4	Aufbau	1 der Arbeit	9
3	Gru	ndlagen	elektrifizierter Antriebsstränge	11
	3.1	Archite	ekturen	11
	3.2	Kompo	onenten	13
	3.3	Betrieb	osstrategie	21
1	Mot	hadisah	os Vorgohon	23
4	1 1 1	System	es volgenen	23
	4.1	a 1 1		25
		4.1.1		24
		4.1.2		24
		4.1.3	Auslegungskriterien und Randbedingungen	25
		4.1.4	Architekturen und Variationsparameter	27
		4.1.5	Auswahl und Bewertung der Antriebsstrangkonfigurationen	29
	4.2	Gewäh	Ite Methodik	31
		4.2.1	Ablaufplan	31
		4.2.2	Bedarfskennfeld zur Eingrenzung des Suchraums	34
		4.2.3	Synthese des Antriebsstrangs	37
5	Erm	ittlung	der Auslegungskriterien und Randbedingungen	43
	5.1	Modell	lierungstiefe	43
	5.2	Modell	lierung des Antriebsstrangs	44
		5.2.1	Statische und dynamische Simulation	44
		5.2.2	Modulare Simulationsumgebung	45
		5.2.3	Berechnung der Fahrleistungen	51
		5.2.4	Fahrszenarien	53
	5.3	Modell	lierung und Skalierung der Antriebsstrangkomponenten	54
		5.3.1	E-Maschine und Inverter	56
		5.3.2	Getriebe	59
		5.3.3	Traktionsbatterie	63
		5.3.4	Brennstoffzellensvstem	67
		5.3.5	Verbrennungsmotor	70
		5.3.6	Kupplung	73

		5.3.7 Gleichspannungswandler
	5.4	Reproduzierbarkeit der Fahrleistungen
	5.5	Kostenmodelle
	5.6	Ergebnisgüte der Simulationsmodelle 80
		5.6.1 Vergleich Messung und quasi-statische Kennfeldsimulation 80
		5.6.2 Vergleich Vorwärts- und Rückwärtssimulation
6	Betr	iebsstrategie
	6.1	Eignung existierender Betriebsstrategien
	6.2	Entwicklung einer allgemeingültigen regelbasierten Strategie 90
	6.3	Schaltstrategie
	6.4	Ergebnisgüte der entwickelten regelbasierten Strategie 104
_	0.0	
7	Opti	mierung des Antriebsstrangs
	7.1	Grundlagen der statischen Optimierung 109
	7.2	Ansätze zur Verringerung des Berechnungsaufwands
	7.3	Optimierungsalgorithmus
		7.3.1 Anforderungen
		7.3.2 Auswahl eines geeigneten Optimierungsalgorithmus
		7.3.3 Allgemeiner Ablauf Genetischer Algorithmen
		7.3.4 Ausgewähltes Verfahren
	7.4	Einstellungen der genetischen Operatoren
8	Anw	endung und Diskussion der Methodik
	8.1	Validierung
		8.1.1 Fahrleistung und Verbrauch
		8.1.2 Optimale Komponenteneigenschaften
	8.2	Anwendung 1: Brennstoffzellenfahrzeug als Vollhybrid
		8.2.1 Problemstellung
		8.2.2 Analyse der Ergebnisse
		8.2.3 Sensitivitätsanalyse
		8.2.4 Diskussion der Ergebnisse
	8.3	Anwendung 2: Plug-In Mischhybrid
		8.3.1 Problemstellung
		8.3.2 Analyse der Ergebnisse
		8.3.3 Diskussion der Ergebnisse
•	-	
9	Zusa	ammentassung und Ausblick
Li	teratu	rverzeichnis
Α	Syst	ematische Literaturrecherche 177
	~,	· ····································
В	Sim	llationsumgebung
	B .1	Referenz-Simulationsumgebung 181
	B.2	Fahrzyklen
	B.3	Komponentenmodellierung

	B.4	B.4 Simulationsdaten	
		B.4.1 Fahrzeugdaten Optimierungseinstellungen	183
		B.4.2 Komponenteneigenschaften Anwendung Brennstoffzellenfahrzeug	184
		B.4.3 Komponentendaten Anwendung Mischhybrid	185
C Optimaler Betrieb mit Dynamic Programming		maler Betrieb mit Dynamic Programming	187
	C.1	Definition der Problemstellung	187
	C.2	Algorithmus	188
	C.3	Vorgehensweise	189
	C.4	Anbindung an die Antriebsstrangsimulation	191

Abbildungsverzeichnis

2.1	Einordnung in den Fahrzeugentwicklungsprozess, in Anlehnung an [16]	8
3.1 3.2	Basisarchitekturen hybrider Antriebsstränge	11
3.3	(rechts) verschiedener Verbrennungsmotorvarianten	14
3.4	Funktionsweise und Aufbau einer Brennstoffzelle (links), Spannungskennlinie einer typischen Niedertemperatur-Polymerelektrolytmembran (NT-PEM) Brennstoffzelle	15
	(rechts)	18
3.5	Brennstoffzellensystem mit den wichtigsten Nebenaggregaten	19
3.6	Steuerungsarchitektur des Antriebsstrangs am Beispiel des Parallelhybriden	22
4.1	Auslegungskriterien der Fahrzeugentwicklung nach Küçükay [82]	25
4.2	Ausgewählte Antriebsstrangarchitekturen	28
4.3	Nutzwert-Kosten-Diagramm nach [112]	30
4.4	Lineare Straffunktion als Wertfunktionstyp (links), Gewichtung der Zielgrößen in Anlehnung an [145] (rechts)	31
45	Gesamtahlaufnlan der Ontimierungsmethodik	32
4.6	Vorgehensweise zur Ermittlung der antriebsunabhängigen Mindestanforderungen	35
47	Ablaufnlan eines Ontimierungsdurchlaufs	37
4.8	Abhängigkeit der Spannungslage der Traktionsbatterie	38
4.9	Allgemeine Darstellung des elektrischen Antriebsstrangs	40
5.1	Prinzip der vorwärts- und rückwärtsbasierten Antriebsstrangsimulation	45
5.2	Modulare Unterteilung der quasi-statischen Längsdynamiksimulation	47
5.3	Fahrwiderstände am freigeschnittenen Fahrzeug (vgl. [16])	47
5.4	Modulare Struktur der entwickelten Simulationsumgebung mit einer Beispielkonfi- guration als Hybridfahrzeug (HEV) und den Schnittstellengrößen der Rückwärtssi-	
	mulation	50
5.5	Zugkraftangebot und Fahrwiderstände zur Ermittlung der Höchstgeschwindigkeit	
	am Beispiel eines Fahrzeugs mit Verbrennungsmotor und 7-Gang-Getriebe	52
5.6	Qualitativer Verlauf eines Grenzfahrprofils	54
5.7	Schnittstellengrößen des EM-Modells	57
5.8	Skalierung der aktiven Länge [48] (leicht modifiziert)	58
5.9	Resultierendes Wirkungsgradkennfeld einer Permanenterregte Synchromaschine	
	(PSM)-Ausprägung bei Verringerung der Leistung um 30 %	59
5.10	Schnittstellengrößen des Getriebemodells	59
5.11	Verlustmomentkennfeld eines Getriebes für den 2. Gang: Referenz (links), Modell-	
	funktion (mittig), prozentuale Abweichung (rechts)	61
5.12	Verlustkennfeld eines Getriebes für den 2. Gang nach Verringerung der Übersetzung	
	(links) und das Ditterenzkennfeld (rechts)	62
5.13	Schnittstellengroßen des Batteriemodells	63
5.14	Von der Zelle zum Batteriesystem	63

5.15	Ersatzschaltbild zur Modellierung einer Batteriezelle, in Anlehnung an [58]	64
5.16	Spannungskennfelder zweier Verschaltungen mit zwei bzw. drei parallelen Strängen und identischem Energieinhalt	65
5.17	Mögliche Zellverschaltungen bei definiertem zulässigen Spannungsbereich eines beispielhaften Batteriesystems	66
5.18	Schnittstellengrößen des Brennstoffzellensystemmodells	67
5.19	Skalierung der Verdichterleistung (links); Stapel, Verdichter und Systemleistung (mittig): Wirkungsgradverlauf (rechts)	69
5.20	Schnittstellengrößen des Verbrennungsmotormodells	70
5.21	Einfluss der Aufladung auf Leistung und Betriebsbereich des Motors (links) [57].	
	Begrenzungen des maximalen effektiven Mitteldrucks (rechts) [57]	71
5.22	be-Kennfeld des Referenzmotors (links) und des skalierten Motors (rechts)	73
5.23	Schnittstellengrößen des Kupplungsmodells	73
5.24	Ein- und Ausgangsgrößen des Gleichspannungswandlermodells	74
5.25	Mit der Modellgleichung 5.33 berechnete Wirkungsgradverläufe eines Hochsetzstel- lers über der Eingangsleistung	76
5.26	Leistungsfluss (links) und Erwärmungskurve (rechts) exemplarisch für die EM.	78
5.27	Thermisches Modell (links), Abhängigkeit des Kühlungswärmestroms von der in	
	der Komponente gespeicherten Wärmemenge (rechts)	79
5.28	Vergleich von Messung und quasi-statischer Simulation anhand des Kraftstoffvolu-	
	menstroms eines Dieselmotors	81
5.29	Vergleich der für die Optimierungsmethodik erstellten Rückwärtssimulation mit einer Vorwärtssimulation	82
6.1	Klassifizierung von Betriebsstrategien in Anlehnung an [32]	86
6.2	Verallgemeinerter Energiefluss der betrachteten hybriden Antriebsstränge	91
6.3 6.4	Veranschaulichung der möglichen Leistungsaufteilung zwischen den Quellen Exemplarisches Lastropil für ein Hybridfahrzeug bestehend aus einer Phase mit	92
0.4	niedriger und einer mit hoher Lastanforderung, die a) im Lastfolgebetrieb und b) mit	02
65	Lastpunktverschiedung erfullt wird	92
0.5	Energienussdiagramme für b_0) Lastpunktannebung und b_1) Lastpunktabsenkung .	93
0.0	configure rain cleaterischen Echron	05
67	Examplarische Wirkungsgradkennfelder des Prennetoffzellensustems (links) und	95
0.7	der Traktionsbetterie (rechts)	07
68	Einsparung durch Lastpunktanbahung in Abhängigkeit der Brennstoffzellenleistung	91
0.8	bai ainer Laistungsonforderung von 2kW	08
69	Einsparung durch Lastpunktabsenkung in Abhängigkeit der Brennstoffzellenleistung	90
0.7	bei einer Leistungsanforderung von 47kW	99
6.10	Einsparungskennfeld und optimale Steuerungskennlinien in Abhängigkeit der Leis-	
< · · ·		99
6.11	Adaptives Anpassen der Kennlinie zur Steuerung des Ladezustands (links) und der aus der Kennlinie resultierende Betriebsbereich des Brennstoffzellensystem (BZS) (rechte)	100
6 1 2	Ablauf der regelhasierten Schaltstrategie am Beispiel eines Derallelhybriden mit	100
0.12	Abiaut dei regeloasierten Schaustrategie ant Deispier entes Falanentybriden mit	102

6.13	Vergleich der regelbasierten (ROLV) mit einer optimalen Betriebsstrategie (DP): links Applikation der ROLV-Kennlinie, rechts Verteilung der Betriebspunkte im Ladungserhaltung (CS)-Betrieb des Worldwide Harmonized Light Vehicles Test	
6 14	Cycle (WLTC)	104
6.15	mit der regelbasierten (ROLV) und der optimalen Betriebsstrategie (DP)	105
0.15	tegie (DP) im CS-Betrieb des WLTC: Zeitliche Verläufe	106
7.1 7.2	Allgemeine Darstellung einer Pareto-Front	110
7.3	mierung des Metamodells (rechts)	111
		114
7.4	Kategorisierung globaler Optimierungsalgorithmen nach Weise [138]	115
1.5	Allgemeiner Ablauf eines Genetischen Algorithmen und die enterrechenden Pa	110
7.0	zeichnungen innerhalb der Methodik	117
77	Ermittlung des Rangs und der Crowding Distance (CDT) einzelner Individuen einer	117
/./	Population nach dem Non-dominated Sorting Genetic Algorithm (NSGA-II)	119
7.8	Zulässiger Bereich der Kinder bei der Rekombination eines Elternpaares nach dem	
	Blend Crossover (BLX- α) Verfahren, in Anlehnung an [122]	120
7.9	Berechnung des Hypervolumens einer Pareto-Front zur Bewertung der Ergebnisgüte	122
7.10	Untersuchung der Güte von Optimierungsergebnissen in Abhängigkeit der Turnier-	
	größe und Mutationswahrscheinlichkeit eines Genetischen Algorithmus	123
7.11	Untersuchung der Güte von Optimierungsergebnissen in Abhängigkeit der Mutations-	
7.12	und Rekombinationswahrscheinlichkeit eines Genetischen Algorithmus Untersuchung der Güte von Optimierungsergebnissen in Abhängigkeit der Muta-	124
	Einstellungen mit den Referenzeinstellungen (rechts)	125
8.1	Höchstgeschwindigkeit vom Volkswagen e-Golf und BMW i3 nach Simulation und Katalog	128
82	Elektrischer Verbrauch und Beschleunigungszeit vom Volkswagen e-Golf und BMW	120
0.2	i3 nach Simulation und Katalog	129
8.3	Optimierungsergebnis Jetta Hybrid (links), Vergleich ermittelter und in Serie ver-	
	wendeter Komponenteneigenschaften (links)	131
8.4	Kraftstoffverbräuche der betrachteten Vollhybride	132
8.5	Wertefunktionen für die Auslegungskriterien Beschleunigungszeit (links) und Was-	
	serstoffverbrauch im Zyklus bzw. Konstantfahrt (rechts)	134
8.6	Gewichtung der Auslegungskritererien	134
8.7	Wirkungsgradkennlinien der BZS-Varianten (links), Leistungschrakteristik der EM	
0.0	(rechts)	135
8.8 8.0	Pareto-optimale Antriebsstrangkonfigurationen	130
ð.9 8 10	Komponententechnologien der optimalen Antriedsstrangkonfigurationen	13/
0.10 8 11	I astrunktverteilung im NEFZ (Konfiguration 1: Minimale Kosten)	130
0.11	Lasipunktiventenung ini tierz (Koninguration 1. Mininiaie Kosten)	139

8.12	FCEV Konfiguration 2: Hoher Nutzwert	140
8.13	Komponententechnologien der optimalen Antriebsstrangkonfigurationen bei verrin-	
	gerten BZS-Kosten von 160€/kW auf 75€/kW	142
8.14	Lastpunktverteilungen unterschiedlicher BZS-Varianten im Neuer Europäischer	
	Fahrzyklus (NEFZ)	143
8.15	Komponententechnologien der optimalen Antriebsstrangkonfigurationen (Ver-	
	brauchszyklus WLTC)	144
8.16	Bewertung der optimalen Antriebsstrangkonfigurationen im WLTC: links mit ur-	
	sprünglicher Funktion für den NEFZ, rechts mit angepasster Funktion für den WLTC	145
8.17	Leistungsfreigabe des parallel-seriellen Hybrids	153
8.18	Pareto-optimale Antriebsstrangkonfigurationen	153
8.19	Ausgewählte Komponenteneigenschaften der pareto-optimalen Antriebsstrangkonfi-	
	gurationen	154
8.20	Pareto-optimale Antriebsstrangkonfiguration mit minimalen Kosten (ohne Einhal-	
	tung der Randbedingung an die Reproduzierbarkeit der Fahrleistungen)	155
8.21	Simulation des Grenzfahrprofils mit der kostenminimalen pareto-optimalen An-	
	triebsstrangkonfiguration	157
8.22	Mechanische Leistungsfreigabe über der Geschwindigkeit der unterschiedlichen	
	optimalen Antriebsstrangkonfigurationen	158
B 1	Geschwindigkeitsverlauf (links) und Histogramme zur Geschwindigkeits- (mittig)	
D.1	und Beschleunigungsverteilung (rechts) vom Federal Test Procedure 72 (FTP-72)	
	und NEFZ	181
B.2	Geschwindigkeitsverlauf (links) und Histogramme zur Geschwindigkeits- (mittig)	101
	und Beschleunigungsverteilung (rechts) vom WLTC und Kundenzyklus	182
B.3	Beispielhafter Wirkungsgradverlauf eines Gleichspannungswandlers für die Anwen-	
	dung in einem Brennstoffzellenfahrzeug in Abhängigkeit des Stroms und der Anzahl	
	versetzt getakteter Zweige N_{SC} [53]	182
C.1	Optimale Zustandstrajektorie x^* eines dynamischen Optimierungsproblems am Bei-	100
~ •	spiel des Ladezustand (SOC)-neutralen Betriebs eines Hybridfahrzeugs	188
C.2	Veranschaulichung des Optimalitätsprinzips nach R.E. Bellman [98]	188
C.3	Ermittlung der minimalen Kosten durch Variation der Steuerung u	190
C.4	Ablautplan der Dynamische Programmierung (DP) Berechnung	191
C.5	Schnittstellen zwischen DP-Algorithmus und Antriebsstrangsimulation	192

Tabellenverzeichnis

4.1 4.2 4.3	Auslegungskriterien der Antriebsstrangoptimierung	26 26 29
4.4	Zusatzliche Variationsparameter der Antriebsstrangoptimierung	39
5.1 5.2 5.3	Zur Bedatung des Fahrzeugmodells erforderliche Parameter	49 53
5.4 5.5 5.6	Literatur	57 60 66
5.7 5.8 5.9	und Anderung der aktiven Fläche Einfluss der Hubraumskalierung auf Reibmoment und Reibmitteldruck Spezifische Kosten der Antriebsstrangkomponenten Verbrauchsunterschiede eines Elektrofahrzeugs zwischen Rückwärts- und Vorwärts-	68 72 80
	simulation	82
6.1 6.2	Erfüllung der Anforderungen unterschiedlicher Betriebsstrategien	90 101
0.3 6.4	CS-Betrieb	106
0.4	Entladung (CD)-Betrieb	107
7.1 7.2	Referenzeinstellungen genetischer Operatoren nach Moses [93]	121 125
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	Fahrzeugdaten des Volkswagen e-Golf und BMW i3 [136, 60, 103, 12, 91]Fahrzeugdaten untersuchter Vollhybride [95, 15, 5, 80, 143]Fahrzeugdaten, Auslegungskriterien, RandbedingungenVariationsparameter für die Optimierung des BrennstoffzellenfahrzeugsVergleich optimaler Antriebsstrangkonfigurationen bei unterschiedlichen BZS-KostenFahrzeugdaten, Auslegungskriterien, RandbedingungenVariationsparameter für die Optimierung des parallel-seriellen HybridenVariationsparameter für die Optimierung des parallel-seriellen HybridenOptimale Parameter der Antriebsstrangkonfigurationen mit minimalen Kosten ohne(1) und mit (2&3) Berücksichtigung der Anforderung an die Reproduzierbarkeit der	128 130 133 136 143 150 151
8.9	Fahrleistungen	157
A.1	Für die Literaturrecherche verwendete Datenbanken	179
B.1	Fahrzeugdaten für die Ermittlung passender Einstellungen für die genetischen Operatoren	183

B.2	Komponenteneigenschaften Anwendung Brennstoffzellenfahrzeug	184
B.3	Komponenteneigenschaften Anwendung Mischhybrid	185

Abkürzungs- und Formelverzeichnis

Formelzeichen

Ε	Energie	[J, kWh]
g	Erdbeschleunigung	[m/s ²]
i	Übersetzung	[-]
Ι	Strom	[A]
l	Länge	[m]
Μ	Drehmoment	[Nm]
т	Masse	[kg]
n	Drehzahl	[1/min]
Р	Leistung	[W, kW]
r	Radius	[m]
SOC	Ladezustand der Traktionsbatterie (bezogen auf den nutz-	[%]
	baren Energieinhalt)	
t	Zeit	[s]
U	Spannung	[V]
v	Geschwindigkeit	[m/s]
η	Wirkungsgrad	[%]
μ	Reibkoeffizient	[-]
ω	Winkelgeschwindigkeit	[rad/s]

Abkürzungen

ABS	Antiblockiersystem
ADVISOR	Advanced Vehicle Simulator
ASG	Airbag-Steuergerät
ASM	Asynchronmaschine
ASR	Antriebsschlupfregelung
BEV	Elektrofahrzeug
BLX-α	Blend Crossover
BMS	Batteriemanagementsystem
BP	Bremspedal
BSG	Bremsensteuergerät
BS	Betriebsstrategie
BZS	Brennstoffzellensystem
BZ	Brennstoffzelle
CAN	Controller Area Network

CDT	Crowding Distance	
CD	Entladung, Abk. aus engl.: Charge Depleting	
CS	Ladungserhaltung, Abk. aus engl.: Charge Sustaining	
CVT	Stufenloses Getriebe, Abk. aus engl.: Continuously Variable Transmission	
DIRECT	Dividing Rectangles	
DP	Dynamische Programmierung, Abk. aus engl.: Dynamic Programming	
DoE	Statistische Versuchsplanung, Abk. aus engl.: Design of Experiments	
ECMS	Äquivalenzverbrauch-Minimierungsstrategie, Abk. aus engl.: Equivalent Consumption Minimization Strategy	
EM	elektrische Maschine	
ESP	Elektronisches Stabilitätsprogramm	
FCEV	Brennstoffzellenfahrzeug, Abk. aus engl.: Fuel Cell Electric Vehicle	
FP	Fahrpedal	
FTP-72	Federal Test Procedure 72	
GA	Genetische Algorithmen	
GDL	Gasdiffusionsschicht, Abk. aus engl.: Gas Diffusion Layer	
HEV	Hybridfahrzeug, Abk. aus engl.: Hybrid Electric Vehicle	
HMI	Mensch-Maschine-Schnittstelle, Abk. aus engl.: Human Machine Interface	
IGBT	Bipolartransistor mit isolierter Gate-Elektrode, Abk. aus engl.: Insulated Gate Bipolar-Transistor	
KNN	Künstliche Neuronale Netze	
LE	Leistungselektronik	
LP+	Lastpunktanhebung	
LP-	Lastpunktabsenkung	
Li-Ion	Lithium-Ionen	
MSG	Motorsteuergerät	
MW	Mutationswahrscheinlichkeit	
NEFZ	Neuer Europäischer Fahrzyklus	
NSGA-II	Non-dominated Sorting Genetic Algorithm	
NV	Nebenverbraucher	
PCU	Antriebssteuergerät, Abk. aus engl.: Powertrain Control Unit	
NT-PEM	Niedertemperatur-Polymerelektrolytmembran	
PHEV	Plug-In Hybrid Electric Vehicle	
РМР	Pontryaginsches Minimumprinzip, Abk. aus engl.: Pontryagin's Minimum Principle	

PQ	Primäre Quelle	
PSAT	Powertrain Systems Analysis Toolkit	
PSM	Permanenterregte Synchromaschine	
PSO	Schwarmoptimierung, Abk. aus engl.: Particle Swarm Optimization	
RBFNN	Radial Basis Function Neural Network Method	
ROLV	Regeln zur Optimalen Lastpunktverschiebung	
RQ	Reversible Quelle	
RW	Rekombinationswahrscheinlichkeit	
SA	Simuliertes Abkühlen, Abk. aus engl.: Simulated Annealing	
SM	Synchronmaschine	
SOC	Ladezustand, Abk. aus engl.: State of Charge	
SOP	Start of Production	
TCU	Getriebesteuergerät, Abk. aus engl.: Transmission Control Unit	
TG	Turniergröße	
VM	Verbrennungsmotor	
WLTC	Worldwide Harmonized Light Vehicles Test Cycle	
WLTP	Worldwide Harmonized Light Vehicles Test Procedures	

Indizes

Um eine Dopplung zu vermeiden, werden im Folgenden die Indizes ausgelassen, die auch als Abkürzung verwendet werden.

Ø	Durchschnitt
Antr	Antriebsstrang
В	Beschleunigung
BM	Bemessungsgröße
chem	chemisch
Dauer	dauerhaft
eff	effektiv
el	elektrisch
Erf	erforderlich
F	Fluid
Fix	konstant, fixiert
Fzg	Fahrzeug
ges	gesamt
HA	Hinterachse
i	Zählvariable / innen / indiziert
KP	Ankopplung
Komp	Komponente
Крр	Kupplung

Kr	Kraftstoff
L	Luft
Max	Maxiumum
Min	Minimum
Nenn	Nenngröße, z. B. Nennleistung
oA	ohne Antriebskomponenten
OCV	Leerlauf
р	parallel
Peak	kurzzeitig, Spitzenwert
Rad	Größe am Rad
Ref	Referenz
Rev	reversibel
Ro	Roll
rot	rotatorisch
S	Schwerpunkt
S	seriell
Soll	Sollgröße
Spez	spezifisch
St	Steigung
Sys	System
TN	Traktionsnetz
trans	translatorisch
VA	Vorderachse
Verl	Verlust
W	Wand

1 Einleitung

Die politischen und gesellschaftlichen Forderungen nach einer immer stärkeren Reduzierung der Schadstoffemissionen und insbesondere des CO₂-Ausstoßes von Kraftfahrzeugen nehmen weltweit zu. Beispielsweise fordert die Europäische Union, die durchschnittlichen CO₂-Emissionen der Fahrzeugflotten der Automobilhersteller bis zum Jahr 2020 auf 95 g/km zu senken [41]. Ähnliche Gesetze wurden auch in anderen wichtigen Automobilmärkten, wie den USA, China und Japan beschlossen [39, 104]. Bis zum Jahr 2025 und darüber hinaus wird in der Europäischen Union eine weitere deutliche Verschärfung der Grenzwerte diskutiert [39]. Elektrifizierte Antriebe bieten das Potenzial, Emissionen und (Kraftstoff-)Verbrauch zu senken oder gänzlich zu vermeiden und darüber hinaus einen Kundenmehrwert hinsichtlich Fahrleistung und Fahrkosten zu generieren. Hybrid- und Elektrofahrzeuge sind daher bereits heute fester Bestandteil des Produktportfolios der großen Automobilhersteller. Im Hinblick auf die geplanten CO₂-Grenzwerte wird deren Anteil voraussichtlich in Zukunft nochmals deutlich zunehmen.

Die aktuell verfügbaren elektrifizierten Antriebe umfassen eine große Bandbreite unterschiedlicher Ausprägungen hinsichtlich der Architektur und des Elektrifizierungsgrads. Die Architekturen reichen beispielsweise von Parallelhybriden, die im Wesentlichen eine Erweiterung konventioneller Antriebe mit Verbrennungsmotor darstellen, über Fahrzeuge mit leistungsverzweigten Hybridgetrieben bis zu den Elektro- und Brennstoffzellenfahrzeugen. Bei den beiden Letztgenannten wird vollständig auf einen Verbrennungsmotor verzichtet. Hinsichtlich des Elektrifizierungsgrads wird bei den stärker elektrifizierten Hybridfahrzeugen zwischen Voll- und Plug-In Hybriden unterschieden. Beide bieten die gesamte Bandbreite der Hybridfunktionen, wobei nur mit den extern aufladbaren Plug-In Hybriden über längere Strecken und größere Geschwindigkeiten rein elektrisch gefahren werden kann. Diese Vielfalt zeigt, dass das geeignete Antriebskonzept von diversen Faktoren abhängig ist: u. a. von den Auslegungszielen hinsichtlich Fahrleistung, Emissionen und Kosten sowie der Strategie und den verfügbaren Komponenten eines Herstellers. Vor dem Hintergrund der sich kontinuierlich weiterentwickelnden Technologien ist es notwendig, regelmäßige Neubewertungen der unterschiedlichen Konzepte durchzuführen.

Durch die zusätzlichen Freiheitsgrade bei der Auslegung hybrider Antriebsstränge ergibt sich im Vergleich zu konventionellen Fahrzeugen eine deutlich höhere Anzahl möglicher Antriebskonzepte und -dimensionierungen. Darüber hinaus existiert eine starke wechselseitige Beeinflussung der verschiedenen Antriebskomponenten, sodass die isolierte Betrachtung jeder einzelnen Komponente nicht zielführend ist. Eine umfassende Suche nach dem für den jeweiligen Anwendungsfall optimalen Gesamtsystem kann daher nur mit Hilfe systematischer computergestützter Methoden erfolgen. Mit dem Ziel immer kürzerer Entwicklungszeiten ist eine möglichst frühe Konzeptbewertung unter Berücksichtigung vieler Einflüsse und Randbedingungen anzustreben.

In dieser Arbeit wird eine simulationsgestützte Methodik zur Identifikation optimaler Antriebsstränge vorgestellt. Diese bietet die Möglichkeit, eine Vielzahl unterschiedlicher Antriebsstrangarchitekturen hinsichtlich ihrer Komponenten- und Systemeigenschaften zu optimieren und trägt dadurch wesentlich zur Steigerung der Effizienz der Fahrzeugentwicklung in der frühen Konzeptphase bei.