Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

Mahir Tim Keskin

Modell zur Vorhersage der Brennrate in der Betriebsart kontrollierte Benzinselbstzündung

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

Herausgegeben von

M. Bargende, Stuttgart, Deutschland H.-C. Reuss, Stuttgart, Deutschland J. Wiedemann, Stuttgart, Deutschland Das Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) an der Universität Stuttgart erforscht, entwickelt, appliziert und erprobt, in enger Zusammenarbeit mit der Industrie, Elemente bzw. Technologien aus dem Bereich moderner Fahrzeugkonzepte. Das Institut gliedert sich in die drei Bereiche Kraftfahrwesen, Fahrzeugantriebe und Kraftfahrzeug-Mechatronik. Aufgabe dieser Bereiche ist die Ausarbeitung des Themengebietes im Prüfstandsbetrieb, in Theorie und Simulation.

Schwerpunkte des Kraftfahrwesens sind hierbei die Aerodynamik, Akustik (NVH), Fahrdynamik und Fahrermodellierung, Leichtbau, Sicherheit, Kraftübertragung sowie Energie und Thermomanagement – auch in Verbindung mit hybriden und batterieelektrischen Fahrzeugkonzepten.

Der Bereich Fahrzeugantriebe widmet sich den Themen Brennverfahrensentwicklung einschließlich Regelungs- und Steuerungskonzeptionen bei zugleich minimierten Emissionen, komplexe Abgasnachbehandlung, Aufladesysteme und -strategien, Hybridsysteme und Betriebsstrategien sowie mechanisch-akustischen Fragestellungen.

Themen der Kraftfahrzeug-Mechatronik sind die Antriebsstrangregelung/Hybride, Elektromobilität, Bordnetz und Energiemanagement, Funktions- und Softwareentwicklung sowie Test und Diagnose.

Die Erfüllung dieser Aufgaben wird prüfstandsseitig neben vielem anderen unterstützt durch 19 Motorenprüfstände, zwei Rollenprüfstände, einen 1:1-Fahrsimulator, einen Antriebsstrangprüfstand, einen Thermowindkanal sowie einen 1:1-Aeroakustikwindkanal.

Die wissenschaftliche Reihe "Fahrzeugtechnik Universität Stuttgart" präsentiert über die am Institut entstandenen Promotionen die hervorragenden Arbeitsergebnisse der Forschungstätigkeiten am IVK.

Herausgegeben von

Prof. Dr.-Ing. Michael Bargende Lehrstuhl Fahrzeugantriebe, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Prof. Dr.-Ing. Hans-Christian Reuss Lehrstuhl Kraftfahrzeugmechatronik, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland Prof. Dr.-Ing. Jochen Wiedemann Lehrstuhl Kraftfahrwesen, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland Mahir Tim Keskin

Modell zur Vorhersage der Brennrate in der Betriebsart kontrollierte Benzinselbstzündung

Mahir Tim Keskin Stuttgart, Deutschland

Zugl.: Dissertation Universität Stuttgart, 2016

D93

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart ISBN 978-3-658-15064-8 ISBN 978-3-658-15065-5 (eBook) DOI 10.1007/978-3-658-15065-5

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden 2016

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist Teil von Springer Nature Die eingetragene Gesellschaft ist Springer Fachmedien Wiesbaden GmbH

Vorwort

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Verbrennungsmotoren und Kraftfahrwesen der Universität Stuttgart (IVK) unter der Leitung von Prof. Dr.-Ing. M. Bargende in den Jahren 2012 bis 2015.

Herrn Professor Bargende gebührt mein besonderer Dank für seine Unterstützung, das entgegengebrachte Vertrauen und den Freiraum bei der Ausgestaltung des Forschungsprojektes. Herrn Professor Beidl (Technische Universität Darmstadt) danke ich für das Interesse an der Arbeit und die Übernahme des Korreferates.

Ich danke der Forschungsvereinigung Verbrennungskraftmaschinen e.V. (FVV) für die Initiierung der Forschungsaufgabe und dem Bundesministerium für Wirtschaft und Technologie (BMWi) für die Finanzierung des Projekts über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen e. V. (AiF).

Meinem direkten Vorgesetzten, Herrn Dr.-Ing. M. Grill, gilt mein besonderer Dank für seine großartige Unterstützung in allen Belangen, insbesondere für die fachlichen Diskussionen, die die Arbeit weitergebracht haben.

Bei allen Mitarbeitern des IVK und des benachbarten Forschungsinstituts für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS) möchte ich mich für die sehr angenehme Arbeitsatmosphäre und die gute Zusammenarbeit herzlich bedanken.

Schließlich gebührt mein größter Dank meiner Familie für sämtliche Unterstützung, die ich geschenkt bekommen habe, vom ersten Wecken des Interesses an der Wissenschaft in jungen Tagen bis hin zur großen Geduld und geopferten Zeit an Wochenenden während der Fertigstellung der Arbeit – in chronologischer Reihenfolge daher mein herzlicher Dank an meine Eltern, meine Brüder, meine Frau Hatice und unsere Tochter Mira Estelle.

Stuttgart

Mahir Tim Keskin

Inhaltsverzeichnis

Vo	rwor	t		V
Ab	bildu	ngsver	zeichnis	XI
Та	beller	iverzei	chnis	XXI
Ab	kürzı	ingsve	rzeichnis	xxIII
7		nonface		vvvvii
Zu	samm	lemass	ung	алатн
Ab	strac	t		XXXIX
1	Eir	nleitu	ng	1
2	Gr	undla	gen und Stand der Technik	5
	2.1	Grund	llagen der ottomotorischen Verbrennung	5
		2.1.1	Konventionelle ottomotorische Verbrennung	5
		2.1.2	Kontrollierte Benzinselbstzündung	11
	2.2	Reale	Arbeitsprozessrechnung	
		2.2.1	Thermodynamische Grundlagen	
		2.2.2	Phänomenologische Modellierung der konventionellen	
			ottomotorischen Verbrennung	30
		2.2.3	Klopfmodellierung	
		2.2.4	Modellierung der kontrollierten Benzinselbstzündung	
3	Me	essdat	enaufbereitung und -analyse	37
	3.1	Versu	chsträger	
	3.2	Druck	verlaufs- und Ladungswechselanalyse	
	3.3	Ergeb	nisse der Messdatenauswertung	39
		3.3.1	Übersicht über untersuchte Variationen	39
		3.3.2	Typische Brennverlaufsform	42
		3.3.3	Hinweise für eine Flammenausbreitung	
		3.3.4	Hinweise auf Gemischinhomogenität	47
		3.3.5	Hinweise auf Temperatureinfluss	48
		3.3.6	Hinweise auf Radikaleinfluss	51
		3.3.7	Probleme und Grenzen der Analyse	52

4	Bes	schrei	bung des neuen Modellansatzes	.55
	4.1	Gesar	ntaufbau	55
	4.2	Berec	hnung der Volumenreaktion	57
		4.2.1	Berechnung der Gemischbildung bei Direkteinspritzung	57
		4.2.2	Beschreibung der Temperaturinhomogenitäten	60
		4.2.3	Berechnung des Zündverzuges	71
	4.3	Anpas	ssungen am Entrainmentmodell	77
		4.3.1	Berücksichtigung der veränderten Flammenoberfläche	78
		4.3.2	Berücksichtigung des Vorreaktionsniveaus im Unverbrannte	m95
	4.4	Wech	selwirkung zwischen den beiden Verbrennungsanteilen	99
		4.4.1	Berücksichtigung der Volumenreaktion bei der	
			Flammenausbreitung	99
		4.4.2	Berücksichtigung der Flammenausbreitung bei der	
			Volumenreaktion	102
	4.5	Mode	llverhalten bei Parametervariationen	105
		4.5.1	Variation von Parametern des Original-Entrainmentmodells	107
		4.5.2	Variation der räumlichen Inhomogenität	109
		4.5.3	Variation des Dämpfungsfaktors auf die beschleunigte	
			Flammengeschwindigkeit	110
		4.5.4	Variation des Beimischungsfaktors	111
		4.5.5	Variation von Zündverzugsparametern	112
		4.5.6	Variation der Standardabweichung	113
		4.5.7	Variation der Parameter des Wandeinflussbereichs	114
	4.6	Unsic	herheiten und Potentiale des Modellansatzes	116
5	Va	lidier	ung des neuen Modellansatzes	121
	51	Absti	mmprozess	121
	5.1	511	Abstimmung der Flammenausbreitung	121
		512	Abstimmung des Zündverzugs	121
		513	Abstimmung der Standardabweichung und des	122
		5.1.5	Wandeinflussbereichs	123
		514	Abstimmung der räumlichen Inhomogenität	123
		515	Abstimmung der GOT-Verbrennung	123
	52	Simul	ationsergebnisse für Strategie Restgasrückhaltung	124
	5.2	521	Variation des Restassehalts	124
		522	Variation des Resignspritzung	124
		523	Variation von Restgasgehalt und Haunteinspritzung	120
		52.5	Variation des Zündwinkels	135
		525	Variation der Voreinspritzung	142
		5.4.5		174

		5.2.6 Variation der Drosselklappenposition	148
	5.3	Simulationsergebnisse für Strategie Restgasrücksaugung	152
		5.3.1 Variation der Drosselklappenposition	152
		5.3.2 Variation der Steuerzeiten	154
	5.4	Simulationsergebnisse für Betriebsartenwechsel	157
	5.5	Abweichungen des simulierten Mitteldrucks	163
	5.6	Gesamtbetrachtung der Simulationsergebnisse	166
6	Au	sblick	169
Lit	erat	urverzeichnis	171
Lite An	erat han	urverzeichnis	171 181
Lit An	erat han A.1	urverzeichnis g Diskussion des Drehzahleinflusses	171 181

Abbildungsverzeichnis

Abbildung 2.1:	Schematische Darstellung der Verhältnisse während der Flammenkernbildung, nach [72]	6
Abbildung 2.2:	Minimaler Zündenergiebedarf in Abhängigkeit von Strömungsgeschwindigkeit (a) und Turbulenzintensität (b) für ein Propan-Luft-Gemisch bei $p = 0,17$ bar, aus [6]	7
Abbildung 2.3:	Flammenausbreitung durch Deflagration, nach [50]	3
Abbildung 2.4:	Turbulente Flammenstruktur (a) und Modellvorstellung zur Faltung der laminaren Flammenoberfläche durch Wirbel (b), aus [27]	8
Abbildung 2.5:	Selbstzündung im Endgasbereich und Ausbildung einer sekundären Reaktionsfront, aus [50]	0
Abbildung 2.6:	Druckverlauf und zugehöriges hochpassgefiltertes Signal einer klopfenden Verbrennung, aus [42] 10	0
Abbildung 2.7:	Verbrennungsfortschritt durch Detonation, aus [50]1	1
Abbildung 2.8:	Reaktionsfortschritt in einem beheizten Rohr mit der spontanen Ausbreitungsgeschwindigkeit, aus [50]12	2
Abbildung 2.9:	Einfluss des Temperaturgradienten auf den Reaktionsfortschritt und die resultierende Druckamplitude, aus [50] basierend auf [102] [103]12	2
Abbildung 2.10:	Visualisierung des Verbrennungsfortschritts mit Lichtleiterendoskopen und Photomultiplierkameras bei kontrollierter Benzinselbstzündung in einem Betriebspunkt mit Zündfunkenunterstützung; Kurbelwinkelangaben in °KW v. ZOT, Zündwinkel 45° KW v. ZOT, aus [77]	4
Abbildung 2.11:	Verbrennungsablauf bei Mehrfachzündung, aus [27]1	5
Abbildung 2.12:	Möglicher Zusammenhang zwischen laminar-turbulenter Flammengeschwindigkeit und spontaner Ausbreitungsgeschwindigkeit	6
Abbildung 2.13:	Verbrennungsvisualisierungen: (a) konventionelle fremdgezündeter Betrieb, aus [43], (b) kontrollierter Benzinselbstzündung, aus [43], (c) kontrollierte	~
	Benzinselbstzündung, aus [77] 1'	7
Abbildung 2.14:	Elementarreaktionen bei der Knallgasreaktion, nach [32]1	8

Abbildung 2.15:	Schematischer Reaktionsablauf für die Verbrennung von Kohlenwasserstoffen, nach [62]	19
Abbildung 2.16:	Schematische Darstellung des Zündverhaltens von Kohlenwasserstoffen in Abhängigkeit von Druck und	
	Temperatur, aus [39]	20
Abbildung 2.17:	Typische Brennverläufe bei der homogenen Dieselverbrennung (aus [38])	20
Abbildung 2.18:	Zündverzugszeiten für n-Heptan (links, aus [70]), Isooktan und Cyclohexan (rechts, aus [78])	21
Abbildung 2.19:	Überhöhte Darstellung der Temperaturverteilung während der Kompressionsphase, aus [65]	22
Abbildung 2.20:	Ergebnisse einer Temperaturmessung im Brennraum während der Kompression, aus [11]	22
Abbildung 2.21:	Parameter zur Kontrolle der Verbrennungslage, aus [89]	23
Abbildung 2.22:	Unterschiedliche Restgasstrategien und deren Auswirkungen auf Temperatur und Gemischschichtung, aus [56]	24
Abbildung 2.23:	Mögliche Betriebsbereiche der kontrollierten Selbstzündung in Abhängigkeit der Betriebsstrategie, aus [14]	25
Abbildung 2.24:	Beschreibung des Brennraums als thermodynamisches System, nach [35]	28
Abbildung 2.25:	Schematische Darstellung des Entrainmentmodells, nach [93]	31
Abbildung 3.1:	Variationen der Steuergrößen bei der Strategie Restgasrückhaltung (Ventilsteuerzeiten bezogen auf einen Ventilhub von 0,1 mm)	40
Abbildung 3.2:	Variationen der Steuergrößen bei der Strategie Restgasrücksaugung (Ventilsteuerzeiten bezogen auf einen Ventilhub von 0,1 mm)	41
Abbildung 3.3:	Exemplarische Brennverlaufsform der Hauptverbrennung	42
Abbildung 3.4:	Einfluss einer Zündwinkelvariation auf den Brennverlauf bei Randbedingungen, die eine laminar- turbulente Flammenausbreitung erlauben (Haupteinspritzung 295°KW v. ZOT, Drehzahl: 2000 min ⁻¹ , pmi: 3 bar, $\lambda = 1.21$, $x_{AGP,er}(ES) = 40\%$)	. 44
	$\gamma \gamma $	

Abbildung 3.5:	Einfluss einer Zündwinkelvariation auf den	
	Brennverlauf bei hohem Restgasgehalt	
	(Haupteinspritzung 260°KW v. ZOT, Drehzahl: 2000	
	min ⁻¹ , p_{mi} : 3 bar, $\lambda = 1,21$, $x_{AGR,st}(ES) = 51$ %)	45
Abbildung 3.6:	Einfluss einer Restgasvariation bei konstantem	
0	Luftverhältnis bei Betriebspunkten mit	
	Zündfunkenunterstützung (Zündwinkel 30°KW v. ZOT,	
	Drehzahl: 3000 min^{-1} , p_{mi} : 3 bar)	46
Abbildung 3.7:	Brennverläufe dreier aufeinanderfolgender Arbeitsspiele	
	während eines Betriebsartenwechsels: Details siehe	
	Kapitel 5.4	46
Abbildung 3.8.	Brennverläufe für eine Finspritzzeitnunkt-Variation der	
The second secon	GOT-Verbrennung (kein Zündfunken Drehzahl: 2000	
	min ⁻¹ n _{mi} : 2 har $\lambda = 1.58$ x _{ACP} (AS) = 60 %)	48
Abbildung 3 0.	Korrelation von Temperatur und Restgasgehalt mit der	10
Abbildung 5.7.	Verbrennungslage hei einer Restgassyariation	10
ALL91	Ein Georg den Tennen sternten bei Einen nichten seinen seuf die	49
Abbildung 5.10:	Enfluss der Temperatur der Einspritzbeginn auf die maximala Propriete	50
		30
Abbildung 3.11:	Zum Erzielen einer wirkungsgradoptimalen	
	Schwerpunktlage benotigte Kombinationen von	
	(Heurteinenriteren inspiritzeitpunkt	50
	(Haupteinspritzung jeweils 80°K w n. GOT)	50
Abbildung 3.12:	Box-Whisker-Plot für die Temperaturen (im	
	Unverbrannten) bei Brennbeginn (5%- beziehungsweise	
	10%-Umsatz) für verschiedene Restgasstrategien	52
Abbildung 4.1:	Gegenüberstellung der beiden grundsätzlichen	
	Mechanismen, die in der Betriebsart kontrollierte	
	Benzinselbstzündung zum Verbrennungsfortschritt	
	beitragen (Verbrennungsvisualisierungen aus [43])	56
Abbildung 4.2:	Anstieg der aufbereiteten Masse bei einer	
	Einspritzzeitpunkt-Variation während der negativen	
	Ventilüberschneidung	59
Abbildung 4.3:	Simulierter Brennverlauf der GOT-Verbrennung für eine	
	Variation des Einspritzzeitpunkts	59
Abbildung 4.4:	Veranschaulichung der sequentiellen Selbstzündung	
-	unter Annahme eines verteilten Zündintegrals für 20	
	verschiedene Temperaturgruppen	61

Abbildung 4.5:	Dichte- und Verteilungsfunktion der Normalverteilung für verschiedene Werte von Erwartungswert und	
	Standardabweichung	63
Abbildung 4.6:	Beispiele für die Dichtefunktionen verschiedener kontaminierter Normalverteilungen	66
Abbildung 4.7:	Einteilung des Brennraumos in einen Normal- und einen Wandeinflussbereich	67
Abbildung 4.8:	Abschätzungen zur Festlegung der Mitteltemperatur des Wandeinflussbereichs	69
Abbildung 4.9:	Verbrennungsfortschritt anhand des "verteilten Zündintegrals" unter Vernachlässigung der Flammenausbreitung	77
Abbildung 4.10:	Beispiel für verschiedene räumliche Temperaturverteilungen mit identischer Häufigkeitsverteilung	80
Abbildung 4.11:	Auswirkungen unterschiedlicher Abschätzungen für den Wandeinfluss an einem Betriebspunkt mit hohem Anteil laminarer Flammenausbreitung (Zündwinkel 30°KW v. ZOT, Drehzahl: 3000 min ⁻¹ , p _{mi} : 3 bar, $\lambda = 1,06$, $x_{AGR,st} = 25$ %	91
Abbildung 4.12:	Faktor der Oberflächenvergrößerung bei Aufteilung eines Kugelvolumens auf zwei Kugeln in Abhängigkeit von deren Volumenverhältnis	81
Abbildung 4.13:	Faktor der Oberflächenvergrößerung f_n bei Aufteilung eines Kugelvolumens V_{ges} auf drei Kugeln mit den Volumina V_1 , V_2 und V_3 in Abhängigkeit von deren Volumenverhältnis	84
Abbildung 4.14:	Maximal möglicher Faktor der Oberflächenvergrößerung bei Aufteilung eines Kugelvolumens auf mehrere Kugeln in Abhängigkeit von deren Anzahl	86
Abbildung 4.15:	Urnenexperiment als Analogie zur Fragestellung, wie stark die Überlappung zweier Kugeln ist	87
Abbildung 4.16:	Hypergeometrische Wahrscheinlichkeitsverteilung für die Parameter $N = 1000$, $M = 100$, $n = 20$	88
Abbildung 4.17:	Überlappung zweier Kugeln mit dem gleichen Radius r im Abstand Δ	89

Abbildung 4.18:	Faktor der Oberflächenvergrößerung im Sonderfall zweier Kugeln mit dem gleichen Radius in Abhängigkeit	
Abbildung 4.19:	von dem Jeweiligen Überlappungsgrad Überlappungsgrad zweier Kugeln mit dem gleichen Radius in Abhängigkeit ihres dimensionslosen Abstands voneinander	92 93
Abbildung 4.20:	Faktor der Oberflächenvergrößerung in Abhängigkeit von dem jeweiligen Überlappungsgrad für unterschiedliche Anzahlen an Zündzentren	94
Abbildung 4.21:	Zusammenfassendes Vorgehen zur Bestimmung der Flammenoberfläche beim Vorhandensein mehrerer Zündorte	95
Abbildung 4.22:	Änderung der relativen laminaren Flammengeschwindigkeit in Abhängigkeit der relativen Starttemperatur für das im Text beschriebene Gedankenexperiment	98
Abbildung 4.23:	Anteile von Flammenausbreitung und Volumenreaktion am Brennverlauf für einen typischen Betriebspunkt (Drehzahl: 2000 min ⁻¹ , p _{mi} : 3 bar, $\lambda = 1,16$, x _{AGR,st} = 36 %, Haupteinspritzung 330°KW v. ZOT)	. 102
Abbildung 4.24:	Zusammenwirken von Volumenreaktion und Flammenausbreitung während des Verbrennungsfortschritts	. 103
Abbildung 4.25:	Aufteilung der Brennrate in Anteile für Flammenausbreitung und Volumenreaktion in Abhängigkeit der Randbedingungen (dünn: $\lambda = 1,03$, $x_{AGR,st} = 40$ %; dick: $\lambda = 1,06$, $x_{AGR,st} = 25$ %; in beiden Fällen Drehzahl: 3000 min ⁻¹ , p _{mi} : 3 bar, Zündwinkel 30°KW v. ZOT)	105
Abbildung 4.26:	Auswirkung einer Variation des Parameters C _k auf den Brennverlauf (Drehzahl: 3000 min ⁻¹ , p _{mi} : 3 bar, $\lambda = 1,04$, $x_{AGR,st} = 39$ %, Haupteinspritzung 250°KW v. ZOT, Zündwinkel 30°KW v. ZOT)	108
Abbildung 4.27:	Auswirkung einer Variation des Parameters a_{ZZP} auf den Brennverlauf (Drehzahl: 3000 min ⁻¹ , p_{mi} : 3 bar, $\lambda = 1,04$, $x_{AGR,st} = 39$ %, Haupteinspritzung 250°KW v. ZOT, Zündwinkel 30°KW v. ZOT)	109
	-	

Abbildung 4.28:	Auswirkung einer Variation des Faktors für die räumliche Inhomogenität auf den Brennverlauf (Drehzahl: 3000 min ⁻¹ , p _{mi} : 3 bar, $\lambda = 1,04$, $x_{AGR,st} = 39$ %, Haupteinspritzung 250°KW v. ZOT, Zündwinkel 30°KW v. ZOT)	. 110
Abbildung 4.29:	Auswirkung einer Variation des Dämpfungsfaktors für die beschleunigte Flammengeschwindigkeit auf den Brennverlauf (Drehzahl: 3000 min ⁻¹ , p _{mi} : 3 bar, $\lambda = 1,04$, $x_{AGR,st} = 39$ %, Haupteinspritzung 250°KW v. ZOT, Zündwinkel 30°KW v. ZOT)	. 111
Abbildung 4.30:	Auswirkung einer Variation des Beimischungsfaktors(Drehzahl: 2000 min ⁻¹ , p _{mi} : 2 bar, λ = 1,57, x _{AGR,st} (ES) = 37 %, Haupteinspritzung 20°KW v. GOT)	. 112
Abbildung 4.31:	Auswirkung einer Variation des durch 1000 dividierten Kehrwerts des präexponentiellen Faktors im Zündintegral auf den Brennverlauf (Drehzahl: 3000 min ⁻¹ , p _{mi} : 3 bar, $\lambda = 1,04$, x _{AGR,st} = 39 %, Haupteinspritzung 250°KW v. ZOT, Zündwinkel 30°KW v. ZOT)	. 113
Abbildung 4.32:	Auswirkung einer Variation der Standardabweichung der Temperaturverteilung auf den Brennverlauf (Drehzahl: 3000 min ⁻¹ , p _{mi} : 3 bar, $\lambda = 1,04$, x _{AGR,st} = 39 %, Haupteinspritzung 250°KW v. ZOT, Zündwinkel 30°KW v. ZOT)	. 114
Abbildung 4.33:	Auswirkung einer Variation des Verhältnisfaktors der Standardabweichung für den Wandeinflussbereich (Drehzahl: 3000 min ⁻¹ , p _{mi} : 3 bar, $\lambda = 1,04$, $x_{AGR,st} = 39$ %, Haupteinspritzung 250°KW v. ZOT, Zündwinkel 30°KW v. ZOT)	. 115
Abbildung 4.34:	Auswirkung einer Variation des Massenanteils des Wandeinflussbereichs (Drehzahl: 3000 min ⁻¹ , p _{mi} : 3 bar, $\lambda = 1,04$, $x_{AGR,st} = 39$ %, Haupteinspritzung 250°KW v. ZOT, Zündwinkel 30°KW v. ZOT)	. 116
Abbildung 4.35:	Für Isooktan gemessener und mit der gefundenen Abstimmung berechneter Zündverzug bei stöchiometrischem Gemisch und 10 bar Druck in Abhängigkeit der Restgasrate, Messwerte (gestrichelt) aus [78]	. 118

Abbildung 5.1:	Simulation eines konventionellen fremdgezündeten Betriebspunkts mit dem neuen Brennverlaufsmodell (Drehzahl: 3000 min ⁻¹ , p _{mi} : 3 bar, $\lambda = 1,00$, $x_{AGR,st} = 18$	100
	%, Zundwinkel 30°KW v. ZO1)	122
Abbildung 5.2:	Brennverlaufe aus der Druckverlaufsanalyse für die Restassyariation	125
Abbildung 5 3.	Simuliarta Brannvarläufa für dia Dastassuariation	125
Abbildung 5.5.	Pronpyorläufe aus der Druckverlaufeanaluse für die	120
Abbildung 5.4:	Variation der Haupteinspritzung	127
Abbildung 5.5:	Simulierte Brennverläufe für die Variation der	100
	Haupteinspritzung	128
Abbildung 5.6:	Brennverlaufe aus der Druckverlaufsanalyse für eine	
	Haupteinspritzung (ohne Zündfunkenunterstützung)	120
Abbildung 5.7.	Simulierte Brennverläufe für eine kombinierte Variation	12)
Abbildung 5.7.	von Restgasgehalt und Haupteinspritzung (ohne	
	Zündfunkenunterstützung)	130
Abbildung 5.8:	Brennverläufe aus der Druckverlaufsanalyse für eine	
	kombinierte Variation von Restgasgehalt und	
	Haupteinspritzung (mit Zündfunkenunterstützung)	131
Abbildung 5.9:	Simulierte Brennverläufe für eine kombinierte Variation	
U U	von Restgasgehalt und Haupteinspritzung (mit	
	Zündfunkenunterstützung)	132
Abbildung 5.10:	Brennverläufe aus der Druckverlaufsanalyse für eine	
	kombinierte Variation von Restgasgehalt,	
	Haupteinspritzung und Drosselklappenposition (mit	100
	Zundfunkenunterstutzung)	133
Abbildung 5.11:	Simulierte Brennverläufe für eine kombinierte Variation	
	Von Kestgasgenalt, Haupteinspritzung und Drosselklappenposition (mit Zündfunkenunterstützung)	12/
Abbildung 5 12.	Antail der Volumenreaktion hei der Simulation der	134
Abbildung 5.12:	kombinierten Variation von Restgasgehalt	
	Haupteinspritzung und Drosselklappenposition	134
Abbildung 5.13:	Anteile der Flammenausbreitung bei der Simulation der	
Tibblidding 5.10.	kombinierten Variation von Restgasgehalt.	
	Haupteinspritzung und Drosselklappenposition	135
Abbildung 5.14:	Brennverläufe aus der Druckverlaufsanalyse für eine	
0	Zündwinkelvariation bei hohen Restgasgehalten	136

Abbildung 5.15:	Simulierte Brennverläufe für eine Zündwinkelvariation bei hohen Restgasgehalten	137
Abbildung 5.16:	Brennverläufe aus der Druckverlaufsanalyse für eine	. 157
	Zündwinkelvariation bei niedrigeren Restgasgehalten	. 138
Abbildung 5.17:	Simulierte Brennverläufe für eine Zündwinkelvariation bei niedrigeren Restgasgehalten	. 139
Abbildung 5.18:	Brennverläufe aus der Druckverlaufsanalyse für eine Zündwinkelvariation bei niedrigeren Restgasgehalten und hohem Luftverhältnis	. 140
Abbildung 5.19:	Simulierte Brennverläufe für eine Zündwinkelvariation bei niedrigeren Restgasgehalten und hohem Luftverhältnis	. 141
Abbildung 5.20:	Über eine Flammenausbreitung verbrennender Anteil für die Zündwinkelvariation bei niedrigeren	
	Restgasgehalten und hohem Luftverhältnis	. 141
Abbildung 5.21:	Simulation der Zündwinkelvariation aus Abbildung 5.17 mit einer Abstimmung für einen längeren Zündverzug	. 142
Abbildung 5.22:	Brennverläufe um GOT aus der Druckverlaufsanalyse für eine Variation der Voreinspritzung	. 143
Abbildung 5.23:	Brennverläufe um GOT aus der Simulation für eine Variation der Voreinspritzung	. 144
Abbildung 5.24:	Sensitivitätsanalyse für die Variation der Voreinspritzung	. 145
Abbildung 5.25:	Brennverläufe aus der Druckverlaufsanalyse für eine Variation der Voreinspritzung bei später	140
	Haupteinspritzung.	. 146
Abbildung 5.26:	Simulierte Brennverläufe für eine Variation der Voreinspritzung bei später Haupteinspritzung	. 146
Abbildung 5.27:	Brennverläufe aus der Druckverlaufsanalyse für eine Variation der Voreinspritzung bei früher	
	Haupteinspritzung	. 147
Abbildung 5.28:	Simulierte Brennverläufe für eine Variation der Voreinspritzung bei früher Haupteinspritzung	. 148
Abbildung 5.29:	Brennverläufe um GOT aus der Druckverlaufsanalyse für eine Variation der Drosselklappenposition	. 149
Abbildung 5.30:	Brennverläufe um GOT aus der Simulation für eine Variation der Drosselklappenposition	.150
Abbildung 5.31:	Brennverläufe aus der Druckverlaufsanalyse für eine Variation der Drosselklappenposition	. 151
	rr-Poonon	

Abbildung 5.32:	Simulierte Brennverläufe für eine Variation der Drosselklappenposition	151
Abbildung 5.33:	Brennverläufe aus der Druckverlaufsanalyse für eine Variation der Drosselklappenposition (Strategie Restgasrücksaugung)	153
Abbildung 5.34:	Simulierte Brennverläufe für eine Variation der Drosselklappenposition (Strategie Restgasrücksaugung)	153
Abbildung 5.35:	Brennverläufe aus der Druckverlaufsanalyse für eine AS-Steuerzeitenvariation (Strategie Restgasrücksaugung)	155
Abbildung 5.36:	Simulierte Brennverläufe für eine AS- Steuerzeitenvariation (Strategie Restgasrücksaugung)	155
Abbildung 5.37:	Brennverläufe aus der Druckverlaufsanalyse für eine ES-Steuerzeitenvariation (Strategie Restgasrücksaugung)	156
Abbildung 5.38:	Simulierte Brennverläufe für eine ES- Steuerzeitenvariation (Strategie Restgasrücksaugung)	156
Abbildung 5.39:	Analyse wichtiger Betriebsparameter während des Betriebsartenwechsels, aus [5]; die Arbeitsspiele 60 bis 80 entsprechen den hier gezeigten Arbeitsspielen 1 bis 21	157
Abbildung 5.40:	Brennverläufe aus der Druckverlaufsanalyse für den Betriebsartenwechsel, Arbeitsspiele 4, 7, 10 und 13 bis 16	158
Abbildung 5.41:	Simulierte Brennverläufe für den Betriebsartenwechsel, Arbeitsspiele 4, 7, 10 und 13 bis 16	158
Abbildung 5.42:	Brennverläufe aus der Druckverlaufsanalyse und der Simulation für den Betriebsartenwechsel, Arbeitsspiel 1 bis 7	159
Abbildung 5.43:	Brennverläufe aus der Druckverlaufsanalyse und der Simulation für den Betriebsartenwechsel, Arbeitsspiel 1 bis 7	160
Abbildung 5.44:	Brennverläufe aus der Druckverlaufsanalyse für den Betriebsartenwechsel, Arbeitsspiel 8 bis 14	161
Abbildung 5.45:	Simulierte Brennverläufe für den Betriebsartenwechsel, Arbeitsspiel 8 bis 14	161
Abbildung 5.46:	Brennverläufe aus der Druckverlaufsanalyse für den Betriebsartenwechsel, Arbeitsspiel 15 bis 21	162

Abbildung 5.47:	Simulierte Brennverläufe für den Betriebsartenwechsel, Arbeitsspiel 15 bis 21	163
Abbildung 5.48:	Relative bzw. absoluter Betrag der Mitteldruckabweichung ($p_{mi,HD}$ nach Shelby) für etwa 150 simulierte Betriebspunkte	164
Abbildung 5.49:	Relative bzw. absolute Mitteldruckabweichung ohne Berechnung des Betrags ($p_{mi,HD}$ nach Shelby) für etwa 150 simulierte Betriebspunkte	165
Abbildung 5.50:	Sensitivität des Modells auf Temperaturänderungen anhand der Simulation eines exemplarischen Betriebspunkts	167
Abbildung A.1:	Vergleich der Brennverläufe aus der Druckverlaufsanalyse für die Betriebspunkte aus Tabelle A.1	182
Abbildung A.2:	Vergleich der Brennverläufe aus Druckverlaufsanalyse und Simulation für Betriebspunkt G aus Tabelle A.1 mit einer Integration über dem Kurbelwinkel beziehungsweise über der Zeit	183
Abbildung A.3:	Vergleich der laminaren Flammengeschwindigkeiten von Benzin nach Heywood beziehungsweise Isooktan nach Gülder bei Referenzbedingungen	186
Abbildung A.4:	Vergleich der laminaren Flammengeschwindigkeiten von Methan nach Gülder und einem angepassten Heywood-Ansatz bei Referenzbedingungen	187
Abbildung A.5:	Vergleich der laminaren Flammengeschwindigkeiten von Benzin nach Heywood beziehungsweise Isooktan nach Gülder in Abhängigkeit von der Temperatur bei stöchiometrischem Gemisch und einem Druck von 1 bar	. 188

Tabellenverzeichnis

Tabelle 1.1:	Gegenüberstellung verschiedener Brennverfahren, nach [65]	
Tabelle 2.1:	Übersicht über Klassen von Brennverlaufsmodellen im Rahmen der Arbeitsprozessrechnung	26
Tabelle 3.1:	Technische Daten des zur Modellentwicklung verwendeten Einzylinderaggregats [5]	
Tabelle 3.2:	Übersicht über die zur Modellentwicklung genutzten Stellgrößenvariationen (RH: Restgasrückhaltung, RS: Restgasrücksaugung, var.: variiert, const.: konstant gehalten, -: nicht durchgeführt)	41
Tabelle 4.1:	Übersicht über alle Abstimmparameter	106
Tabelle 5.1:	Kenngrößen der Restgasvariation	125
Tabelle 5.2:	Kenngrößen der Variation der Haupteinspritzung	126
Tabelle 5.3:	Kenngrößen der kombinierten Variation von Restgasgehalt und Haupteinspritzung (ohne Zündfunkenunterstützung)	128
Tabelle 5.4:	Kenngrößen der kombinierten Variation von Restgasgehalt und Haupteinspritzung (mit Zündfunkenunterstützung).	120
Tabelle 5.5:	Kenngrößen der kombinierten Variation von Restgasgehalt, Haupteinspritzung und Drosselklappenposition.	132
Tabelle 5.6:	Kenngrößen der Zündwinkelvariation bei hohem Restgasgehalt	135
Tabelle 5.7:	Kenngrößen der Zündwinkelvariation bei niedrigerem Restgasgehalt	137
Tabelle 5.8:	Kenngrößen der Zündwinkelvariation bei niedrigerem Restgasgehalt und hohem Luftverhältnis	139
Tabelle 5.9:	Kenngrößen der Variation der Voreinspritzung	143
Tabelle 5.10:	Kenngrößen der Variation der Drosselklappenposition	148
Tabelle 5.11:	Kenngrößen der Variation der Drosselklappenposition	
	(Restgasrücksaugung)	152

Tabelle 5.12:	Kenngrößen der AS-Steuerzeitenvariation	
	(Restgasrücksaugung)	154
Tabelle 5.13:	Kenngrößen der ES-Steuerzeitenvariation	
	(Restgasrücksaugung)	154
Tabelle A.1:	Auswahl von Betriebspunkten, die sich nur hinsichtlich	
	der Drehzahl deutlich unterscheiden	181

Abkürzungsverzeichnis

Lateinische Symbole

Α	$[(m^3/mol)^{\text{Reaktionsordnung}}/s]$	präexponentieller Faktor
Α	[-]	Summenformel des Edukts A
а	[-]	Parameter zur Abstimmung des Druckein- flusses
а	[m]	Grundkreisradius des Kugelsegments
A_F	[m ³]	Flammenoberfläche
A_{KK}	[m ²]	Oberfläche der Kugelkalotte
a _{ZZP}	[-]	Parameter zur Beschreibung der erniedrig- ten Flammengeschwindigkeit in der frü- hen Ausbreitungsphase
A*	$[s/(m^3/mol)^{Reaktionsordnung}]$	durch 1000 dividierter Kehrwert des präexponentiellen Faktors
В	[-]	Summenformel des Edukts B
b	[K]	Aktivierungstemperatur
С	[-]	Summenformel des Produkts C
С	[1/Pa ^a]	Parameter zur Abstimmung des präexpo- nentiellen Faktors
C _A	[mol/m ³]	Konzentration des Stoffs A
C _B	[mol/m ³]	Konzentration des Stoffs B
C _{Beimisch}	[-]	Parameter zur Abstimmung der Beimi- schung
C _{Kr}	[mol/m ³]	Kraftstoffkonzentration
<i>C</i> ₀₂	[mol/m ³]	Sauerstoffkonzentration
C _{Rad}	[mol/m ³]	Radikalkonzentration

$C_{\sigma,WEB-NB}$	[-]	Verhältnis der Standardabweichungen von Wandeinfluss- und Normalbereich (Ab- stimmparameter)
D	[m]	Bohrungsdurchmesser
D	[-]	Summenformel des Produkts D
D _{Vrkt}	[-]	Dämpfungsfaktor (Abstimmparameter) ≥ 1
$rac{dm_A}{darphi}$	[kg/°KW]	Auslassmassenstrom
$\frac{dm_B}{dt}$	[kg/s]	Massenstrom ins Verbrannte
${dm_B\over darphi}$	[kg/°KW]	Einspritzmassenstrom
$rac{dm_{Beimisch}}{dt}$	[kg/s]	Massenstrom in den aufbereiteten Bereich
$rac{dm_E}{dt}$	[kg/s]	Eindringmassenstrom in die Flammenzone
$rac{dm_{E,orig}}{dt}$	[kg/s]	Eindringmassenstrom im originalen Ent- rainmentmodell nach Gleichung (2.5)
$rac{dm_E}{darphi}$	[kg/°KW]	Einlassmassenstrom
$\frac{dm_F}{dt}$	[kg/s]	Änderung der Masse in der Flammenzone
$rac{dm_L}{darphi}$	[kg/°KW]	Leckagemassenstrom
$rac{dm_{uv}}{dt}$	[kg/s]	Massenstrom ins Unverbrannte
$\frac{dm_v}{dt}$	[kg/s]	Massenstrom ins Verbrannte
$rac{dm_{v,dir}}{dt}$	[kg/s]	über die Volumenreaktion (direkt) ver- brennender Massenstrom