

LASER IN DER MATERIALBEARBEITUNG

Forschungsberichte des IFSW

Stefan Piehler

Resonatorinterne Kompensation thermisch induzierter Wellenfrontstörungen in hochbrillanten Scheibenlasern

Herbert Utz Verlag UIZ

Stefan Piehler

Resonatorinterne Kompensation thermisch induzierter Wellenfrontstörungen in hochbrillanten Scheibenlasern

Herbert Utz Verlag · München 2017

Laser in der Materialbearbeitung Band 87

Ebook (PDF)-Ausgabe: ISBN 978-3-8316-7349-0 Version: 1 vom 19.12.2017 Copyright© Herbert Utz Verlag 2017

Alternative Ausgabe: Softcover ISBN 978-3-8316-4690-6 Copyright© Herbert Utz Verlag 2017

Laser in der Materialbearbeitung Forschungsberichte des IFSW

S. Piehler Resonatorinterne Kompensation thermisch induzierter Wellenfrontstörungen in hochbrillanten Scheibenlasern

Laser in der Materialbearbeitung Forschungsberichte des IFSW

Herausgegeben von Prof. Dr. phil. nat. Thomas Graf, Universität Stuttgart Institut für Strahlwerkzeuge (IFSW)

Das Strahlwerkzeug Laser gewinnt zunehmende Bedeutung für die industrielle Fertigung. Einhergehend mit seiner Akzeptanz und Verbreitung wachsen die Anforderungen bezüglich Effizienz und Qualität an die Geräte selbst wie auch an die Bearbeitungsprozesse. Gleichzeitig werden immer neue Anwendungsfelder erschlossen. In diesem Zusammenhang auftretende wissenschaftliche und technische Problemstellungen können nur in partnerschaftlicher Zusammenarbeit zwischen Industrie und Forschungsinstituten bewältigt werden.

Das 1986 gegründete Institut für Strahlwerkzeuge der Universität Stuttgart (IFSW) beschäftigt sich unter verschiedenen Aspekten und in vielfältiger Form mit dem Laser als einem Werkzeug. Wesentliche Schwerpunkte bilden die Weiterentwicklung von Strahlquellen, optischen Elementen zur Strahlführung und Strahlformung, Komponenten zur Prozessdurchführung und die Optimierung der Bearbeitungsverfahren. Die Arbeiten umfassen den Bereich von physikalischen Grundlagen über anwendungsorientierte Aufgabenstellungen bis hin zu praxisnaher Auftragsforschung.

Die Buchreihe "Laser in der Materialbearbeitung – Forschungsberichte des IFSW" soll einen in der Industrie wie in Forschungsinstituten tätigen Interessentenkreis über abgeschlossene Forschungsarbeiten, Themenschwerpunkte und Dissertationen informieren. Studenten soll die Möglichkeit der Wissensvertiefung gegeben werden.

Resonatorinterne Kompensation thermisch induzierter Wellenfrontstörungen in hochbrillanten Scheibenlasern

von Dr.-Ing. Stefan Piehler Universität Stuttgart

Herbert Utz Verlag · Wissenschaft München Als Dissertation genehmigt von der Fakultät für Konstruktions-, Produktions- und Fahrzeugtechnik der Universität Stuttgart

Hauptberichter: Prof. Dr. phil. nat. Thomas Graf Mitberichter: Prof. Dr. rer. nat. Alois Herkommer

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugleich: Dissertation, Stuttgart, Univ., 2017

D 93

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Wiedergabe auf fotomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben – auch bei nur auszugsweiser Verwendung – vorbehalten.

Copyright © Herbert Utz Verlag GmbH 2017

ISBN 978-3-8316-4690-6

Printed in Germany

Herbert Utz Verlag GmbH, München Tel.: 089-277791-00 · www.utzverlag.de

Inhalt

In	halt				5
Li	ste d	ler ver	wendete	n Symbole	7
K	urzfa	ssung			13
E	ctenc	led Al	ostract		15
1	Ein	leitung	g		21
	1.1	Skalie	rungsproł	lematik bei hochbrillanten Scheibenlasern	21
	1.2	Deform	mierbare (Spiegel für den resonatorinternen Einsatz	26
	1.3	Ziele 1	und Aufb	au der Arbeit	29
2	Gru	rundlagen			31
	2.1	Thern	nische Eff	ekte im Scheibenlaserkristall	31
	2.2	Weller	nfrontstör	ungen im Scheibenlaserkristall	36
	2.3	Metho	oden zur l	Resonatormodellierung	42
	2.4	Auswi	irkung res	sonatorinterner Wellenfrontstörungen	46
		2.4.1	Sphärise	che Wellenfrontstörungen	47
		2.4.2	Asphäri	sche Wellenfrontstörungen	49
3	\mathbf{Res}	Resonatorinterne Kompensation von Wellenfrontstörungen			53
	3.1	Kompensation sphärischer Wellenfrontstörungen			54
	3.2	Komp	ensation	asphärischer Wellenfrontstörungen	56
4	Flä	chenla	stspiegel	für den resonatorinternen Einsatz	63
	4.1	Flächenlastspiegel - Grundprinzip und Auslegung			63
	4.2	Sphär	ische Fläc	chenlastspiegel	67
		4.2.1	Auslegu	ng	68
			4.2.1.1	Sphärische Flächenlastspiegel homogener Dicke	68
			4.2.1.2	Sphärische Flächenlastspiegel mit optimierter Di-	
				ckenverteilung	70
		4.2.2	Charakt	erisierung	74
			4.2.2.1	Sphärische Flächenlastspiegel mit homogener Dicke	76

			4.2.2.2	Sphärische Flächenlastspiegel mit optimierter Di-	
				ckenverteilung	. 80
	4.3 Asphärische Flächenlastspiegel			ichenlastspiegel	. 86
		4.3.1	Auslegu	ng	. 86
		4.3.2	Charakt	erisierung	91
5	Exp	erime	ntelle D	emonstration der resonatorinternen Störung	3-
	kompensation			96	
	5.1 Sphärische Kompensation			97	
	5.2 Asphärische Kompensation			106	
	5.3	Komb	inierte sp	härische und asphärische Kompensation	114
6	Zus	ammei	nfassung	und Ausblick	123
Literaturverzeichnis			129		
Da	Danksagung 1				136

Liste der verwendeten Symbole

\mathbf{Symbol}	Bedeutung	Einheit
а	Plattenradius	m
Α	Feldamplitude	W/m
A_1	Komponente einer Strahltransfermatrix	
B_1	Komponente einer Strahltransfermatrix	
c_0	Polynomkoeffizient	
c_1	Polynomkoeffizient	
c_2	Polynomkoeffizient	
<i>c</i> ₃	Polynomkoeffizient	
<i>c</i> ₄	Polynomkoeffizient	
C_1	Komponente einer Strahltransfermatrix	
d_0	Kristalldicke	m
$d_{00,L}$	Durchmesser der Grundmode an beliebiger Stelle \boldsymbol{z}_L	m
	im Resonator	
dn/dT	Thermooptischer Koeffizient	1/K
D_1	Komponente einer Strahltransfermatrix	
D_g	Vorgegebene Brechkraft	1/m
r	Radiale Koordinate	m
WPump	Pumpfleckradius	m
c_{SG}	Supergauß-Exponent	
d_P	Pumpfleckdurchmesser	m
dpt	Dioptrie (1 dpt = 1 m^{-1})	1/m
D	Brechkraft	1/m
D_{Disk}	Effektive Brechkraft der Scheibe	1/m
D_S	Brechkraft eines sphärischen Aberrators	1/m
D_x	Brechkraft in x-Richtung	1/m
D_y	Brechkraft in y-Richtung	1/m
D^*	Thermisch induzierte Brechkraft pro Leistung	W/m

Ε	Elastizitätsmodul	N/mm^2
E_0	Feldverteilung	V/m
E_{Mode}	Feldverteilung der Resonatormode	V/m
E_i	Feldverteilung der i-ten Mode	V/m
f	Brennweite	m
F_0	Biegesteifigkeit	Nm
$F_{opt}(r)$	Optimierte Biegesteifigkeitsverteilung	Nm
F(r)	Lokale Biegesteifigkeit	Nm
81	Resonatorparameter	
82	Resonatorparameter	
$g_1g_{2,soll}$	Vorgegebener Betriebspunkt bzw. Resonatorstabili-	
	tät	
h	Plattendicke	т
h(r)	Dickenverteilung	т
h_{rs}	Reststegdicke	т
h_{SG}	Stufenhöhe der Supergauß-Verteilung	т
ħ	Planck'sches Wirkungsquantum ($\approx 6,626 \cdot 10^{-34} Js$)	Js
i	Imaginäre Einheit	
Ι	Leistungsdichte bzw. Intensität	W/m^2
I_0	Spitzenintensität	W/m^2
Κ	Propagationsmatrix	
K_1	Propagationsmatrix des 1. Elements	
K_2	Propagationsmatrix des 2. Elements	
K_n	Propagationsmatrix des n. Elements	
Ĩ	Effektive Resonatorlänge	m
L _{0,Kristall}	Geometrische Länge bei Durchgang durch Kristall	т
	(homogene Temperaturverteilung)	
L_1	Länge im Resonator	т
L_2	Länge im Resonator	т
L_3	Länge im Resonator	т
L _{Kristall}	Geometrische Länge bei Durchgang durch Kristall	m
M^2	Beugungsmaßzahl	
M_x^2	Beugungsmaßzahl in x-Richtung	
M_y^2	Beugungsmaßzahl in y-Richtung	

M_R^2	Geometrisch gemittelte Beugungsmaßzahl			
M_1	Strahltransfermatrix			
M_2	Strahltransfermatrix			
M_3	Strahltransfermatrix			
M_K	Strahltransfermatrix eines sphärischen Kompensa-			
	tors			
M_S	Strahltransfermatrix eines sphärischen Aberrators			
M_r	Radiales Biegemoment	Nm		
M_t	Tangentiales Biegemoment	Nm		
n_0	Brechungsindex des Kristallmaterials bei homoge-			
	ner Temperatur			
n _{Kristall}	Brechungsindex des Kristallmaterials			
n _{Luft}	Brechungsindex Luft			
N_F	Fresnelzahl			
OPD	Optische Pfadlängendifferenz			
OPD _{Fit}	Fitfunktion zur Anpassung an gemessene OPD	m		
OPD _{Kristall}	OPD bei Durchgang durch Kristall			
OPD _{Luft}	OPD durch aufsteigende warme Luft vor der Schei-	m		
	be			
OPD_{RS}	OPD aufgrund der Verschiebung der Kristallrück-	m		
	seite			
OPL	Optische Pfadlänge	т		
OPL_0	Optische Pfadlänge im ungepumpten Laserkristall	т		
р	Flächenlast	N/mm^2		
p_g	Vorgegebener Druck	N/mm^2		
P_h	Heizleistung	W		
P _{Pump}	Pumpleistung	W		
q	Komplexer q-Parameter	m		
r _a	Nutaußenradius	m		
r _i	Nutinnenradius			
r _{max}	Nutzbarer Radius	m		
r_t	Radiale Koordinate des Sphärisch/asphärischen	m		
	Übergangs			
R	Krümmungsradius	т		
$R_{0,Disk}$	Effektiver Krümmungsradius der Scheibe	т		

R _{Disk}	Krümmungsradius der ungepumpten Scheibe	т
R_{Disk,g_1g_2}	Krümmungsradius der Scheibe am Rand des Stabi-	т
	litätsbereichs	
R_g	Vorgegebener Krümmungsradius	т
R_k	Kantenverrundung	т
R_x	Krümmungsradius in x-Richtung	т
R_y	Krümmungsradius in y-Richtung	т
S	Optischer Pfad	т
Т	Temperatur	K
Т	Strahltransfermatrix für einfachen Durchgang durch	
	Resonator	
Т	Transmissionsgrad	
T_0	Kristalltemperatur im ungepumpten Zustand	K
T_{Luft}	Temperatur der Umgebungsluft	K
U	Umlaufmatrix	
V_B	Beugungsverluste	
<i>w</i> ₀₀	Strahlradius der Grundmode	т
<i>w</i> _{00,<i>D</i>}	Strahlradius der Grundmode auf der Scheibe	т
w _a	asphärische Komponente der Verformung	т
Wg	Vorgegebene Verformungskurve	т
w_{max}	Deformationshöhe im Zentrum	т
WMess	Gemessene Oberflächendeformation	т
W _{MM}	Strahlradis eines Multimodestrahls	т
w_p	Parabolischer Anteil der Verformung	т
WSG	Radius der Supergauß-Verteilung	т
Wsoll	Vorgegebene Sollverformungskurve	т
w(r)	Lokale Verformung	т
x	Raumkoordinate	т
<i>x</i> ₀	Mittelpunkt bzgl. der x-Achse	т
у	Raumkoordinate	т
<i>y</i> 0	Mittelpunkt bzgl. der y-Achse	т
ZRS	Rückseitenverschiebung	т
z	Raumkoordinate	т
Z0	Rückseitenlage	т