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Preface

Writing a popular account of the three-body problem is a special challenge. The

problem is as old as science in general, and contributions towards its solution have

been made by an untold number of scientists. Yet we are not yet at the stage where

we could declare that the problem has been solved. Another challenge is to try to

convey some of the excitement of this problem to the general reader without the use

of mathematics. For a problem which is studied in mathematics departments of

many universities, it means, by necessity, major simplifications and often appealing

to applications in the field of astronomy. Astronomical systems may be easier to

visualize than purely mathematical constructions.

We have taken the historical approach. The three-body problem, the description

of the motion of three celestial bodies under the action of their mutual gravitational

pull, was first studied by Isaac Newton. In Chap. 1, we give a brief history of the

problem prior to Newton and only to the extent that is relevant to Newton’s work.
There is much astronomical and mathematical science before Newton that we are

not able to describe here. Some additions to the historical background come in

Chap. 7 after we have learnt concepts that are important to the problem, such as the

idea of chaos.

Newton’s law of gravity is accurate enough for most astronomical calculations.

However, the more accurate Einstein’s law of gravity is necessary in many modern

applications. In fact, the need to improve Newton’s law became apparent only in the

late nineteenth century, when it was realized that planet Mercury did not behave as

expected by the solution of the three-body problem in Newton’s theory. The last

chapter describes more drastic changes to Newton’s law, such as the laws governing
black holes. They cannot be understood without Einstein’s General Relativity, as
his law of gravity is called.

Chapter 3 follows some steps in the evolution of the three-body problem. It

includes, among others, the famous pre-Nobel competition for finding the answer

and describes Poincaré and Sundman as leaders of two schools of thought on the

nature of the solution. For Poincaré it was statistical at best, while Sundman

claimed a fully deterministic solution. Both lines of enquiry have correspondence

v
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in the current work. Poincaré’s solution leads to chaos theory, and further to

enquiries about the nature of time, the subject of the fourth chapter.

In the next two chapters, wemeet astronomical applications on two different scales,

the Solar System and galaxies. Both of these systems have more than three bodies,

more than three by far. However, it is possible to get first-order estimates of many

processes using just three bodies in the calculations, as numerous scientists have

demonstrated over the years. For example, two galaxies may be understood as two

rigid bodies which provide the variable gravitational field for the study of themotion of

a third body, such as a star. Repeating the process for many stars gives us an overview

of how galaxies made of billions of stars may change their shape and other properties.

After the first round review, we take a more detailed look at the steps involved in

the history of the three-body problem. It includes new frontiers and some of the

recent results. Among frontiers are the systems involving black holes which are

found in the final chapter. It takes us straight to the current efforts to prove black

hole theorems. That is, we try to verify the concept of black holes that is derived

from General Relativity.

It is not clear where one should start the history of the three-body problem.

Pythagoras probably understood that Earth, Moon, and the Sun are three spherical

celestial bodies whose exact alignments produce eclipses, lunar and solar. But only

after the introduction of the force law between them did the three-body problem in

the modern sense emerge. Newton’s attempts to solve the three-body problem filled

a good part of his famous work Principia. The three-body problem of today, with

Einstein’s law of gravity, may be used to test the so-called no-hair theorem of black

holes. The no-hair theorem was first formulated by Israel, Carter, and Hawking, and

a distant quasar composed of two black holes and a cloud of gas is the system

currently under study. This represents an enormous range of scale. At the lower end

we have the mass of the Sun and at the upper end more than ten billion suns. The

objects of study can be near to us, like the Sun about 8 light minutes away, or 3.5

billion light years away in the case of the binary black hole system OJ287.

Vladimir Titov from St. Petersburg State University (Russia) has prepared

animations illustrating choreographies in the three-body systems. These animations

and other add-on materials can be found on the book web page http://extras.

springer.com.

We would like to thank Sverre Aarseth, Nick Ourusoff, and Renate and Henrik

Appelqvist for reading the manuscript and for helpful comments.We thank also Laura

Garbolino, Heike Hartmann, G€oran Östlin, Mark Hurn, Kathryn Shaw, Alan Harris,

Annika Augustsson, Jaana Tegelberg, Sylvio Ferraz Mello, Joerg Waldvogel, Arthur

Chernin, Gene Byrd, Harry Lehto and Martin Gutknecht for help with illustrations.

We also acknowledge the Free Software Foundation for the permission to use the

GNU Free Documentation License in reproducing several of our figures. They are

indicated in the figure captions as originating from Wikimedia Commons. These

figures are published under the terms of the GNU General Public License Version 3

(GNU GPLv.3) which permits use, duplication, adaptation, distribution, and repro-

duction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source and indicate if changes were made. If you remix,
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transform, or build upon this figure or a part thereof, you must distribute your work

under the same license as the original. Figure captions give bibliographic data of the

source with name(s) of the originator(s); it may also be an http address.

We hope that this small review will stimulate interest in the reader, and for those

with mathematical knowledge, further enquiries to the mysteries of the three-body

problem.
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St. Petersburg, Russia Victor Orlov
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Chapter 1

Classical Problems

Impossible Problems to Solve

In the history of mathematics there are a number of problems which have agitated

the imagination of the greatest minds for centuries. Three problems proved elusive:

the problem of squaring the circle,1 the doubling the cube,2 and the trisecting the

angle.3 The problems are to be solved purely by using a compass and an unmarked

ruler, a straightedge. Ferdinand von Lindemann proved in 1882 that the first

problem has no solution while Pierre Wantzel showed in 1837 that the solutions

of the latter two problems are also impossible.

Another problem of the same category is the three-body problem. It is as old as

the other three. It deals with the motions of three celestial bodies such as the Earth,

the Sun and the Moon. The solution is required, for example, to predict solar

eclipses. At the time of the eclipse, the Moon moves in front of the Sun, and blocks

the sunlight, causing darkness lasting about 6 min. The three celestial bodies are

then lined up in the order of Earth-Moon-Sun. The solar eclipse is visible only on a

narrow strip of the Earth’s surface, and thus it is quite possible that an individual

never sees a solar eclipse in his or her life. But when it happens, it is an awe-

inspiring experience, and we can only imagine what a terrific effect it has had on

ancient people. A lunar eclipse is much more common. There the Moon drifts into

the shadow of the Earth, and so cannot receive the sunlight. It may be observed

from the whole hemisphere where the Moon is visible at that time (see Fig. 1.1).

1 Squaring of the circle refers to finding the area of a circle of a given radius. In modern terms, it is

the question of finding the exact value of π.
2 The problem of doubling the cube, also called the Delian problem, is to find the length of the side

of a cube which makes its volume twice as big as the original cubic volume. In modern terms, it

amounts to the determination of
ffiffiffi

23
p

.
3 Dividing a given angle in three equal parts using only a compass and a ruler.
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The failure to predict eclipses has cost lives. According to a legend, the Imperial

Chinese astronomers He and Xi failed to predict a solar eclipse (perhaps on October

22, 2134 BC), and were beheaded for it. The health and success of emperors were

thought to depend on anticipating the eclipses, and the astronomers had put their

ruler in danger.4

Fig. 1.1 The positions of the Sun, the Moon and the Earth during a solar eclipse (upper left) and a
lunar eclipse (upper right). The bodies are not drawn in scale. During the solar eclipse, the

observer on Earth is in the full shadow of the Moon called umbra. The partial shadow is called

penumbra. It is wider than the full shadow, and therefore a partial solar eclipse (lower right) is seen
over a wider geographic region than the total solar eclipse. In the total solar eclipse, for a few

minutes the Sun is completely covered by the Moon, and only the fainter outer layers of the Sun are

seen outside the Moon’s limb (lower left) (Credit: Wikipedia Creative commons and (lower left)
Luc Viatour/www.Lucnix.be)

4 According to the legend, the emperor Chung Kang relied on his astronomers to track and interpret

heavenly motions. It was a serious job. Eclipses were believed to be caused by a dragon eating the

Sun, and were bad omens for the emperor. The monster had to be frightened away with drums,

gongs and arrows fired into the sky. When two state astronomers, He and Xi got drunk and failed to
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But a solar eclipse may also lead to a happy ending. According to Greek

historian Herodotus, a solar eclipse (probably in the late afternoon of May

28, 585 BC) happened during the war between the Medes and the Lydians. The

Median king Cyaxares ruled the present day Iran and Eastern Turkey while the

Lydian king ruled the Western part of the present Turkish territory, neighboring the

coastal Ionian towns settled by the Greek. After 5 years of undecided war yet

another battle ensued near the Halys river. When the darkness suddenly came, both

sides laid down their weapons and stopped the fight, as the gods had spoken and

warned the kings by the removal of daylight. The new border between the two

kingdoms was agreed at Halys river, and to seal the peace, the Princess of Lydia

married the Prince of the Media.

Herodotus and other ancient sources (among them the generally reliable

Eudemus of Rhodes, the author of History of Astronomy) say that this solar eclipse

was predicted by the Ionian astronomer Thales of Miletus (c. 621 BC–c. 546 BC)

and he made a public announcement of it in advance to the Ionians.5

The successful prediction of eclipses requires the solution of the three-body

problem. Had He and Xi been negligent in their calculation and Thales been more

careful? No, there was no general method for solving the problem at the time. We

do not have solid evidence that the problem had even been stated correctly in

those days.

Whether his prediction of the solar eclipse is fact or fiction, Thales may still have

been the first scientist to understand the basic causes of eclipses and that they

involve three celestial bodies. The next step in understanding the problem is

probably due to Pythagoras of Samos (ca. 572–497 BC), a student of Thales, and

predict an eclipse, the emperor had no time to prepare a response. Although the Sun apparently

survived the dragon’s attack, the pair were beheaded.
5 Thales may have travelled to Babylonia in his youth and gained access to the extensive records of

astronomical observations which dated from the time of the ruler Nabonassar (747 BC). By that

time the Babylonians, just as Chinese in their own quarters, and many others, had been recording

celestial events for several 1000 years. These records formed the basis for predicting lunar

eclipses, and to some extent, solar eclipses. The methods may have been already known before

585 BC, even though written evidence for this knowledge has survived only from later centuries.

After centuries of continuous monitoring of celestial events, a period of 18 years and 10–11

days (called the Saros cycle) was discovered in lunar eclipses, after which similar eclipses start to

repeat themselves. Another shorter cycle is 47 months long. Thales may have witnessed, or at least

heard of, a nearly total solar eclipse in Babylonia on May 18th, 603 BC. If he suspected that also

solar eclipses follow the Saros cycle, he could have predicted a solar eclipse on May 28, 585

BC. Alternatively, he may have known that 23.5 months after a lunar eclipse a solar eclipse has a

high probability. This period is exactly one half of the 47 month lunar eclipse cycle, and he must

have understood that the opposite alignment of the Earth-Moon-Sun happens half-way through this

cycle. He most likely observed the July 4, 587 BC lunar eclipse which would have lead to the same

predicted date. Perhaps he knew of both methods which gave him confidence. Anyway, he and the

warriors were lucky in that the Halys river battle happened to be on the narrow strip, about 270 km

wide, where the eclipse was total. A more common occurrence of a partial eclipse where the Sun is

only partly covered by the Moon, is seen over a wider region, but it is not such an eerie and chilling

experience as the total eclipse.
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his followers called Pythagoreans. Pythagoreans believed that the Earth and the Sun

and the Moon were spherical bodies, all in motion in space. When they occasionally

line up, eclipses appear. This was clearly a step forward in the formulation of the

three-body problem; it remained to demonstrate how the Babylonian records of

eclipses are explained in this system, but that was far beyond the powers of the

Pythagoreans.

The first recorded explanation of the eclipses was given by Anaxagoras of

Smyrna. He has been given the honor of having brought the new scientific ideas

of Ionian towns to Athens. He claimed that the Sun is a hot rock and that Moon, also

a rock, is illuminated by reflected light from the Sun. He maintained, quite

correctly, that in a solar eclipse the Moon goes between the Earth and the Sun,

and that in a lunar eclipse the Moon is in the shadow of the Earth. All this was too

much for the religious Athenians for whom the Sun was a God. Anaxagoras nearly

ended up with a long prison sentence, but was saved by his influential friend

Pericles, who spoke for him in the trial. While waiting for his trial Anaxagoras

started working on the problem of squaring the circle, the first Greek scientist

known to have attacked this problem. Finally he was freed but was forced to return

to Ionia.

Therefore, who made the first statement of the three-body problem is not exactly

known, but if we put it to Pythagoras, we are not far off. He definitely gave the

insight that mathematics is needed to solve the problem, as we will learn below.

In the current form the three-body problem was first formulated by the father of

modern science, the Englishman Isaac Newton (1642–1727) in Cambridge. The

problem is to determine the relative motion of three material points interacting

under the Newton’s law of universal gravitation.6 A material point in mechanics

refers to a body whose size and rotation may be neglected, as not influencing the

mutual attractions. Newton gave the problem in his famous treatise Mathematical
Principles of Natural Philosophy (Philosophie Naturalis Principia Mathematica in
Latin) in 1687. Despite the simplicity of the formulation, the best mathematical

minds could not find an acceptable solution in the general case.

Nevertheless, centuries of efforts by many outstanding mathematicians were not

in vain. In the latter part of eighteenth century two partial solutions to the problem

were discovered. The Swiss Leonhard Euler (1707–1783) while working in Berlin

in 1763 found that three bodies can always be on a rotating straight line and

published this result in Novi Commentarii Academiae Scientiarum Imperialis

Petropolitanae in St. Petersburg. Italian/French Joseph Louis Lagrange

(1736–1813) while working in Paris in 1772 found that three bodies can always

be at the vertices of a rotating equilateral triangle. They were the two most

outstanding mathematicians of the time. Figure 1.2 shows the trajectories of motion

in these two cases when the masses of all bodies are equal, but solutions of the Euler

and Lagrange cases exist for any mass values.

6F ¼ Gm1m2=r
2 where F is the gravitational force of attraction between two bodies of masses m1

and m2, separated by distance r from each other. G is the universal gravitational constant.
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In the Solar System we observe two large groups of asteroids that are placed

close to the points of the Lagrange solutions in the system Sun-Jupiter-asteroid.

They are called Trojans and Greeks (all big asteroids in each group are named after

heroes of the Trojan War) (Fig. 1.3).

Fig. 1.2 Three equal bodies on a straight line (left) and in the corners of an equilateral triangle

(right). The lines trace the orbital paths of these stable triple systems which could be for example

three stars in space. The first one was discovered mathematically by Leonhard Euler, the second

one by Joseph Louis Lagrange

Fig. 1.3 Trojans and Greeks are two large groups of objects that share the orbit of the planet

Jupiter around the Sun. Relative to Jupiter, each asteroid belonging to these groups is close to one

of Jupiter’s two stable Lagrangian points lying 60� ahead of the planet in its orbit, and 60� behind
(Credit: Wikimedia Commons)
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For a long time this was all we had. Then in year 1993 the American mathema-

tician Cristopher Moore discovered the figure eight (“8”) orbit when the three

bodies are equal, by using computer calculation, and subsequently it was proven

rigorously correct by two mathematicians, French Alain Chenciner and American

Robert Montgomery. In this case the three bodies move along a closed curve shaped

like figure eight (Fig. 1.4). This solution is periodic, i.e., after a certain amount of

time called the period, the three bodies take up the same positions and have the

same velocities as at the initial moment of time. It is clear that this is true also after

two periods, three periods and so on. The two previously known three-body

solutions also have the same periodic property.7

The triple system with periodic movements reminds us of an ideal pendulum that

oscillates forever. Of course, in reality it is impossible to create an eternal pendulum

because of frictional forces, but it can be described mathematically. The motion of

the mathematical pendulum has an exact solution; it performs so called harmonic

oscillations.

In 1912 the Finnish mathematician Karl Sundman (1873–1949) in Helsinki

showed how to construct the solution of the general three-body problem using a

series of numbers called terms, to be added to each other, with the total number of

terms running into infinity. In practice, one may add only a finite number of terms

and hope for the best. However, in 1930 the French astronomer David Belorizky in

Paris showed that the finite number has to be as big as the power 80,000 of ten in

order to solve the Lagrange’s triangular three body problem with the usual accuracy

of astronomical observations, and just for one sixth of the period in time. This

number of terms is insanely large; the number 1 is followed by 80,000 zeros. In

comparison, the total number of atoms in the observable universe is “only”

1 followed by 80 zeros. Even if we use this enormous number of terms, we still

do not have an exact solution. Thus we could say that the work of Sundman and

Belorizky has proven the impossibility of solving the three-body problem, except

for the special situations illustrated above.

Fig. 1.4 Three equal bodies chase each other in a stable orbit shaped like figure eight. It was

discovered mathematically by Cristopher Moore. Such an orbit is possible for three equal stars, but

a system like this has never been seen nature

7 Two of the authors (JA and VO) came close to the discovery of the figure “8” stable orbit a

decade before Moore. They would have had to pursue the orbit longer to prove the case which was

not yet possible.

6 1 Classical Problems



The proof that a problem does not have an exact mathematical solution does not

signify that it is meaningless or that there does not exist ways to get the answers by

less exact means. This is true of the three “classical” mathematical problems.

Already in Antiquity there were methods of squaring of a circle (i.e., calculating

the area of a circle), doubling a cube (i.e., finding the side of a cube which has twice

the volume of the original cube) or dividing an angle in three equal parts. But they

were not mathematically exact, in the sense defined by the ancient Greek

geometers.

The story of the origin of the problem of doubling the cube, called the Delian

problem, according to Eratosthenes goes as follows.

God proclaimed to the Delians through the oracle that, in order to get rid of a plague, they

should construct an altar double that of the existing one. Their craftsmen fell into great

perplexity in their efforts to discover how a solid could be made the double of a similar

solid; they therefore went to ask Plato about it, and he replied that the oracle meant, not that

the god wanted an altar of double the size, but that he wished, in setting them the task, to

shame the Greeks for their neglect of mathematics and their contempt of geometry.

Whether this is true or not is an open question, but definitely there was a plague

in Athens around 430 BC that killed about a quarter of the population. An early

attempt of the solution of the problem around this time was made by Hippocrates;

thus it is at least possible that the doubling of the cube problem arouse in this way.

In the same manner we may ask if the three-body problem has put the modern

scientists in shame. Perhaps not. Let us move our sights to modern observers,

aiming their telescopes to a star-like point in the sky called OJ287. It is too faint

to be seen by naked eye, and records of it start only in 1891 when the photography

of the sky had recently begun. What these records show is peculiar flaring of light,

often more than doubling the brightness from one night to another. The explanation

for this peculiarity came from the solution of a three-body problem, a system

consisting of two black holes and a cloud of gas which orbit each other. The system

is far away, so far that it takes light signals 3.45 billion years to come to our

telescopes (light travels from the Moon to us in just over 1 s). Therefore we cannot

watch the motions directly, the three bodies are too close to each other in the sky to

be seen separately, but from the solution of the three-body problem we may

calculate that from time to time the smaller black hole collides with the cloud of

gas and makes it radiate with huge brightness.

Just like the three-body problem may be used to predict the exact time of a solar

eclipse (we will come to details in later chapters), the three-body solution predicts

the times of the big flares in OJ287. They are not so common; only two big flares

occur in 12 years. The latest predicted flare was to take place on September

13, 2007, and it was to happen just before sunrise. After sunrise, and even an

hour before it, the Sun overpowers any faint light from the stars, thus the measure-

ment of OJ287 had to be made quickly, right after it had risen above the horizon but

when the Sun was still below the horizon. It was a difficult task, and required a

coordinated effort of astronomers in Japan, China, Turkey, Greece, Bulgaria,

Poland, Finland, Germany, Great Britain and Spain. Why astronomers in all these

countries were needed was because each astronomer has his/her own sunrise, first in
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