

INTRODUCCIÓN A LA OCEANOGRAFÍA FÍSICA

NOTAS DE CLASE

INTRODUCCIÓN A LA **OCEANOGRAFÍA FÍSICA**

NOTAS DE CLASE

Juan Carlos Ortiz Royero

Ortiz Royero, Juan Carlos.

Introducción a la oceanografía física: notas de clase / Juan Carlos Ortiz Royero. – Barranquilla, Col. : Editorial Universidad del Norte, 2015.

129 p. : il., col ; 24 cm. Incluye referencias bibliográficas en cada capítulo. ISBN 978-958-741-554-4 (impreso) ISBN 978-958-741-555-1 (PDF)

1. Oceanografía. I. Tít.

(551.46 O77 23 ed.) (CO-BrUNB)

www.uninorte.edu.co Km 5, vía a Puerto Colombia A.A. 1569, Barranquilla (Colombia)

© 2015, Universidad del Norte Juan Carlos Ortiz Royero

Coordinación editorial Zoila Sotomayor O.

Diseño y diagramación Munir Kharfan de los Reyes

Diseño de portada Jorge Arena

Corrección de textos Paula Grisales

Hecho en Colombia Made in Colombia

© Reservados todos los derechos. Queda prohibida la reproducción total o parcial de esta obra, por cualquier medio reprográfico, fónico o informático así como su transmisión por cualquier medio mecánico o electrónico, fotocopias, microfilm, offset, mimeográfico u otros sin autorización previa y escrita de los titulares del copyright. La violación de dichos derechos puede constituir un delito contra la propiedad intelectual.

AGRADECIMIENTOS

Deseo agradecer a mis tutores Jorge Capella y Aurelio Mercado, del Departamento de Ciencias Marinas de la Universidad de Puerto Rico, en Mayagüez, quienes fueron los encargados de mostrarme el maravilloso mundo de la física aplicada al océano.

Mis agradecimientos a la Universidad del Norte de mi ciudad natal, Barranquilla, por darme todo el apoyo necesario para desarrollar mis investigaciones y llevar a la realidad estas notas de clase.

Agradezco a mis colegas del área de Océano y Atmósfera del Grupo de Física Aplicada, con quienes he compartido conocimientos y experiencias, así como también a todos mis estudiantes por enriquecer cada semestre mi propio aprendizaje.

A mi esposa Heidy Patricia Mejía Ávila por su apoyo permanente y, por supuesto, a Dios por regalarme mi mayor inspiración y dos grandes tesoros: Daniela y Alejandra.

Contenido

Prólogo	xiii
Capítulo 1. Introducción	1
1.1 Algo de historia de la oceanografía física	3
Referencias	10
Capítulo 2. La atmósfera y el océano	12
2.1 El esfuerzo del viento	17
2.2 El balance de energía térmica	19
2.3 Calor específico	23
2.4 Ejercicios	24
Referencias	24
Capítulo 3. Propiedades físicas del agua de mar	26
3.1 Temperatura	27
3.2 Salinidad	30
3.3 Ejercicios	39
Referencias	40

INTRODUCCIÓN A LA OCEANOGRAFÍA FÍSICA NOTAS DE CLASE

CAPÍTULO 4. Ecuaciones de movimiento	41
4.1 Hipótesis del continuo	42
4.2 Fluidos ideales	43
4.3 Operadores diferenciales	45
4.4 Descripción euleriana y lagrangiana	46
4.5 Forzadores del movimiento	48
4.5.1 Gradiente de presión	50
4.5.2 La fuerza de Coriolis	51
4.5.3 La fricción molecular	53
4.6 Ecuaciones de Euler o de momentum	54
4.7 Ecuaciones de Reynolds	56
4.8 Análisis de escala	61
4.9 Vorticidad	63
4.10 Ejercicios	65
Referencias	66
CAPÍTULO 5. Modelos de circulación	67
5.1 Modelo inercial	68
5.2 Modelo Geostrófico	70
5.3 Cálculo de velocidades geostróficas usando	
estaciones hidrográficas	
5.4 Modelo de Ekman	77
5.4.1 Transporte de Ekman	80
5.5 Modelo de Sverdrup	81
5.6 Modelo de Stommel	84
5.7 Modelo de Munk	86
5.8 Circulación profunda	89
5.9 Ejercicios	95
Referencias	96

Contenido

Capítulo 6. Teoría de olas	97
6.1 Teoría de pequeña amplitud o teoría lineal	99
6.2 Asomeramiento o Shoaling	
6.3 Las mareas	113
6.3.1 Mareas semidiurnas	115
6.3.2 Mareas diurnas	115
6.3.3 Mareas mixtas	115
6.4 Corrientes de marea	116
6.5 Predicciones de la marea	117
6.6 Ondas largas	120
6.7 Ejercicios	123
Referencias	125

INTRODUCCIÓN A LA OCEANOGRAFÍA FÍSICA NOTAS DE CLASE

LISTA DE FIGURAS

Figura 1	Imagen del buque Challenger
Figura 2	Corriente del Golfo por Benjamín Franklin
Figura 3	Expedición Challenger 1872-1876
Figura 4.	Expedición Nautilus en 1931 (derecha)
	y Harald Sverdrup (izquierda)6
Figura 5	Walter Munk (centro), nacido en Austria
	hizo unos aportes valiosos a la circulación y al oleaje 6
Figura 6	Henry Stommel
Figura 7	Fridtjof Nansen (izquierda) y Vagn Walfrid Ekman (derecha) 8
Figura 8	George B. Airy (izquierda) y George Stokes (derecha)
Figura 9	Mapa de anomalía de TSM en el océano Pacifico y su relación con El Niño Oscilación del Sur (ENOS)
Figura 10	Circulación atmosférica general
Figura 11	Campo de vientos en Colombia (Sep. 18 de 2012). Las flechas rojas indican la dirección media de los alisios del Noreste
Figura 12	Imagen infrarroja de nubosidad de noviembre de 2004 (el color rojo representa los valores más altos de humedad y precipitación). La ZCIT corresponde a la línea puntuada
Figura 13	Variación mensual multianual de la precipitación en la costa Norte de Colombia (estación del aeropuerto Ernesto Cortizos de Barranquilla)
Figura 14.	Comparación de la cobertura de vientos vectoriales tomados del satélite <i>QuikSCAT/SeaWinds Scatterometer</i> y ASCAT
Figura 15	Esquema del balance térmico en los océanos
Figura 16	Distribución meridional de los flujos de calor
Figura 17	Ilustración de la molécula de agua
Figura 18	Distribución geográfica de la temperatura superficial de mar (TSM), promedio anual
Figura 19	Distribución vertical de la temperatura del océano
Figura 20	Distribución geográfica de la salinidad superficial del océano, promedio anual
Figura 21	Distribución geográfica de la salinidad superficial en el Caribe y el Pacífico colombiano
Figura 22	Distribución geográfica de la salinidad superficial en la zona costera del Caribe colombiano
Figura 23	Distribución geográfica de la salinidad superficial
Figura 24	Distribución vertical de la salinidad del océano

Contenido

Figura 25	Temperatura in situ y Θ medida en la fosa Kermedec en el océano Pacífico
Figura 26	Sección vertical de sigma-O en el océano Atlántico occidental 36
Figura 27	Perfilador CTD
Figura 28	Ejemplo de un diagrama T-S
Figura 29	Imagen de antiguos navegantes
Figura 30	Modelo de un fluido, considerando que está formado por partículas o parcelas de fluido
Figura 31	Esquema del esfuerzo cortante de una capa de fluido sobre otro 44
Figura 32	Líneas de flujo laminar y turbulento
Figura 33	Descripción Lagrangiana y Euleriana para un campo de vientos superficiales en el Caribe colombiano
Figura 34	Parcela de fluido en tres dimensiones bajo presión a lo largo del eje x
Figura 35	Esquema de la Tierra en rotación
Figura 36	Serie de tiempo del nivel del mar en el Golfo de Morrosquillo, en el Caribe colombiano (Universidad del Norte) 56
Figura 37	Cambios en la vorticidad relativa vinculados a la conservación de la vorticidad potencial, a) Si la columna de agua cambia de latitud y b) Si la columna cambia de forma
Figura 38	Modelo de corrientes para la costa Este de EEUU
Figura 39	Esquema del modelo inercial
Figura 40	Corrientes inerciales en el Pacifico Norte detectadas en 1987 por boyas a la deriva de la NOAA
Figura 41	Balance geostrófico
Figura 42	Diagrama de cómo puede calcularse la corriente geostrófica superficial con el uso de altimetría
Figura 43	Perfil de corrientes geostróficas, (a) para condiciones barotrópicas y (b) condiciones baroclínicas
Figura 44	Geometría para calcular corrientes geostróficas
	usando dos estaciones hidrográficas A y B
Figura 45	Perfil vertical de corrientes usando dos estaciones hidrográficas 76
Figura 46	Espiral de Ekman, usando U_{10} = 5 m/s a una latitud de 10° N y calculada hasta 200 m de profundidad
Figura 47	Surgencia o afloramiento de Ekman
Figura 48	Transporte de masa de acuerdo al modelo de Sverdrup 83
Figura 49	Corrientes superficiales en la cuenca sin rotación o con rotación constante (izq.) y corrientes asumiendo plano β (der.)
Figura 50	Representación de las corrientes superficiales bajo el modelo de Munk
Figura 51	Representación de las principales corrientes superficiales en Sverdrup (Sv)

INTRODUCCIÓN A LA OCEANOGRAFÍA FÍSICA NOTAS DE CLASE

Figura 52	Corrientes superficiales del modelo HYCOM
Figura 53	Los mares nórdicos del océano Atlántico
Figura 54	Cinta transportadora
Figura 55	Trayectorias del fluido abisal y circulación inferida por Stommel, 1948
Figura 56	Acosutic Doppler Current Profile - ADCP (Universidad del Norte) 94
Figura 57	Dos formas de usar el ADCP94
Figura 58	Un tsunami (<i>tsu</i> = ola , <i>nami</i> = puerto)
Figura 59	Espectro de energía del oleaje en función de los forzadores y restauradores
Figura 60	Esquema de la teoría lineal99
Figura 61	Gráfica de la función tanh (kd)
Figura 62	Trayectorias de las partículas de fluido de acuerdo a la teoría lineal
Figura 63	Efectos de difracción de olas en la entrada a la bahía de Cartagena en el Caribe colombiano
Figura 64	Rotura de una ola y las diferentes zonas en el proceso de <i>shoaling</i>
Figura 65	Espectro de P-M para un mar completamente desarrollado 105
Figura 66	Tipo de rotura de acuerdo a la pendiente de la playa 106
Figura 67	Corrientes inducidas por las olas
Figura 68	Boya de la NDBC de NOAA
Figura 69	Diferentes tipos de equipos de medición: sensores de presión CTD de aguas profundas y de aguas llanas (Universidad del Norte)
Figura 70	Contornos de altura significante para la zona del delta del río Magdalena en el Caribe colombiano usando el modelo SMS, para el 09 de marzo de 2009
Figura 71	Esquema de la formación de las mareas
Figura 72	Marea semidiurna (San Vicente de la Barquera, España 11, 12 y 13 de
Figura 73	Marea diurna (Veracruz, México 11 y 12 de noviembre de 2003) 115
Figura 74	Marea mixta (Los Ángeles, EEUU 11, 12, 13 y 14 de noviembre de 2003)
Figura 75	Modelación de corrientes de marea en California 117
Figura 76	Análisis de armónicos para un punto en la bahía de Cartagena en el Caribe colombiano (Universidad del Norte) 119
Figura 77	El Registro fotográfico de Tumaco en el Pacífico colombiano y de Puerto Colombia
Figura 78	Esquema de una ola de aguas someras
Figura 79	Esquema de una onda de Kelvin

Prólogo

Esta obra pretende resumir algunas notas de clase de asignaturas Como Oceanografía Básica, Oceanografía Física, Oceanografía Dinámica, Ondas Oceánicas y Dinámica Computacional de Fluidos Geofísicos, que he dictado en estos últimos diez años, tanto a nivel de pregrado como de postgrado. Estas notas se basan en algunas obras clásicas y ampliamente utilizadas en la comunidad internacional de la oceanografía física, publicadas por autores como Pickard y Emery; Pond y Pickard; Knauss, Müller, Young, y por la serie *Open University*; además del texto del profesor Robert Stewart, de la Universidad de Texas A&M, entre otras notas y apuntes publicados en Internet.

En mi experiencia docente, he notado que un buen porcentaje de los estudiantes principiantes que no dominan el idioma inglés presentan inconvenientes en su proceso de aprendizaje, debido a la escasa bibliografía impresa en español. En la mayoría de los programas de ciencias del mar es conveniente que los estudiantes tomen inicialmente la primera parte (Oceanografía Descriptiva) y, después, la segunda (Oceanografía Dinámica), pero algunos programas de postgrados solo incluyen un único curso de Oceanografía Física. Por esa razón, he preparado un material para una clase de Oceanografía Física, incorporando algunos elementos descriptivos y también dinámicos para alumnos de pregrado avanzado y principiantes a nivel de posgrado que no hayan tomado