BestMasters

Oliver Schmitz

Modellbasierte Untersuchung der CO₂-Abscheidung aus Kraftwerksabgasen

Vergleich zweier Alkanolamine

BestMasters

Mit "BestMasters" zeichnet Springer die besten Masterarbeiten aus, die an renommierten Hochschulen in Deutschland, Österreich und der Schweiz entstanden sind. Die mit Höchstnote ausgezeichneten Arbeiten wurden durch Gutachter zur Veröffentlichung empfohlen und behandeln aktuelle Themen aus unterschiedlichen Fachgebieten der Naturwissenschaften, Psychologie, Technik und Wirtschaftswissenschaften.

Die Reihe wendet sich an Praktiker und Wissenschaftler gleichermaßen und soll insbesondere auch Nachwuchswissenschaftlern Orientierung geben.

Oliver Schmitz

Modellbasierte Untersuchung der CO₂-Abscheidung aus Kraftwerksabgasen

Vergleich zweier Alkanolamine

Oliver Schmitz Paderborn, Deutschland

BestMasters ISBN 978-3-658-12447-2 DOI 10.1007/978-3-658-12448-9 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden 2016

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Fachmedien Wiesbaden GmbH ist Teil der Fachverlagsgruppe Springer Science+Business Media (www.springer.com)

Inhaltsverzeichnis

Inl	naltsv	verzeichnis	V
Ab	bildı	ingsverzeichnis	IX
Та	belle	nverzeichnis	XV
Sy	mbol	verzeichnis	XIX
Ab	kürz	ungsverzeichnis	XXIII
1	Ein	leitung	1
1	l.1	Motivation	1
1	1.2	Stand der Technik	3
1	L.3	Aufgabenstellung & Zielsetzung	5
1	1.4	Vorgehensweise	7
2	The	eoretische Grundlagen	9
2	2.1	Modellierungskonzepte reaktiver Trennverfahren	9
	2.1.	1 Generelle Aspekte	9
	2.1.	2 Gleichgewichtsstufenmodell	
	2.1.	3 Kinetisch basiertes Modell	
	2.1.	4 Prozesssimulator	
2	2.2	Modellparameter	21
	2.2.	1 Thermodynamische Gleichgewichte	21
	2.2.	2 Chemische Gleichgewichte	24
	2.2.	3 Physikalische Stoffdaten	26
	2.2.	4 Stofftransport- und fluiddynamische Eigenschaften	
	2.2.	5 Reaktionskinetiken	

	2.3	Alkanolamine als chemische Absorptionsmittel für CO_2	36
	2.3.1	Definition - Alkanolamine	
	2.3.2	2 Beschreibung der verwendeten Absorbens	
3	Мос	dellaufbau	39
	3.1	Prozessdarstellung	
	3.2	Reaktionssysteme	42
	3.2.1	MEA-CO ₂ -System	44
	3.2.2	2 AMP-CO ₂ -System	45
	3.3	Übersicht vorgegebener Prozessparameter	
	3.4	Numerische Diskretisierung	49
	3.4.1	MEA-CO ₂ -System	52
	3.4.2	2 AMP-CO ₂ -System	56
	3.5	Modellvalidierung	62
	3.5.1	MEA-CO ₂ -System	62
	3.5.2	2 AMP-CO ₂ -System	65
4	Par	ameterstudien – MEA vs. AMP	73
	4.1	Betrachtung der base case Simulationen	73
	4.1.1	Kohlebefeuerter Kraftwerksprozess	76
	4.1.2	2 Gasbefeuerter Kraftwerksprozess	81
	4.2	Sensitivitätsanalyse – Untersuchung ausgewählter Einflussp	arameter85
	4.2.1	Absorberhöhe	86
	4.2.2	2 L/G-Verhältnis	91
	4.2.3	B Temperatur im Reboiler	95
	4.2.4	Druck im Desorber	99
	4.2.5	Konzentration des Alkanolamins in Lösung	

	4.2	.6	Temperatur des eintretenden Absorbens1	108
	4.3	Pa	arameteroptimierung1	12
	4.3	.1	Formulierung der Ziele 1	112
	4.3	.2	Vorgehensweise zur Wahl der Parameter 1	114
	4.3	.3	Tabellarische Ergebnisübersicht1	16
	4.3	.4	Illustration der Ergebnisse1	L17
5	Faz	zit .		23
	5.1	Di	iskussion der Ergebnisse1	123
	5.2	Kı	ritische Gesamtbewertung1	128
	5.3	Ha	andlungsempfehlung1	131
6	Zu	san	nmenfassung und Ausblick1	35
7	Lit	era	aturverzeichnis1	39

Abbildungsverzeichnis

Abbildung 1:	Gleichgewichtsstufenmodell vs. rate-based Modell	12
Abbildung 2:	Prinzipskizze des Zweifilmmodells	
Abbildung 3:	Strukturformel des MEA (links) sowie des AMP (rechts)	37
Abbildung 4:	Genereller Aufbau eines CO ₂ -Absorption-Desorption-Kreislauf- prozesses	39
Abbildung 5:	Modell des CO ₂ -Absorption-Desorption-Kreislaufprozesses in der Simulationsumgebung Aspen Custom Modeler [®]	40
Abbildung 6:	Konzentrationsprofile im Gas- und Flüssigfilm für instantan ablaufende (links) und schnell ablaufende (pseudo-first order) Reaktionen (rechts) unter Anwendung der Film-Theorie	50
Abbildung 7:	Absorptionsrate Ψabs als Funktion der Anzahl axialer Diskrete Nax für den Absorber des MEA-CO ₂ -Systems	52
Abbildung 8:	Absorptionsrate Ψabs als Funktion der Anzahl radialer Filmsegmente Nfilm sowie des Distributionsfaktors m für den Absorber des MEA-CO ₂ -Systems (Kohle-Fall)	53
Abbildung 9:	Absorptionsrate Wabs als Funktion der Anzahl radialer Filmsegmente Nfilm sowie des Distributionsfaktors m für den Absorber des MEA-CO ₂ -Systems (Gas-Fall)	54
Abbildung 10:	Desorptionsrate Ψdes als Funktion der Anzahl axialer Diskrete Nax für den Desorber des MEA-CO ₂ -Systems (Kohle-Fall)	55
Abbildung 11:	Desorptionsrate Ψdes als Funktion der Anzahl radialer Filmsegmente Nfilm sowie des Distributionsfaktors m für den Desorber des MEA-CO-Systems (Koble-Fall)	55
Abbildung 12:	Absorptionsrate Ψabs als Funktion der Anzahl axialer Diskrete Nax für den Validierungsabsorber des AMP-CO ₂ -Systems	56

Abbildung 13:	Absorptionsrate Wabs als Funktion der Anzahl radialer	
	Filmsegmente Nfilm sowie des Distributionsfaktors m für den	
	Validierungsabsorber des AMP-CO ₂ -Systems	57
Abbildung 14:	Absorptionsrate Wabs als Funktion der Anzahl axialer Diskrete	
	Nax für den Absorber des AMP-CO ₂ -Systems.	58
Abbildung 15:	Absorptionsrate Wabs als Funktion der Anzahl radialer	
	Filmsegmente Nfilm sowie des Distributionsfaktors m für den	
	Absorber des AMP-CO ₂ -Systems (Kohle-Fall).	59
Abbildung 16:	Absorptionsrate Wabs als Funktion der Anzahl radialer	
	Filmsegmente Nfilm sowie des Distributionsfaktors m für den	
	Absorber des AMP-CO2-Systems (Gas-Fall).	59
Abbildung 17:	Desorptions rate Ψdes als Funktion der Anzahl axialer Diskrete	
	Nax für den Desorber des AMP-CO2-Systems (Kohle-Fall)	60
Abbildung 18:	Desorptionsrate ¥des als Funktion der Anzahl radialer	
	Filmsegmente Nfilm sowie des Distributionsfaktors m für den	
	Desorber des AMP-CO2-Systems (Kohle-Fall)	61
Abbildung 19:	Parity Plot - Absorptionsrate Wabs aller Testläufe A1 – A10	63
Abbildung 20:	Parity Plot – Austrittstemperatur Gas aller Testläufe A1 – A10	64
Abbildung 21:	Parity Plot – Austrittstemperatur Absorbens aller Testläufe A1	
	– A10	64
Abbildung 22:	CO2-Konzentrationsprofile für die simulierten (Linien) und	
	experimentellen (Symbole) Ergebnisse für R4, R7 und R9 in der	
	Gas- (links) und Flüssigphase (rechts)	68
Abbildung 23:	Parity Plot - Absorptionsrate Wabs aller Testläufe R1 – R11	69
Abbildung 24:	Temperaturprofile für die simulierten (Linien) und	
	experimentellen (Symbole) Ergebnisse für R4 (links), R7	
	(Mitte) und R9 (rechts)	70
Abbildung 25:	Parity Plot – Austrittstemperatur Gas aller Testläufe R1 – R11	71

Abbildung 26:	Parity Plot - Austrittstemperatur Absorbens aller Testläufe R1 – R11.	72
Abbildung 27:	CO ₂ -Konzentrationsprofile des base case Kohle-Falls im <i>Absorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 9)	76
Abbildung 28:	CO ₂ -Konzentrationsprofile des base case Kohle-Falls im <i>Desorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 9)	76
Abbildung 29:	Temperaturprofile des base case Kohle-Falls im <i>Absorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 9)	77
Abbildung 30:	Temperaturprofile des base case Kohle-Falls im <i>Desorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 9)	78
Abbildung 31:	Flüssig- (links) und Gasbelastung (rechts) im <i>Absorber</i> für den base case Kohle-Fall (Bedingungen laut Tabelle 9).	79
Abbildung 32:	CO ₂ -Konzentrationsprofile des base case Gas-Falls im <i>Absorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 9)	81
Abbildung 33:	CO ₂ -Konzentrationsprofile des base case Gas-Falls im Desorber für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 9)	81
Abbildung 34:	Temperaturprofile des base case Gas-Falls im <i>Absorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 9)	83
Abbildung 35:	Temperaturprofile des base case Gas-Falls im <i>Desorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 9)	83

Abbildung 36:	Flüssig- (links) und Gasbelastung (rechts) im <i>Absorber</i> für den base case Gas-Fall (Bedingungen laut Tabelle 9)	84
Abbildung 37:	Darstellung der Ab-/Desorptionseffizienz bei Variation der Absorberhöhe (MEA)	87
Abbildung 38:	Darstellung der energetischen Effizienz bei Variation der Absorberhöhe (MEA)	88
Abbildung 39:	Darstellung der Ab-/Desorptionseffizienz bei Variation der Absorberhöhe (AMP)	89
Abbildung 40:	Darstellung der energetischen Effizienz bei Variation der Absorberhöhe (AMP)	89
Abbildung 41:	Darstellung der Ab-/Desorptionseffizienz bei Variation des L/G-Verhältnisses (MEA)	91
Abbildung 42:	Darstellung energetischen Effizienz bei Variation des L/G- Verhältnisses (MEA)	92
Abbildung 43:	Darstellung der Ab-/Desorptionseffizienz bei Variation des L/G-Verhältnisses (AMP)	93
Abbildung 44:	Darstellung der energetischen Effizienz bei Variation des L/G- Verhältnisses (AMP)	93
Abbildung 45:	Darstellung der Ab-/Desorptionseffizienz bei Variation der Reboiler-Temp. (MEA).	96
Abbildung 46:	Darstellung der energetischen Effizienz bei Variation der Reboiler-Temp. (MEA).	96
Abbildung 47:	Darstellung der Ab-/Desorptionseffizienz bei Variation der Reboiler-Temp. (AMP)	97
Abbildung 48:	Darstellung der energetischen Effizienz bei Variation der Reboiler-Temp. (AMP)	98
Abbildung 49:	Darstellung der Ab-/Desorptionseffizienz bei Variation des Absorber-Druckes (MEA).	100

Abbildung 50:	Darstellung der energetischen Effizienz bei Variation des Absorber-Druckes (MEA).	100
Abbildung 51:	Darstellung der Ab-/Desorptionseffizienz bei Variation des Absorber-Druckes (AMP)	101
Abbildung 52:	Darstellung der energetischen Effizienz bei Variation des Absorber-Druckes (AMP)	102
Abbildung 53:	Darstellung der Ab-/Desorptionseffizienz bei Variation der Amin-Konz. (MEA)	105
Abbildung 54:	Darstellung der energetischen Effizienz bei Variation der Amin- Konzentration (MEA)	105
Abbildung 55:	Darstellung der Ab-/Desorptionseffizienz bei Variation der Amin-Konz. (AMP)	106
Abbildung 56:	Darstellung der energetischen Effizienz bei Variation der Amin- Konzentration (AMP)	107
Abbildung 57:	Darstellung der Ab-/Desorptionseffizienz bei Variation der AbsTemperatur (MEA)	109
Abbildung 58:	Darstellung der energetischen Effizienz bei Variation der Abs Temperatur (MEA)	110
Abbildung 59:	Darstellung der Ab-/Desorptionseffizienz bei Variation der AbsTemperatur (AMP).	110
Abbildung 60:	Darstellung der energetischen Effizienz bei Variation der Abs Temperatur (AMP)	111
Abbildung 61:	CO ₂ -Konzentrationsprofile des optimierten Kohle-Falls im <i>Absorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 35)	117
Abbildung 62:	CO ₂ -Konzentrationsprofile des optimierten Kohle-Falls im <i>Desorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 35)	118

Abbildung 63:	Temperaturprofile des optimierten Kohle-Falls im <i>Absorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 35)	118
Abbildung 64:	Temperaturprofile des optimierten Kohle-Falls im <i>Desorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 35).	119
Abbildung 65:	Flüssig- (links) und Gasbelastung (rechts) im <i>Absorber</i> für den optimierten Kohle-Fall (Bedingungen laut Tabelle 35).	119
Abbildung 66:	CO ₂ -Konzentrationsprofile des optimierten Gas-Falls im <i>Absorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 35)	120
Abbildung 67:	CO ₂ -Konzentrationsprofile des optimierten Gas-Falls im <i>Desorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 35)	120
Abbildung 68:	Temperaturprofile des optimierten Gas-Falls im <i>Absorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 35).	121
Abbildung 69:	Temperaturprofile des optimierten Gas-Falls im <i>Desorber</i> für das Absorbens (links) und das Gas (rechts) (Bedingungen laut Tabelle 35).	121
Abbildung 70:	Flüssig- (links) und Gasbelastung (rechts) im Absorber für den optimierten Gas-Fall (Bedingungen laut Tabelle 35)	122

Tabellenverzeichnis

Tabelle 1:	Thermodynamische Eigenschaften und die entsprechenden Berechnungsmethoden	20
Tabelle 2:	Auswahl einiger Stoffdaten von MEA und AMP	38
Tabelle 3:	Koeffizienten zur Berechnung der temperaturabhängigen Gleichgewichtskonstanten (MEA-System).	45
Tabelle 4:	Koeffizienten zur Berechnung der temperaturabhängigen Gleichgewichtskonstanten (AMP-System).	47
Tabelle 5:	Übersicht der Abgasstromwerte	48
Tabelle 6:	Experimentelle Ergebnisse für das MEA-CO2-System	
	gemäß (Notz, 2010)	62
Tabelle 7:	Experimentelle Ergebnisse für das AMP-CO2-System	65
Tabelle 8:	Vergleich experimenteller und modellbasierter	
	Absorptionsrate Wabs	69
Tabelle 9:	Übersicht der base case Simulationen	74
Tabelle 10:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation der Absorberhöhe (MEA).	87
Tabelle 11:	Ergebnisse der energetischen Effizienz bei Variation der Absorberhöhe (MEA)	88
Tabelle 12:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation der Absorberhöhe (AMP)	88
Tabelle 13:	Ergebnisse der energetischen Effizienz bei Variation der Absorberhöhe (AMP)	89
Tabelle 14:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation des L/G- Verhältnisses (MEA)	91
Tabelle 15:	Ergebnisse der energetischen Effizienz bei Variation des L/G- Verhältnisses (MEA)	92

Tabelle 16:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation des L/G- Verhältnisses (AMP)	2
Tabelle 17:	Ergebnisse der energetischen Effizienz bei Variation des L/G- Verhältnisses (AMP)	3
Tabelle 18:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation der Reboiler-Temperatur (MEA)	5
Tabelle 19:	Ergebnisse der energetischen Effizienz bei Variation der Reboiler-Temperatur (MEA)	6
Tabelle 20:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation der Reboiler-Temperatur (AMP)	7
Tabelle 21:	Ergebnisse der energetischen Effizienz bei Variation der Reboiler-Temperatur (AMP)	7
Tabelle 22:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation des Absorber-Druckes (MEA)	9
Tabelle 23:	Ergebnisse der energetischen Effizienz bei Variation des Absorber-Druckes (MEA)10	0
Tabelle 24:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation des Absorber-Druckes (AMP)10	1
Tabelle 25:	Ergebnisse der energetischen Effizienz bei Variation des Absorber-Druckes (AMP)10	1
Tabelle 26:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation der Amin-Konzentration (MEA)	4
Tabelle 27:	Ergebnisse der energetischen Effizienz bei Variation der Amin- Konzentration (MEA)10	5
Tabelle 28:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation der Amin-Konzentration (AMP)10	6
Tabelle 29:	Ergebnisse der energetischen Effizienz bei Variation der Amin- Konzentration (AMP)10	6

XVI

Tabelle 30:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation der AbsTemperatur (MEA)	109
Tabelle 31:	Ergebnisse der energetischen Effizienz bei Variation der Abs Temperatur (MEA)	109
Tabelle 32:	Ergebnisse der Ab-/Desorptionseffizienz bei Variation der AbsTemperatur (AMP).	110
Tabelle 33:	Ergebnisse der energetischen Effizienz bei Variation der Abs Temperatur (AMP)	111
Tabelle 34:	Zielgrößen der Absorptionsraten.	113
Tabelle 35:	Übersicht der optimierten Simulationen	116
Tabelle 36:	Vergleich ausgewählter Eigenschaften beider	
	Alkanolamine (MEA, AMP)	127