LearnAndrmd
Studio 4

Efficient Java-Based Android
Apps Development

Second Edition

Ted Hagos

ApPress’

Learn Android Studio 4

Efficient Java-Based
Android Apps Development

Second Edition

Ted Hagos

Apress’

Learn Android Studio 4: Efficient Java-Based Android Apps Development

Ted Hagos
Manila, National Capital Region, Philippines

ISBN-13 (pbk): 978-1-4842-5936-8 ISBN-13 (electronic): 978-1-4842-5937-5
https://doi.org/10.1007/978-1-4842-5937-5

Copyright © 2020 by Ted Hagos

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484259368. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5937-5

For Adrianne and Stephanie.

Table of Contents

About the AULNOFcoiiiiiieenriiieenrinss s an s nnn e s annn e e s nnnnnes xi
About the Technical REVIEWETcucuisseesrrsssssnnsssssssnnnssssssnnsssssssssssssssssnsssssssnnssssssnns Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
L0 T1 L T] | Xvii
Chapter 1: ANdroid OVervVieW......uuussssmmemmsmmmmsssnnnnnssssssssnss 1
Y (0] OO 1
The Operating SYSIEM........ccviririrrrre e s r e s a e e s s ae e e e s e nne s 3
£ 11114 7R 5
Chapter 2: Android STUMIOccerrrrissmmnrmssssssnmmsssssnssessssssssesssssnssesssssnssessssnnnsessssnnnnssss 7
£ o OSSOSO 7
Configuring ANAroid STUCIOc.cvoveerererercrree e 10
Hardware ACCEIEIAtiON.........ccovvrirererr e e e e 14
SUMIMAIY ..ttt e e e b b e e e e e R e e e R e e ee e e e e Re e Re e nr e e rnrn e 15
Chapter 3: Project BaSiCSuuuuuuummssmmnssnmmmsssnnsssssssssssssns 17
{08 L= T o (] 1= R 17
Create @N AVDcccoereireserir et e e e e e e 22
1] 1= SRS O S 29
Chapter 4: Android Studio IDE..........cccccmrirrmnssssssssssnmmmmmsssssssssssssssssssssssssssssssssesssssns 31
LT8O 31
1 T N =0 (0 34
Editing LAYOUL FIlES.......ccciiieerrceriese s se s 35
TODO EBIMS .t e e e e R e b e e e e R e R e 38

TABLE OF CONTENTS

How to Get More Screen SPace fOr COUBSuvvrrrimrererrerrerersssessesessesessessessesssssssessessesessessesaes 39
Project TOOI WINGOWcccceieriesinsirc s s s s s r s e s s p e e 41
PreferenCes/SEHINGS ... ——————— 43
SUMIMAIY ...ttt e e e Re e e e e e e Re e e e e e e e e nRe e e sa e nenannnnnnnens 45
Chapter 5: Android Application OVervieW......cusseeeessssessssssssssssssssssssssssssssssnssssssssssss 47
What Makes Up an Android PrOJECT........ccccvirernienrssers s s se s seses 47
Application ENtry POINT........ccocviirirere s sirse e s s se s st se s ssesaese s e ssesaessssesnesnens 50
ACHIVITIES .t e 51
1= £ S 53

E 1] 11 4= OSSOSO 54
Chapter 6: Activities and Layouts........ccusceemrmssssnnnmmsssssnnssssssssnmsssssssnssssssssnssssssnnnsnsss 55
1| S 55
LAYOUL FIlE ..veereeeetstcserie st p e np e e 55
ACHIVITY ClASS ..veueruereerererieresiesesse s s s s e s s e s e e s sae e e e s s b e e e s s ae b et e e s aesae e e e naennes 60

g (o 00 o 61
Modifying HElO WOKIUcoeoerercccr st 64
1] 4= OSSOSO 74
Chapter 7: Event Handlingcccuuussemmmmmmmmmmmsssas 75
Intro 10 Event Handling.........cocvoveerenennennnssersse s se e senns 75
Handling LONG ClICKSccoveiiiiieree s se e s s s e s s ssssessssssessssesns 81
1] 04 R 87
(I T L L gt 11 T 89
WhaL INTENTS ArE......ceiiieiceree s s 89
IMPHCIE INTENTS ... s 94
SUIMIMAIY.....eeeeeeecee e e e e e Re e e e e e e e e Re e s ae e se e e e e se e e re e ne e e e nnnneas 99
Chapter 9: Fragmentsccccccuuirrmmnnssssssssmmmmmmsssssssssssssssssssssssssssssnssssssssssssssssnnssnnss 101
Introduction t0 Fragments.........cccueerenrnsnnssrsese s s sesse s 101
11T 111 1T o OSSOSO 110

TABLE OF CONTENTS

Chapter 10: Navigation.........ccccerrmsssmnnmmssssssnmssssssnsssssssssssssssssnssssssssnsssssssnnssssssnnnnss 111
Navigation Before Architecture COMPONENTSccccvreririesrnsc s 111
Navigation COMPONENES ... e 114
Working with Jetpack Navigation ... 116
£ 1134 7 129

Chapter 11: Running in the Background..........ccccerrmssnnnnmsssssnsnssssssssssssssssssssssssnnnss 131
BaSIC COMCEPLScvueiriiiircrerie s sse s s e e e e e e s e st e e nne 131
THE UITRFEAG ...t s e e nne e p e e e e rnnnne s 132
Threads and RUNNADIES ... e 136
SUMIMANY ..ttt s s R e e e e R e b e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e Renrs 146

Chapter 12: Debuggingccccsrrrrmssssssnsssnmmmmsssssssssssssssssssssssssssssssnsssesssssssssnnnnnnnness 147
TYPES OF EFTOISeeeiecereeerreesessesesse e sse s s e s s s s s s e e s sesss e e sensssssnssessasssensesnsenens 147

0L E2 Y = (0] £ SR 147
RUNTIME EITOFS ... e 148
0T T = (0] £ 150
(DL o1 oo ST 153
SiNGIe STEPPING ..cveeerereeerreerererer e e p e e 154
£ T 156

Chapter 13: TeStiNg....cuuceumrmisnmmmmmssssnnmmmssssssmmssssssnnmsssssnnnesssssnnnssssssnnssssssnnnssssssnnnnss 157
TYPES OF TESHING ...evreeirrcerrce et r e p e e nnnne e 157
0T L= T ST 159

JVM Test vs. Instrumented Test ... 160
A SIMPIE DBMO ...t e s e e b e 161
IMplementing the TEST ... s 165
RUNNING @ UNIE TSt 167
INStrUMENEd TESTING ...veveveerererere e 170
Setting Up @ Simple TeSt.......cciiirr s 171
Recording ESPreSS0 TESTS......ucurirerenmrrnsesrsesmssssessssesessesesssse s sessesesssssssssssssssssssssssssssssnses 175
More on ESpresso MatChers ... s 178
ESPreSS0 ACHIONScceverieriiirire st e s e e e e 179
BT 1117 o SRS 180

TABLE OF CONTENTS

Chapter 14: Working with Filescccccunseemmmnsssssnnmmsssssssmssssssssmssssssssssssssssssssssssnnss 181
Internal and EXternal STOragecccoecrrenresercscrr st e 181
(02T TN T (0] T 182
How to Work with Internal STOragec.cccvrererrerernsesnesere s 183
B30T 1117 o OSSR 191

Chapter 15: BroadcastReCeIVErScccusssmmmmmsssssnnnssssssnsssssssssnnsssssssnsssssssnnssssssnnnnss 193
Introduction to BroadCastRECEIVErS..........cccuriiicinnin s 193

System Broadcast vs. Custom BroadCast...........ccocvvvverievnnnseniernnessensesessssessessessesessesessens 194
Two Ways to Register for BroadCast...........cccvivnninrnieninnnsnsese s sssssssessesnes 194
SUMIMANY ..t e e s b E e e b b e e e R e R e e e e e Re e Re R e e e e e Re R e e e e nRenrs 202

Chapter 16: Jetpack, LiveData, ViewModel, and ROOMcccccemmrrrnnssssssssnnnnnnnnas 203
Lifecycle Aware COMPONENTSccovrerernsereniseseseressesessesesse s sssss e s s sesssssssssesssssssssssenns 203
VIBWIMIOUELcveereerisesese e e nr s nr e np e nr s 207
T L 212
3100 1 O 217
£ 1134 7 224

Chapter 17: Distributing APPS ...cccusseeerrmsssssnmmsssssssnsssssssnssssssssnssssssssnsssssssnnssssssnnnnss 225
Prepare the App fOr REIEASEcccereeiiciricrern st 225

Prepare Material and Assets for REIEASEccccevvrrvrierinnnnnse s 226
Configure the App fOr REIEASE........ccvereririiriere s 226
Build a Release-Ready APPlICALoNccvcereveririeniereserrere s s e s s s sre e s e ssesnens 227
L [oe Y o T (= Yo o OO 232
£ 1134 7 237
Chapter 18: Short TaKeScucsssmsesmsssmsssssssssmsssmssssssssssssssssssssssssssnsssnsssnssnnsnnas 239
Productivity FEALUESceeeeeeeeeeeee s 239
IMPOrtiNG SAMPIES ...cveiicrr e —————— 239
321 72T (0 1 o ST SSS 241
LC12] =] - (O 243
[T 1T TS 47O 248

viii

TABLE OF CONTENTS

LiVe TEMPIALEScoereee it e r e e s a e s s n e 250
Important Keyboard SHOMCULS ... 251
SUMIMANY ..ttt s b e e e e R e b e e e R e A e e e e e Re e Ao b e e e e e Re R e e e e e aenrs 252
Appendix A: Java RefreShercccccrirnssssssmmmmmmmmsmsssssssssssnsssssssssssssssssssssssssssssnnnnns 253
DN 2T 5 1Y o] o 253
EQITIONS ... s 254
£ o O 255
Writing, Compiling, and RUNNING ..o s s sss e sse s 256
£33 0172V SRS 257
ATYPICal JAVA PrOQIAMc.ceuerieiirierere e sesse st sessessessessesessessesaesssses e ssesaesesnessesaesssssssesaesas 258

0] T 11 =T 1 o OO 260
0] 0] 02T T 260
STALEMENTS ... —————————— 261

G A0 (SR 261

012 LT 3 262
123 {00 TS 263
Packages and IMPOrtS.........ccvcrerennnnneresssesse e e 265
Program Entry POINT ... s snssaesaesse s 266
DALA TYPES ..t E e E e e ne 267
01T 0T 27

072 T3 o OO 271
Strongly and Statically TYPEccccveererererrerierrrerreresessesessese e sessessessessesessessessessssessessens 272
RETEIrENCE TYPES ..o se s se e e nne e 273
STACK AN HEAP ... e e e e e 274
L0042 1 275
(00T (0] £SO 276
ASSIGNMENL.......eeeeeeeecr e se e e e s e s re e sre e nan e nnennas 276
AFTNMETICveeece e e 276
L= SO 278
Equality and Relational............ccccoivninininnsn s 279
LT[0 00T (0] 281

TABLE OF CONTENTS

LOOPS aNd BranCRES.........cociviiiiirin i sr s e se s a e s 282
If and Switch StateMents ... ————————— 282
SWILCH STAtEMENT ... e 284
LT T8 0o o S OSS 287
0] I 0 o S S TSP 288
Simple Application of Control STrUCTUIES........ccuevvirrnierie s 289

2 S 291
g 1T T 10 o O 292
MaNAGING AITAYS.....ceceriererieirre s e bbb e e e R b e e et ae e R e e e e nenns 293
Using the ENhanced fOr-l00pc.ccocvrermrenrnsmnsese s s s ssenes 295
MOFE ON AITAYS ...veueerreerreesessesesse e e sss e s e e e e sas e sr s e se e e s e re e se e e s e e nne e nrnnis 297

REfEIENCE TYPES..cviierrierree st e e e ne s 299

02T 301
INNEITANCEcviiirce s 301
(004 1T (0] £ 303
LT 072 o 1T o OSSOSO 305
L0311 T] o T 306

B3] 1TSS 308
RS T L0 =T L] OO 308
Strings Are IMMULADIE........ccccverererrire s s ae e s s re e e e e ene s 309
Why Can’t We Modify STFiNGSccccvrererererrererersssersesessssessessessessssessessessesssssssessesssssssessesaes 311
CoOMPAriNG SNGS ..o e e e 312
COMMON USAQEcvreenereencrenseerseeressesessesessesesesesessssessssesesssssssssesssssssssssssssnsssensssssssssssnsssnnes 314

o (e 0110 | OO RSS 316

INO@X uueniissnnnsssnnnsssnnnsssnnssssanssssanssssnnnsssannssssnnssssnnssssnsssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 319

About the Author

Ted Hagos is a software developer by trade. At the moment, he’s Chief Technology
Officer and Data Protection Officer of RenditionDigital International, a software
development company based out of Dublin. He wore many hats in his 20+ years in
software development, for example, team lead, project manager, architect, and director
for development. He also spent time as a trainer for IBM Advanced Career Education,
Ateneo ITI, and Asia Pacific College.

xi

About the Technical Reviewer

Jeff Friesen is a freelance teacher and software developer
with an emphasis on Java. In addition to authoring Java I/0,
NIO and NIO.2 (Apress) and Java Threads and the Concurrency
Utilities (Apress), Jeff has written numerous articles on

Java and other technologies (such as Android) for JavaWorld
(www . javaworld.com), InformIT (www.informit.com),
Java.net, SitePoint (www.sitepoint.com), and other

websites. Jeff can be contacted via his website at JavaJeff.ca
" or via his LinkedIn profile (www.linkedin.com/in/javajeff).

xiii

http://www.javaworld.com
http://www.informit.com
http://java.net
http://www.sitepoint.com
http://www.linkedin.com/in/javajeff

Acknowledgments

To Stephanie and Adrianne, my thanks and my love.
To Mark Powers and Steve Anglin, and to all who made this book possible. Many,
many thanks.

Introduction

Welcome to Learn Android Studio 4. This book will help you get started in your
programming journey with the little green robot. You already bought the book (many
thanks to you), so you don’t need to be convinced that programming for the mobile
platform offers many opportunities for software developers.

The book is aimed at beginning Android programmers but not wholly new to
programming. The book assumes that you have prior programming experience with
any of the CFOL (C family of languages, e.g., C, C++, Java, C#, JavaScript). Ideally, you
are already a Java programmer trying to get your feet wet in Android; if you're not, don’t
worry. Basic Java programming is covered in the Appendix, and you can refer to that as
you try to feel your way into the language.

The book covers two fronts: the fundamentals of Android programming and the
use of Android Studio 4. Android programming concepts and the use of the IDE are
explained using a combination of graphics and code walk-throughs: there’s plenty of
those in the book.

Chapter Overview

Chapter 1: Android Overview—This chapter introduces Android.
It deals with a bit of Android’s history and the technical makeup of
its OS.

Chapter 2: Android Studio—If you haven’t set up your Android
environment yet, don’t skip this chapter; it walks you through the
setup of Android Studio, whether you're on macOS, Windows, or
Linux. It also introduces the essential parts of the IDE.

Chapter 3: Project Basics—This chapter introduces the concept
and mechanics of an Android project. It walks through creating a
project and running a project in an AVD (Android Virtual Device).

xvii

INTRODUCTION

xviii

Chapter 4: Android Studio IDE—Android Studio is a full-fledged
IDE,; it has lots of features and parts. This chapter introduces you
to the most common tools and windows of Android Studio.

Chapter 5: Android Application Overview—What makes up an
Android project? What are components? What are Intents? These
are some of the questions this chapter addresses. You'll discover
how different an Android app is from a desktop app.

Chapter 6: Activities and Layouts—We get into the basics of
Ul building. Activities are the primary means by which the user
sees your app. We get to learn how to build these and other UI
elements that are in common use.

Chapter 7: Event Handling—Handling user actions is a very
common task in Android programming. This chapter walks you
through the basics of listener objects, how to create them, and
how to bind them to View elements (like Buttons).

Chapter 8: Intents—Intents are uniquely Android’s. See how this
message-passing mechanism works in Android and how it glues
all the other Android components.

Chapter 9: Fragments—Fragments are a granular way to
compose a screen. This chapter walks through the fundamental
concepts of Fragments.

Chapter 10: Navigation—Navigation components are quite new.
They are a part of Jetpack. This chapter introduces you to the more
modern ways on how to build multiscreen apps.

Chapter 11: Running in the Background—When you start
building nontrivial apps, you will need to read or write from I/O
sources, fetch data from the network, and so on. These activities
take time, and they need to be run in the background. This
chapter is all about that.

Chapter 12: Debugging—You will often make coding mistakes.
This chapter introduces you to the types of errors you may
encounter and how to use Android Studio’s debugging features to
solve them.

Chapter 13: Testing—At some point, you have to test your code
before you release them. This chapter introduces you to the
many kinds of testing you can do to an app. More importantly, it
introduces you to unit testing and Espresso testing.

Chapter 14: Working with Files—You'll need to save to a text file
or read from it; this chapter walks through the basics of file input
and output in Android.

Chapter 15: BroadcastReceivers—One of Android’s foundational
components is the BroadcastReceiver; this component lets you
build decoupled apps by adopting the publish-subscribe pattern.

Chapter 16: Jetpack, LiveData, ViewModel, and Room—More
goodies from Architecture components. This chapter walks
through the basics of how to build components that have lifecycle

awareness of other components and how to use Room.

Chapter 17: Distributing Apps—When you're ready to distribute
your app, you'll need to sign it and list it in a marketplace like
Google Play. This chapter walks you through the steps on how to
doit.

Chapter 18: Short Takes—More Android Studio goodness.

Appendix—The Appendix breezes through the Java language. It
deals with some of the basic language concepts you will need to
get started in Android programming.

INTRODUCTION

Xix

CHAPTER 1

Android Overview

What the chapter covers:
o Briefhistory of Android
e The Android operating system

It's been quite a while since the little green robot made waves and disrupted the
mobile computing world. It started as an operating system for phones, but it has, since,
made its way into all sorts of places like TVs, car systems, watches, e-readers, netbooks,
and game consoles, among other things.

Android, to many people, may seem like an OS only, which for the most part it is;
but apart from the OS, Android also includes a software development kit, libraries,
application frameworks, and reference design.

History

2003. Andy Rubin founded Android Inc.; Google backed the
company but didn’t own yet.

2005. Google bought Android Inc

2007. Android was officially given to open source; Google turned
over the ownership to the Open Handset Alliance (OHA).

2008. Android v1.0 was released. The Google Play Store was called
by a different name then; it was called the “Market.”

2009. Versions 1.1, 1.5 (Cupcake), 1.6 (Donut), and 2.0 (Eclair)
were released. Cupcake was the first version to get the sugary
treats naming scheme. This was a significant release because it
featured an on-screen keyboard. Donut is remembered as the first
version to include the “search box.” Eclair is remembered as the
first to include Google maps, which started the death of built-in
car navigation, because Google offered Maps for free.

© Ted Hagos 2020
T. Hagos, Learn Android Studio 4, https://doi.org/10.1007/978-1-4842-5937-5_1

https://doi.org/10.1007/978-1-4842-5937-5_1#DOI

CHAPTER 1

ANDROID OVERVIEW

2010. Versions 2.2 (Froyo) and 2.3 through 2.3.7 (Gingerbread)
were released. Froyo improved the Android experience; it featured
five home screens instead of three during the previous versions.
Gingerbread coincided with the release of Nexus S (the one from
Samsung). Gingerbread may also be remembered as the version
that introduced support for a front-facing camera; and the selfie
avalanche began.

2011. Versions 3.0 (Honeycomb) and 4.0 through 4.0.4 (Ice Cream
Sandwich) were released. The previous versions of Android were
all (exclusively) for the phones; Android 3.0 changed that because
Honeycomb was meant for tablets. It hinted at design cues for
future versions of Android. It removed physical buttons; the home,
back, and menu buttons were part of the software. Google and
Samsung partnered once again for the release of Galaxy Nexus
(successor for the Nexus S), which used Ice Cream Sandwich as
the OS.

2012. Versions 4.1 through 4.3.1 (Jelly Bean) were released.

Jelly Bean introduced “Google Now” which could be accessed

via a quick swipe from the home screen; this allowed access

to Calendar, Events, Emails, and weather reports all in a single
screen. It was an early version of Google Assistant. It was also with
this version where Project Butter was implemented which allowed
for a smoother Android experience.

2013. Versions 4.4 through 4.4.4 (KitKat) were released. KitKat was
a big aesthetic upgrade; the blue accents of the previous versions
were replaced with a more refined white accent, and many stock
apps were redesigned with lighter color schemes. This version
also brought us the “Ok Google” search command

2014. Versions 5.0-5.1/5.1.1 (Lollipop) were released; Android
became 64-bit. Lollipop featured the first use of Google’s material
design philosophy. The changes were not just cosmetics; under
the hood, Android 5 moved away from the Dalvik VM and used
the Android Runtime (ART) instead. Android TV was also released
during this time.

CHAPTER 1 ANDROID OVERVIEW

2015. Versions 6.0 and 6.01 (Marshmallow) were released. The
app menu changed dramatically, and Google added search bar

so users can find apps quickly. The memory managers were
introduced in this version so users can check the memory usage of
apps. The permission system was revamped as well; apps can no
longer request for permissions on a wholesale basis; permissions
were requested (and granted) on a per-permission basis and as
they were required.

2016. Versions 7.0-7.1.2 (Nougat) were released. “Google Now”
was replaced with “Google Assistant.” The improved multitasking
system allowed for split-screen mode.

2017. Versions 8.0 and 8.1 (Oreo) were released; and with it were
more multitasking features. Picture-in-picture and native split-
screen was introduced with this version.

2018. Android 9.0 (Pie) was released—exactly 10 years after v1.0.
This release brought with it quite a number of visual changes
which made it the most significant update in recent years. The
three-button setup was replaced with a single-pill shaped button
and gestures to control things like multitasking.

2019. Android 10 was released; this is a shift for Google in terms
of naming the versions. Google did away with the dessert names
and simply named the version according to its number. The green
robot is being rebranded. This version also marks the end of the
Android navigation buttons. While Android 9 kept the “back”
button, v10 has completely removed it and will use gestures
instead.

The Operating System

The most visible part of Android, at least for developers, is its operating system. Android
OS may appear complex, but its purpose is simple; it stands between the user and the
hardware. That may be an oversimplification, but it will suffice for our purposes. By
“user,” I don’t literally mean an end user or a person; by “user” I mean an application, a
piece of code that a programmer creates, like a word processor or an email client.

CHAPTER 1

ANDROID OVERVIEW

Take the email app, for example; as you type each character, the app needs to

communicate to the hardware for the message to make its way to your screen and hard

drive and eventually send it to the cloud via your network. It’s a more involved process

than I describe it here, but that is the basic idea. At its simplest, an OS does three things:

e Manages hardware on behalf of applications.

o Provides services to applications like networking, security, memory

management, and so forth.

e Manages execution of applications; this is the part that allows us to

run multiple applications (seemingly) almost at the same time.

Figure 1-1 shows a logical diagram of Android’s system architecture; it is far from
complete, since it doesn’t show all the apps, components, and libraries in the Android

platform, but it should give you an idea on how things are organized.

[browser | | email | [yourapps |

MANAGERS content
[Cactivity | [Tocation] [package] [notification]| LProviders
: view
| resource | |telephony | [window | system
LIBRARIES android
runtime
webkit, media framework, open media libc, etc l;orle
libraries
hardware power memory process s

drivers mgt mgt mgt

APPLICATIONS

APPLICATIONS
FRAMEWORK

LINUX KERNEL

Figure 1-1. Platform architecture

The lowest level in the diagram is the one responsible for interfacing with the

hardware, various services like memory management, and executions of processes. This

part of the Android OS is Linux. Linux is a very stable OS and is quite ubiquitous itself.

You can find it in many places like server hardware on data centers, appliances, medical
devices, and so forth. Android uses Linux which handles hardware interfacing and some

other kernel functions.

CHAPTER 1 ANDROID OVERVIEW

On top of the Linux kernel are low-level libraries like SQLite, OpenGL, and so on.
These are not part of the Linux kernel but are still low level and as such are written
mostly in C/C++. On the same level, you will find the Android Runtime which is where
Android applications are run.

Next up is the application framework layer. It sits on top of both the low-level
libraries and the Android Runtime because it needs both. This is the layer that we will
interact with as an application developer because it contains all the libraries we need to
write apps.

Finally, on top is the application layer. This is where all our apps reside, both the
ones we write and the ones that come prebuilt with the OS. It should be pointed out that
prebuilt applications which come with the device do not have any special privileges over
the ones we will write. If you don’t like the email app of the phone, you can write your
own and replace it. Android is democratic like that.

Summary

e Android has gone a long way, from the clunky Cupcake version to
Android 10, which is very advanced and provides a buttery smooth
user experience. Android’s release cadence was frenetic during the
early years, but it has since subsided and settled on a more uniform
12-month cycle.

e Android isn’tjust an OS, it also includes an application framework,
software development kit, prebuilt applications, and a reference
design.

e Android uses the Linux OS for interfacing with hardware, memory
management, and executions of processes.

CHAPTER 2

Android Studio

What the chapter covers:
e Getting Android Studio
o Configuring the IDE
e Basic parts of the IDE

Developing Android applications wasn’t always done in Android Studio (AS). In
the early days of Android, developers built apps using just the bare SDK, a bunch of
command-line tools, and Ant build scripts (Apache Ant)—it was quite the old school;
soon after, the Android Developer Tools (ADT) for Eclipse was released. Eclipse became
the dominant tool for Android development until Android Studio came along.

Android Studio came in 2013. To be sure, it was still on beta, but the writing on the
wall was clear; it was going to be the official development tool for Android development.
Android Studio is based on JetBrains’ IntelliJ; it'’s a commercial Java IDE, which also has
anonpaid or community version. It was the community version of IntelliJ that served as
the basis for Android Studio.

Setup

At the time of writing, Android Studio 4 was on preview release; the version I used for
this book was Canary 9. Android Studio 4 might be on stable release by the time you're
reading this book; hopefully, the diagrams and screenshots won'’t be too different
by then. To download Android Studio 4 (preview release), you can go to https://
developer.android.com/studio/preview.

The installer is available for Windows (both 32- and 64-bit), macOS, and Linux. I ran
the installation instructions on macOS (Catalina), Windows 10 64-bit, and Ubuntu 18. I
work primarily in a macOS environment, which explains why most of the screen grabs
for this book look like macOS. Android Studio looks, runs, and feels (mostly) the same in

© Ted Hagos 2020
T. Hagos, Learn Android Studio 4, https://doi.org/10.1007/978-1-4842-5937-5_2

https://doi.org/10.1007/978-1-4842-5937-5_2#DOI
https://developer.android.com/studio/preview
https://developer.android.com/studio/preview

CHAPTER 2 ANDROID STUDIO

all three platforms, with very minor differences like key bindings and the main menu bar
in macOS.

Before we go further, let’s look at the system requirements for Android Studio; at a
minimum, you'll need either of the following:

e Microsoft Windows 7, 8, or 10 (32- or 64-bit)
e macOS 10.10 (Yosemite or higher)

e Linux (Gnome or KDE Desktop), Ubuntu 14.04 or higher; 64-bit
capable of running 32-bit applications

e GNU C Library (glibc 2.19 or later) if you're on Linux
For the hardware, your workstation needs to be at least

e 4GB RAM minimum (8GB or more recommended)

e 2GB of available HDD space (4GB is recommended)

e 1280x 800 minimum screen resolution

The preceding list came from the official Android website (https://developer.
android.com/studio); of course, more is better.

There are no prerequisite software for Android Studio. It used to be that you needed
to install a Java Development Kit prior to installing Android Studio; starting from
Android Studio 2.2, the installer includes an embedded OpenJDK—you no longer need
to bother with installing a separate JDK.

Download the installer from https://developer.android.com/studio/, and get the
proper binary file for your platform.

If you're on macOS, do the following:

1. Unpack the installer zipped file.
2. Drag the application file into the Applications folder.
3. Launch Android Studio.

Android Studio will prompt you to import some settings if you have a previous
installation. You can import that—it’s the default option.

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio/

CHAPTER 2 ANDROID STUDIO

Note If you have an existing installation of Android Studio, you can keep using
that version and still install the preview edition. Android Studio 4 can coexist
with your existing version of Android Studio; its settings will be kept in a different
directory.

If you're on Windows, do the following:
1. Unzip the installer file.

2. Move the unzipped directory to a location of your choice, for
example, C:\Users\myname\AndroidStudio.

3. Drill down to the “AndroidStudio” folder; inside it, you'll find
“studio64.exe”. This is the file you need to launch. It’s a good idea
to create a shortcut for this file—if you right-click studio64.exe
and choose “Pin to Start Menu,” you can make Android Studio
available from the Windows Start menu; alternatively, you can
also pin it to the Taskbar.

The Linux installation requires a bit more work than simply double-clicking and
following the installer prompts. In future releases of Ubuntu (and its derivatives),
this might change and become as simple and frictionless as its Windows and macOS
counterparts, but for now, we need to do some tweaking. The extra activities on Linux
are mostly because AS needs some 32-bit libraries and hardware acceleration.

Note The installation instructions in this section are meant for Ubuntu 64-bit and
other Ubuntu derivatives, for example, Linux Mint, Lubuntu, Xubuntu, Ubuntu MATE,
and so on. | chose this distribution because | assumed that it is a very common
Linux flavor; hence, the readers of this book will be using that distribution. If you
are running a 64-bit version of Ubuntu, you will need to pull some 32-bit libraries
in order for AS to function well.

CHAPTER 2 ANDROID STUDIO

To start pulling the 32-bit libraries for Linux, run the following commands on a
terminal window:

sudo apt-get update && sudo apt-get upgrade -y
sudo dpkg --add-architecture 1386
sudo apt-get install libncurses5:i386 libstdc++6:1386 z1ib1g:i386

When all the prep work is done, you need to do the following:

1. Unpack the downloaded installer file. You can unpack the file
using command-line tools or using the GUI tools—you can, for
example, right-click the file and select the “Unpack here” option, if
your file manager has that.

2. After unzipping the file, rename the folder to “AndroidStudio”.

3. Move the folder to a location where you have read, write, and
execute privileges. Alternatively, you can also move it to /usr/
local/AndroidStudio.

4. Open a terminal window and go to the AndroidStudio/bin folder,
thenrun ./studio.sh.

5. Atfirstlaunch, Android Studio will ask you if you want to import
some settings; if you have installed a previous version of Android
Studio, you may want to import those settings.

Configuring Android Studio

Let’s configure a couple of things first before we go to coding. Let’s do the following:

1. Getsome more software that we need so we can build programs
that target specific versions of Android.

2. Make sure we have all the tools we need.
3. (optionally) change the way we get updates.

Launch Android Studio and click “Configure” (as shown in Figure 2-1), then choose
“Preferences” from the drop-down list.

10

CHAPTER 2 ANDROID STUDIO

@ Welcome to Android Studio

Version 4.0 Canary 9 (

0

23, 3LIL

(193.5233.102.40.6137316)
<+ Start a new Android Studio project

&= Open an existing Android Studio project

¥ Get from Version Control

[#' Profile or debug APK

i Import an Android code sample

¥ Import project (Gradle, Eclipse ADT, etc.)

& Configure ¥ Get Help v;
AVD Manager
SDK Manager

Preferences

Figure 2-1. Go to “Preferences” from Android Studio’s opening dialog

The “Preferences” option opens the Preferences dialog. On the left-hand side, go to
Appearance & Behavior » System Settings » Android SDK, as shown in Figure 2-2.

11

CHAPTER 2 ANDROID STUDIO

[NN] Preferences for New Projects ’
Appearance & Behavior > System Settings > Android SDK
Appearance & Behavior Manager for the Android SDK and Tools used by Android Studio)

Appearance Android SDK Location: [Usersfted/Library/Android/sdk

Menus and Toolbars
SDK Platforms SDK Tools SDK Update Sites
System Settings

PRsswords Each Android SDK Platform package includes the Android platform and sourc

to an APl level by default. Once installed, Android Studio will automatically ¢
HTTP Proxy updates. Check "show package details" to display individual SDK component:
Data Sharing Name API
Date Formats B Android 10.0 (Q)
Updates Android SDK Platform 29 29
Memory Settings Sources for Android 29 29
Intel xB86 Atom System Image 29
__|Intel x86 Atom_64 System Image 29
EllsiCotors Google APIs Intel x86 Atom System Image 29
Scopes __| Google APIs Intel x86 Atom_64 System Image 29 ’
Notifications [] Google Play Intel x86 Atom System Image 29
Quick Lists [] Google Play Intel x86 Atom_64 System Image 29

PRl - - . . CJ Android Q Preview -

Figure 2-2. SDK Platforms

When you get to the SDK window, enable the "Show Package Details" option so you
can see a more detailed view of each API level. We don’t need to download everything in
the SDK window. We will get only the items we need.

SDK levels or platform numbers are specific versions of Android. Android 10 is
API level 29, Android 9 or “Pie” is API level 28, Android 8 or “Oreo” is API levels 26
and 27, and Nougat is API levels 24 and 25. You don’t need to memorize the platform
numbers, at least not anymore because the IDE shows the platform number with the
corresponding Android nickname.

Download the API levels you want to target for your applications, but for the purpose
of this book, please download API level 29 (Android 10). That’s what we will use for the
sample projects. Make sure that together with the platforms, you will also download
"Google APIs Intel x86 Atom_64 System Image." We will need those when we get to the
part where we test run our applications.

Choosing an API level may not be a big deal right now because at this point, we’re
simply working with practice apps. When you plan to release your application to the
public, you may not be able to take this choice lightly. Choosing a minimum SDK or API
level for your app will determine how many people will be able to use your application.
At the time of writing, 17% of all Android devices are using “Marshmallow,” 19% for
“Nougat,” 29% for “Oreo,” and only 10% for “Pie”; the stats for Android 10 were not

12

CHAPTER 2 ANDROID STUDIO

out yet. These stats are from the dashboard page of the official Android website. It’s a

good idea to check these statistics from time to time; you can find it here: http://bit.1ly/
droiddashboard.
We go next to the “SDK Tools” section, as shown in Figure 2-3.

havior

bars

ngs

Deployment
neworks

Preferences for New Projects
Appearance & Behavior > System Settings * Android SDK
Manager for the Android SDK and Tools used by Android Studio
Android SDK Location: [Usersfted/Library/Android/sdk E
SDK Platforms SDK Tools SDK Update Sites
Below are the available SDK developer tools. Once installed, Android Studio will

automatically check for updates. Check "show package details" to display available
versions of an SDK Tool.

Name Version Status
Android SDK Build-Tools Installed
[] GPU Debugging tools Not Installed
[JLLDB Not Installed
[] NDK (Side by side) Not Installed
[] Android SDK Command-line Tools (late Not Installed
[] CMake Not Installed
[] Android Auto API Simulators 1 Not installed
[] Android Auto Desktop Head Unit emulai1.1 Not installed
Android Emulator 29.3.7 Installed
Android SDK Platform-Tools 29.0.5 Installed
Android SDK Tools 26.1.1 Installed
[_] Documentation for Android SDK 1 Not installed
|] Google Play APK Expansion library 1 Not installed
[] Google Play Instant Development SDK 1.9.0 NotRknstalled
["] Google Play Licensing Library 1 Not installed
(7] Google Play services 49 Not installed
[_] Google Web Driver 2 Not installed
I Intel x86 Emulator Accelerator (HAXM i17.5.1 Installed

oo - Skia Parser Serve; o 1 Q.O M Not mstallgd ’

Figure 2-3. SDK Tools

You don’t generally have to change anything on this window, but it wouldn’t hurt to

check if you have the tools, as shown in the following list, marked as “Installed”:

e Android SDK Build Tools

¢ Android SDK Platform Tools

¢ Android SDK Tools

13

http://bit.ly/droiddashboard
http://bit.ly/droiddashboard

CHAPTER 2 ANDROID STUDIO

¢ Android Emulator
o Support Repository

o HAXM Installer

Note If you are on the Linux platform, you cannot use HAXM even if you have an
Intel processor. KVM will be used in Linux instead of HAXM.

Once you're happy with your selection, click the “OK” button to start downloading

the packages.

Hardware Acceleration

As you create applications, it will be useful to test and run it sometimes in order to get
immediate feedback and find out if it is running as expected or if it is running at all. To
do this, you will use either a physical or a virtual device. Each option has its pros and
cons, and you don’t have to choose one over the other; in fact, you will have to use both
options eventually.

An Android Virtual Device or AVD is an emulator where you can run your apps.
Running on an emulator can sometimes be slow; this is the reason why Google and Intel
came up with HAXM. It is an emulator acceleration tool that makes testing your app a bit
more bearable. This is definitely a boon to developers. That is if you are using a machine
that has an Intel processor which supports virtualization and that you are not on Linux.
But don’t worry if you're not lucky enough to fall on that part of the pie, there are ways to
achieve emulator acceleration in Linux, as we’ll see later.

macOS users probably have it the easiest because HAXM is automatically installed
with Android Studio. They don’t have to do anything to get it; the installer took care of
that for them.

Windows users can get HAXM either by

o Downloading it from https://software.intel.com/en-us/android.
Install it like you would any other Windows software, double-click,
and follow the prompts.

o Alternatively, you can get HAXM via the SDK manager; this is the
recommended method.

14

https://software.intel.com/en-us/android

CHAPTER 2 ANDROID STUDIO

For Linux users, the recommended software is KVM instead. KVM (Kernel-based

Virtual Machine) is a virtualization solution for Linux. It contains virtualization
extensions (Intel VT or AMD-V).
To get KVM, we need to pull some software from the repos; but even before you can

do that, you need to do the following first:

1.

Make sure that virtualization is enabled on your BIOS or UEFI
settings. Consult your hardware manual on how to get to these
settings. It usually involves shutting down the PC, restarting it,
and pressing an interrupt key like F2 or DEL as soon as you hear
the chime of your system speaker, but like I said, consult your
hardware manual.

Once you made your changes, and rebooted to Linux, find out

if your system can run virtualization. This can be accomplished

by running the following command from a terminal: egrep -c
"(vmx|svm)" /proc/cpuinfo.If the result is a number higher than
zero, that means you can go ahead with the installation.

To install KVM, type the commands, as shown in Listing 2-1, on a terminal window.

Listing 2-1. Commands to install KVM

sudo apt-get install gemu-kvm libvirt-bin ubuntu-vm-builder bridge-utils

sudo adduser your user name kvm
sudo adduser your user name libvirtd

You may have to reboot the system to complete the installation.

Hopefully, everything went well, and you now have a proper development

environment. In the next chapter, we will familiarize ourselves with the various parts of
Android Studio IDE.

Summary

Android Studio is based on the community edition of Intelli]. If you
have used Intelli] before, all the techniques and keyboard shortcuts
you've learned can be used in Android Studio.

15

