Clean C++20

Sustainable Software Development
Patterns and Best Practices

Second Edition
Stephan Roth

Apress:

Clean C++20

Sustainable Software Development
Patterns and Best Practices

Second Edition

Stephan Roth

Apress’

Clean C++20: Sustainable Software Development Patterns and Best Practices

Stephan Roth
Bad Schwartau, Schleswig-Holstein, Germany

ISBN-13 (pbk): 978-1-4842-5948-1 ISBN-13 (electronic): 978-1-4842-5949-8
https://doi.org/10.1007/978-1-4842-5949-8

Copyright © 2021 by Stephan Roth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Jay Mantri on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484259481. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5949-8

To Caroline and Maximilian: my beloved and marvelous family.

Table of Contents

About the AUtROKccuimmiemmsnmmenmsensn s an s n s snnnnns Xiii
About the Technical REVIEWETccuserssassssnsssanssssssssnsssasssssssssnsssassssassssnsssassssasssansss XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
Chapter 1: IntroducCtion.........ccccecviinssssmssmmmmmmmmmsssssssnnsmeessssssss s 1
SOTtWAIE ENTIOPY ...cveveerreesisesese s s s s s sss e sn s sse e senssnsnsnnnns 3
L 0 TS 4
ClEAN COUEveueirrreerrierrsesessese s sr s s se e s r s se e b e a s e s e e b e ee e e R e e e e e e e R e e Re e e e e e nnn e s 6
C++11:The Beginning 0f @ NEW EFa........cccvivvinieniennninriresesessessessessesessessessessssessessesesssssessessens 6
WhO ThiS BOOK IS FOF......ceiiiiiriineirs s 7
Conventions USed in ThiS BOOK.........ccccvrerrmenmseserssssssssesessans 8
SIABDAIS ..ot 9
Notes, Tips, AN WaNINGSccecevirierreererierrie s s e s sse s sesssessessesesssesaessessssssesnessenns 9

T [T Y= 11 0] 9
Companion Website and Source Code REPOSILOrYcccvireinincnennsnsene e 11
UML DIAQFAMS......coviueereeeresesessesessesesessssesssssssssssessnssssssssssssssssnsssnssssnns 12
Chapter 2: Build a Safety Net..........ccccinnmmmmmmnnsemmmmmsssnmmmssssnmmssssssmsssssnssssnms 13
The Need fOr TESHINGcccveieriierrcrrre e e nr s 13
INtrodUCTION 10 TESTING vvvvereere i rere e s s se e s sr e e s ae s r e e nnennes 16
0T =] 19
What ADOUL QA7 ...t bbb ne e e e s 21
Rules for GOOd UNIt TESEScocecereecrirceree e 22
TESt COUE QUANILYcovrerrereeererersseesesesesrs e se s se s se e ss s e e e s e e e e s nnnens 22

UNit TESE NAMING ..o bbb s e nne 22

TABLE OF CONTENTS

Unit Test INAEPENABNCEcovevvirrierirrir e e s a e s 24
0NE ASSEITION PEI TEST....ciiierierierertrrere e e s saesae e s e s e sa e sa e e s e saesaese e e naenaens 25
Independent Initialization of Unit Test Environments...........cccccvvnvnninininnnncnsensenseenensenns 26
Exclude Getters and SEHErS.........coorrrnicsrr s 27
Exclude TRIrd-Party COUEccvrerererrerrererirserseressesessessessessssesessessesessessessessssessessessssessessees 27
Exclude EXIErnal SYSIEMSccccveviririere s s s e s sss s sae s s e saesaessssessesneees 28
What Do We Do with the Database?cccevrrienmnnnnnsnssssssse e 28
Don’t Mix Test Code with Production COde..........covurverenernmsnssmsesessssssse s 29
Tests MuSst RUN FaSt ... s s 32
How Do You Find a Test’s INput Data?cccrverivnnrnienennsnsene s sessesse e ssssessessessssessessees 33
Test Doubles (FAKE ODJECES) ...uvverererirrirere st sre s 36
Chapter 3: Be Principled.........ccccunsemmmmmsssnnnnmsssssnssmssssssssessssssssssssssnssssssssssssssssnnnssnss 41
What IS @ PHNCIPIE?eeueeeciesir sttt sr s st 41
KISS....oeteetrtetee et bbb e AR R R R R R A e e e nE s 42
YAGNI ...coveeeiccee e e AR b e nd e E e e e 43
DRY e aeenaran 44
1'S ADOUL KNOWIBAGE! ...t s 44
Building Abstractions Is Sometimes Hard ... sessans 45

T {0] P2 04 I TT0] OO 48
(0T T 00T T 3R 53
I 0T 0010 11 o 56
Be Careful with Optimizations..........coccviirininnnns s 60
Principle of Least AStoniSHMENT (PLA)cccoeerrererenerssesese s s sessesenns 61
The BOY SCOUL RUIE........coeiiereerisesessese e se s s sssns e s nsnns 62
Collective Code OWNEISHID.....ccccvivirrerere e s sa e nne 63
Chapter 4: Basics of Clean C++cccccurnismmnmmssssnnnmmssssssnmsssssssssssssssssssssssssssssssssnnsnss 65
LCTuTa L0 1T 66
Names Should Be Self-EXplanatory........c.ccocvcrvrierennnenienienssensese e sessesessessssessessessssessessenes 68
Use Names from the DOMain..........ccccvrnnn s 70
Choose Names at an Appropriate Level of AbStraction..........c.ccceveevvvvveninnnnsnienesessensenens 72

TABLE OF CONTENTS

Avoid Redundancy When ChooSing @ NAMEccccevvrervererenennensesessssessessessssessessesssssssessesses 73
Avoid Cryptic ADDreviations........coevevrvrierevssenseress s s e ssessssessessesassssessesaes 74
Avoid Hungarian Notation and PrefiXesc.cccurvrinneninnnnnne s ssesses s ssesssessessesaens 75
Avoid Using the Same Name for Different PUIPOSEScccveververiereninsenseniensssessessessesessesseses 76
L8] 111 TP 77
Let the Code TEll the STOrY......ccveverrrerererersereseresseressesse s ssessessssessessesssssssessessessssensessens 77

Do Not Comment ObVIOUS THINGS ...ccvecvrvererirrerrerersesesseressessssessessesssssssessessessssessessesssssssessenes 78
Don’t Disable Code with COMMENLScccoreiererererneerse s 79
Don’t Write BIOCK COMMENTS........coieeerrrissesesese e se s sesssss s 80
The Rare Cases Where Comments Are USETULccccvrrennnencnennnsnssese e 84
11T 0 L 89
0ne Thing, NO MOTE! ... e s e r s e nne s 93
Let THEM BE SMAL..........oveeeieirereeescseres e 94
FUNCEION NAMING ..o s 96
Use Intention-Revealing Names ..o ssessessssessessens 97
Parameters and Return ValUES ... 98
About Old C-Style in C4+ PrOJECLS.....cccveriirsre s se s snens 114
Choose C++ Strings and Streams over 0ld C-Style char..........ccooorvrvrrercrcrrer e, 115
Avoid Using printf(), sprintf(), gets(), e1C. ...cccvrvrrirrririnirsnrrr s 117
Choose Standard Library Containers over Simple C-Style Arrayscccoevvviniensnensennens 122
Use C++ Casts Instead of Old C-Style CastS........ccccerierrnierresernscrnesire e sessenes 125
AVOIA MIACTOSc.veceeecreesceese e ses e e e s e se e s e s e e e se e e sesne e nse e see e sennnennnnees 128
Chapter 5: Advanced Concepts of Modern C++......c.ccccmrnsssnnnnmmssssnnnsssssssnssssssnnnnss 131
Managing RESOUICEScouverrrererrenerreserenessssesessesesrssesss e s e e sss e sessesssssse e e ssssessssssessassssnssnsns 132
Resource Acquisition Is Initialization (RAI)..........ccoveernrernnnennsesnesrne s senses 134
SMAN POINTETS.....ccviceecccerese s e ne s 135
Avoid Explicit New and Delete.......cccuvvivrierierinnnsinsenesis s sesse e sssssssessessesssssssessesees 144
Managing Proprietary RESOUICESccoueerrvererinernsesssesesssessssesssssssssssessssesssssssssssssssssssnses 144
We LiKE 10 MOVE ... s 146
What Are Move SEMAaNtICS?.......ccuvrermmis s 146
The Matter with Those Ivalues and rvalues............ccovrnnn e ————— 148

vii

TABLE OF CONTENTS

IVAIUE REIEIBNCES.ceivicririiree e e e e 150
Don’t Enforce Move EVEIYWREIEcoccvveveriinienrie s sses s s e s e s s sessssssessessenns 152
L T LI 74 (S 153
The Compiler IS YOUF COlIBAQUE........ccuvicerirererererieesis e sesse s ses e se s se s sts e ssesesss e sessesesnenens 159
Automatic Type DedUCHIONccccverenirr e e nn 159
Computations During COmMPIle TIMEcceevrererrerierererserseressssesesessesessessessessssessessesssssssessees 164
Variable TEMPIALESccooeiircee e e 167
Don’t Allow Undefined BENAVIOKccoverrerererere e 169
Type-RiCh Programmingccccovenerenernnesesesesesesessesesseses s sesesessssessssesessssssssssssssssessssssssnens 171
KNOW YOUF LIDFIIES ...veveereecresesessesesse e seseses e se s e ss s ssssssesssssssssesssssssssssssssssssssssenssssnns 182
Take Advantage of <algorithm> ... 183
Take Advantage 0f BOOSTc.cucvvrerenenensne s srssesessssessenens 194
More Libraries That You Should KnOW ADOUL...........ccvvrerernenerenesnsesesesesese s sessssesenses 194
Proper Exception and Error HaNAliNg ... sessessessessssessesaens 196
Prevention Is Better Than AfIErCare.........ccuvrerrenernsesnsesesssse s ses s ssssesessssessnses 197

An Exception Is an Exception, Literally!..........ccovvnrnininnnnnnins s sessessesees 202

If You Can’t Recover, Get Out QUICKIY.........cucrvrerininrinie s sss e sne s 204
Define User-Specific EXCEPLION TYPES ...cvv vt sse e snes 205
Throw by Value, Catch by const REferenCe..........ccccureeernsernnesenesessse s sessesessenens 207
Pay Attention to the Correct Order of Catch Clauses..........ocvvvvrerninininnsnsene s senennns 208
INTEITACE DESIGN....cceieereerieerrne e e e ne e 209
ALIDULES ...t e 210
Concepts: Requirements for Template Argumentscoucvvennisnnncsnnenene s 215
Chapter 6: Modularizationccccuseemnrnsssssnnmsssssssnmsssssssnssssssssnessssssssesssssssssssssnnnnss 221
The Basics of ModUIAIZALION............ccceeeeererererec e e 222
Criteria for FINding MOGUIESccovverrererrcerr ettt se s 222
The Whole ENCRilada ... 227
0DjeCt-0rientalioN........ccocii e —————————— 227
Object-0riented THINKING.......cccvnnr e s 228
Principles for GOod Class DESIgN.........ccverirniniennnninsse s se s s ssssessessesnes 230

viil

TABLE OF CONTENTS

MOTUIES ...t e e 281
The Drawbacks of HINCIUCEccvciereirce e 281
Modules 10 the RESCUE ... 283
UNdEr the HOOM. ... e s 284
Three Options for USING MOUUIESc..coeververerenerserere e ses s ssesessessessessessssessessesssssssessesnes 286
The IMpact of MOUUIEScoviverercrr e e 290

Chapter 7: Functional Programmingccccesssssessmsssnnnss 293

What Is Functional Programming?.........ccccccovenrnnerniennesesssesesesesesesssessssessssssessssessssessssenens 295
What IS @ FUNCHION? ... 296
Pure vs IMpure FUNCHIONS........ccccviinrc e 297

Functional Programming in MOAEIN C++ ..o s ssessssessessens 299
Functional Programming with C++ Templates..........cccccrivnvnininnsnnnnsss s sensenns 299
Function-Like Objects (FUNCIOS)ccvrerirnieniennsinsene s s s se s ssesessessesnes 302
Binders and FUNCON WIaPPEIS ... e sas s snes 312
Lambda EXPreSSIONSccvceriererininsirese s sisse s sss s s s se s s s st se s sasssssessesnessssesnesneens 315
Generic Lambda EXpressions (C++14) ... s sss s ssesssssssesneens 318
Lambda Templates (C++20)cccvvrrriririsiniene s sss e sne s 319

Higher-0rder FUNCLIONS........c.oociveerescrrscseseses s s 322
Map, Filter, and REAUCEcoceeveerererersee e rere st re s e se e s e s e e s s s s e e s sae s e s e e snesaenaenns 324

Pipelining with Range Adaptors (C++20).....c.ccccvrurrrnsmressmsesenernsssessesessssessssesssssssssssssssssssssesenns 329

Clean Code in Functional Programming..........ccoueumesmsesesnsesssesssssssssssesssssssssssssssssssssssssssssssnns 333

Chapter 8: Test-Driven Developmentcccmmmmmmnnmmmmmmmmssssssnnmmsmssssssssssns 339

The Drawbacks of Plain Old Unit TeSting (POUT).......ccecerrerrererersersersensssessessessessssessessesssssssessenes 336
Test-Driven Development as a Game Changer...........cccoveeereccrnienenieser e sessesessenens 338
The WOrKFIOW OF TDDccoueeierieereneseseesiee s se s se s se s e s e sessssesnsnens 339
TDD by Example: The Roman Numerals Code Kata............ccoooorrenrienerescsnrcnesesesee s 342
Preparalions ... e e e e e e 343
THE FIFST TEST ... 346
THe SECONM TESTc.vecereecrereseree e sr e se e e nne e 349
The Third Test and the Tidying Afterward ... 349

ix

TABLE OF CONTENTS

More Sophisticated Tests with @ Custom ASSErION........ccovvvvvrerernrrrene e 354

1S Time 10 Clean UP AQAINcovvervrieresenrerseressesessessessessssessessesssssssessesaesssssssessesssssssesnees 359
Approaching the FiniSh LINE..........coccvcivnnnininie e sss s s sss s s sae s 362
DONE! ... s 364
The Advantages 0f TDDccccucrerinninienie s s e s s sns s s 367
When We Should NOt USE TDD ..o se e se s sessesesssnens 369
TDD Is Not a Replacement for Code REVIEWS.........ccvvvnrnrnienennsnsene s sessesseenas 371
Chapter 9: Design Patterns and 1diomscccuueemmmmsssssnnmmssssssnmssssssnnsssssssssssssssnnns 375
Design Principles vs Design PAtternsc.ccccvvernnnnnesssesessse s sessesssssse s sessesenns 376
Some Patterns and When t0 USE THEM.......c.cceieiieninese s sssse e 377
Dependency INJECtioN (DI).......cccoveeerenernsesrnseserese s se e s srans 378
AGAPIEE ... ——————————————— 394

B3] (1 OSSPSR 396

0] 0] = T ST STSSTR 402
COMMEANG PIOCESSOK ...c.veueerseerreersssesessesessesesssesessessssassssssessssssssssssssssssssssnsssassssssssssssssssanes 407
0] 1010 OSSO 412
00T T OSSPSR 416

e T (0] -SSR 422

2 T2 Lo TS 425
THE MONEY CIASS ...cveererecrerreerreesesesessese s sessesesss e sessssesssssssssessssssessssssssnsssssesensssssenees 427
Special Case Object (NUIl ODJECT)ccovererererrreresese s s srenes 431
What IS @n [diOM?ccoceeeeicerresrnese e s r s e s srnne e 435
Some USeful C++ IdIOMS.......ccvicerierncsere s 436

Appendix A: Small UML GUIdecccorrrrmmmmmsmmnmsssnmmsssmssnnnss 491

0T 0100 L 1 o R 452
0] 111010 3T | O 452
[0 T 10 1o 0] =T 453
INEEITACE ...t s 457
ASSOCITALION ... 459

TABLE OF CONTENTS

GENEIAlIZALION......c.ceerrrre s 462

DT 0123 110 L] SR 463
Template and Template Bindingc.ccooovrerininnnnnnninse s sae s se s 465
Behavioral MOAeling ... s 466
030 11T 0T D P2 Vo | - 1 1 S 466
SEQUENCE DIAGIaMc.ceererrcccri e 469

1 E2 (=3 D o 1 O 47

S BOTYPES .t —————————————————— 474
Bibliographycccciiseeemmmmmmimmssssssssnmmmmsssssssssnnnnessssssssssnne s 477
1T = 481

xi

About the Author

Stephan Roth, born on May 15, 1968, is a passionate
coach, consultant, and trainer for Systems and Software
Engineering with the German consultancy company oose
Innovative Informatik eG, located in Hamburg. Before he
joined oose, Stephan worked for many years as a software
developer, software architect, and systems engineer in
the field of radio reconnaissance and communication
intelligence systems. He has developed sophisticated
applications, especially for distributed systems with
ambitious performance requirements, and graphical user
interfaces using C++ and other programming languages.
Stephan is also a speaker at professional conferences and

the author of several publications. As a member of the
Gesellschaft fiir Systems Engineering e.V., the German chapter
of the international Systems Engineering organization INCOSE, he is also engaged in the
Systems Engineering community. Furthermore, he is an active supporter of the Software
Craftsmanship movement and concerned with principles and practices of Clean Code
Development (CCD).

Stephan Roth lives with his wife Caroline and their son Maximilian in Bad
Schwartau, a spa in the German federal state of Schleswig-Holstein near the Baltic Sea.

You can visit Stephan’s website and blog about systems engineering, software
engineering, and software craftsmanship via the URL roth-soft.de. Please note that the
articles there are mainly written in German.

On top of that, you can contact him via email or follow him at the networks listed here.

Email: stephan@clean-cpp.com

Twitter: @ StephanRoth (https://twitter.com/_StephanRoth)

LinkedIn: waw.1inkedin.com/in/steproth

xiii

https://twitter.com/_StephanRoth
http://www.linkedin.com/in/steproth

About the Technical Reviewer

Marc Gregoire is a software engineer from Belgium. He graduated from the University of
Leuven, Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen”
(equivalent to a master of science degree in computer engineering). The year after, he
received the cum laude degree of master in artificial intelligence at the same university.
After his studies, Marc started working for a software consultancy company called
Ordina Belgium. As a consultant, he worked for Siemens and Nokia Siemens Networks
on critical 2G and 3G software running on Solaris for telecom operators. This required
working on international teams stretching from South America and the United States

to Europe, the Middle East, and Asia. Currently, Marc works for Nikon Metrology on
industrial 3D laser scanning software.

Acknowledgments

Writing a book like this one is never just the work of an individual person, the author.
There are always numerous, fabulous people who contribute significantly to such a great
project.

First, there was Steve Anglin of Apress. Steve contacted me in March 2016 for the first
edition of Clean C++. He persuaded me to continue my book project with Apress Media
LLC, which had been self-published at Leanpub. The self-publishing platform Leanpub
served as a kind of "incubator" for a few years, but then I decided to finish and publish
the book with Apress. Steve was also the one who contacted me in 2019 and asked me if
I'wanted to release a second edition that would take into account the emerging C++20
language standard. Well, he was obviously quite successful.

Next, would like to thank Mark Powers, Editorial Operations Manager at Apress, for
his great support during the writing of the manuscript for both editions. Mark was not
only always available to answer questions, but his incessant follow-up on the progress of
the manuscript was a positive incentive for me. I am very grateful to you, dear Mark.

In addition, many thanks also to Matthew Moodie, Lead Development Editor at
Apress, who has provided proper help throughout the whole book development process.

A special thank you goes out to my technical reviewer Marc Gregoire. Marc critically
examined every single chapter of both editions. He found many issues that I probably
would have never found. He pushed me hard to improve several sections, and that was
really valuable to me. Thank you!

Of course, I would also like to say a big thank you to the whole production team at
Apress. They've done an excellent job regarding the finalization (copy editing, indexing,
composition/layout, cover design, etc.) of the whole book up to the distribution of the
final print (and eBook) files.

Last but not least, I would like to thank my beloved and unique family, especially
for their understanding that a book project takes a great deal of time. Maximilian and
Caroline, you're just wonderful.

xvii

CHAPTER 1

Introduction

“

ow it is done is as important as having it done.”

—Eduardo Namur

Dear readers, I introduced the first edition of this book with the words: “It is still a sad
reality that many software development projects are in bad condition, and some might
even be in a serious crisis.” That was a little over three years ago, and I am pretty sure that
the general situation has not improved significantly since then.

The reasons that many software development projects are still having difficulties are
manifold. There are a lot of risk factors that can cause software development projects to
fail. Some projects, for example, are afflicted because of lousy project management. In
other projects, the conditions and requirements constantly and rapidly change, but the
development process does not support this high-dynamic environment. Furthermore,
the all-important requirements elicitation and use case analysis is given little space in
some projects. In particular, communication between external stakeholders, such as
between domain experts and developers, can be difficult, leading to misunderstandings
and the development of unnecessary features. And as if all this were not bad enough,
quality assurance measures, such as testing, are given too little importance.

STAKEHOLDER

The term stakeholder in systems and software engineering is commonly used to refer to
individuals or organizations that can potentially contribute requirements to a development
project or that define important constraints for the project.

Usually, a distinction is made between external and internal stakeholders. Examples of
external stakeholders are the customers, all users of the system, domain experts, system
administrators, regulatory authorities, the legislators, etc. Internal stakeholders are those

© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_1

https://doi.org/10.1007/978-1-4842-5949-8_1#DOI

CHAPTER 1 INTRODUCTION

from within the development organization and can be the developers and software architects,
business analysts, product management, requirements engineers, quality assurance,
marketing personnel, etc.

The previously listed points are all typical and well-known problems in professional
software development, but beyond that, another fact exists: In some projects the code
base is poor quality!

That does not necessarily mean that the code is not working correctly. Its external
quality, measured by the quality assurance (QA) department using integration or
acceptance tests, can be pretty high. It can pass QA without complaints, and the test
report might state that they found nothing wrong. The software users might also possibly
be satisfied and happy, and the development may even have been completed on time
and on budget (... which is rare, I know). Everything seems to be fine on first sight ...
really, everything?!

Nevertheless, the internal quality of this code, which works correctly, can be very
poor. Often the code is difficult to understand and horrible to maintain and extend.
Countless software units, like classes or functions, are very large, some of them with
thousands of lines of code, making their comprehensibility and adaptability a serious
challenge. Too many dependencies between software units lead to unwanted side effects
if something changes. The software has no perceivable architecture. Its structure seems to
be randomly originated and some developers speak about “historically grown software”
or “architecture by accident.” Classes, functions, variables, and constants have bad and
mysterious names, and the code is littered with lots of comments: some of them are
outdated, just describe obvious things, or are plain wrong. Developers are afraid to change
something or to extend the software because they know that it is rotten and fragile, and
they know that unit test coverage is poor, if there are any unit tests at all. “Never touch a
running system” is a statement that is frequently heard from people working within such
kinds of projects. The implementation of a new feature doesn’t just need a few hours or
days until it is ready for deployment; it takes several weeks or even months.

This kind of bad software is often referred to as a big ball of mud. This term was first
used in 1997 by Brian Foote and Joseph W. Yoder in a paper for the Fourth Conference
on Patterns Languages of Programs (PLoP '97/EuroPLoP '97). Foote and Yoder describe
the big ball of mud as “.. a haphazardly structured, sprawling, sloppy, duct-tape-and-
baling-wire, spaghetti-code jungle.” Such software systems are costly and time-wasting
maintenance nightmares, and they can bring a development organization to its knees!

CHAPTER 1 INTRODUCTION

The pathological phenomena just described can be found in software projects in all
industrial sectors and domains. The programming language they use doesn’t matter.
You'll find big balls of mud written in Java, PHP, C, C#, C++, and other more or less
popular languages. Why is that so?

Software Entropy

First of all, there is the natural law of entropy, or disorder. Just like any other closed and
complex system, software tends to get messier over time. This phenomenon is called
software entropy. The term is based on the second law of thermodynamics. It states that
a closed system'’s disorder cannot be reduced; it can only remain unchanged or increase.
Software seems to behave this way. Every time a new function is added or something is
changed, the code gets a little bit more disordered. There are also numerous influencing
factors that can contribute to software entropy:

e Unrealistic project schedules raise the pressure and abet developers
to botch things and to do their work in a bad and unprofessional way.

e The immense complexity of today’s software systems, both
technically and in terms of the requirements to be satisfied.

o Developers with different skill levels and experience.

o Globally distributed, cross-cultural teams, enforcing communication
problems.

o Development mainly pays attention to the functional aspects
(functional requirements and the system’s use cases) of the software,
whereby the quality requirements (non-functional requirements),
such as performance, efficiency, maintainability, availability,
usability, portability, security, etc., are neglected or at worst are fully
ignored.

o Inappropriate development environments and bad tools.

e Management is focused on earning money quickly and doesn’t
understand the value of sustainable software development.

e Quick and dirty hacks and non-design-conformable
implementations (broken windows).

CHAPTER 1 INTRODUCTION

THE BROKEN WINDOW THEORY

The Broken Window Theory was developed in connection with American crime research. The
theory states that a single destroyed window at an abandoned building can be the trigger

for the dilapidation of an entire neighborhood. The broken window sends a fatal signal to the
environment: “Look, nobody cares about this building!” This attracts further decay, vandalism,
and other antisocial behavior. The Broken Window Theory has been used as the foundation for
several reforms in criminal policy, especially for the development of zero-tolerance strategies.

In software development, this theory was taken up and applied to the quality of code. Hacks
and bad implementations, which are not compliant with the software design, are called
“broken windows.” If these bad implementations are not repaired, more hacks to deal with
them may appear in their neighborhood. And thus, code dilapidation is set into motion.

Don’t tolerate “broken windows” in your code—fix them!

Why C++?

“C makes it easy to shoot yourselfin the foot. C++ makes it harder, but when
you do, you blow away your whole leg!”

—Bjarne Stroustrup, Bjarne Stroustrup’s FAQ: Did you really say that?

First and foremost, phenomena like software entropy, code smells, anti-patterns, and
other problems with the internal software quality, are basically independent of the
programming language. However, it seems to be that C and C++ projects are especially
prone to messiness and tend to slip into a bad state. Even the World Wide Web is full of
bad, but apparently very fast and highly optimized, C++ code examples. They often have
a cruel syntax that completely ignores elementary principles of good design and well-
written code. Why is that?

One reason for this might be that C++ is a multi-paradigm programming language
on an intermediate level; that is, it comprises both high-level and low-level language
features. C++ is like a melting pot that blends many different ideas and concepts
together. With this language, you can write procedural, functional, or object-
oriented programs, or even a mixture of all three. In addition, C++ allows template
metaprogramming (TMP), a technique in which so-called templates are used by a
compiler to generate temporary source code that is merged with the rest of the source

4

CHAPTER 1 INTRODUCTION

code and then compiled. Ever since the release of ISO standard C++11 (ISO/IEC
14882:2011 [ISO11]) in September 2011, even more ways have been added; for example,
functional programming with anonymous functions are now supported in a very elegant
manner by lambda expressions. As a consequence of these diverse capabilities, C++

has a reputation for being very complex, complicated, and cumbersome. And with each
standard after C++11 (C++14, C++17, and now C++20), a lot of new features were added,
which have further increased the complexity of the language.

Another cause for bad software could be that many developers didn’t have an IT
background. Anyone can begin to develop software nowadays, no matter if they have
a university degree or any other apprenticeship in computer science. A vast majority
of C++ developers are (or were) non-experts. Especially in the technological domains
automotive, railway transportation, aerospace, electrical/electronics, or mechanical
engineering domains, many engineers slipped into programming during the last
decades without having an education in computer science. As the complexity grew
and technical systems contained more and more software, there was an urgent need
for programmers. This demand was covered by the existing workforce. Electrical
engineers, mathematicians, physicists, and lots of people from strictly nontechnical
disciplines started to develop software. They learned to do it mainly by self-education
and hands-on, by simply doing it. And they have done it to their best knowledge and
belief.

Basically, there is absolutely nothing wrong with that. But sometimes just
knowing the tools and the syntax of a programming language is not enough. Software
development is not the same as programming. The world is full of software that was
tinkered together by improperly trained software developers. There are many things on
abstract levels a developer must consider to create a sustainable system, for example,
architecture and design. How should a system be structured to achieve certain quality
goals? What is this object-oriented thing good for and how do I use it efficiently? What
are the advantages and drawbacks of a certain framework or library? What are the
differences between various algorithms, and why doesn’t one algorithm fit all similar
problems? And what the heck is a deterministic finite automaton, and why does it help
to cope with complexity?!

But there is no reason to lose heart! What really matters to a software program’s
ongoing health is that someone cares about it, and clean code is the key!

CHAPTER 1 INTRODUCTION

Clean Code

What, exactly, is meant by “clean code”?

A major misunderstanding is to confuse clean code with something that can be
called “beautiful code.” Clean code doesn’t have necessarily to be beautiful (...whatever
that means). Professional programmers are not paid to write beautiful or pretty code.
They are hired by development companies as experts to create customer value.

Code is clean if it can be understood and maintained easily by any team member.

Clean code is the basis of fast code. If your code is clean and test coverage is high, it
only takes a few hours or a couple of days to implement, test, and deploy a change or a
new function—not weeks or months.

Clean code is the foundation for sustainable software; it keeps a software
development project running over a long time without accumulating a large amount of
technical debt. Developers must actively tend the software and ensure it stays in shape
because the code is crucial for the survival of a software development organization.

Clean code is also the key to being a happier developer. It leads to a stress-free life. If
your code is clean and you feel comfortable with it, you can keep calm in every situation,
even when facing a tight project deadline.

All of the points mentioned here are true, but the key point is this: Clean code saves
money! In essence, it’s about economic efficiency. Each year, development organizations
lose a lot of money because their code is in bad shape. Clean code ensures that the value
added by the development organization remains high. Companies can earn money from
its clean code for a long time.

C++11: The Beginning of a New Era

“Surprisingly, C++11 feels like a new language: The pieces just fit together
better than they used to and I find a higher-level style of programming more
natural than before and as efficient as ever.”

—Bjarne Stroustrup, C++11 - the new ISO C++ standard [Stroustrup16]

After the release of the C++ language standard C++11 (ISO/IEC 14882:2011 [ISO11]) in
September 2011, some people predicted that C++ would undergo a renaissance. Some
even spoke of a revolution. They predicted that the idiomatic style of how development

CHAPTER 1 INTRODUCTION

was done with this “modern C++” would be significantly different and not comparable to
the “historical C++” of the early 1990s.

No doubt, C++11 has brought a bunch of great innovations and changed the way
we think about developing software with this programming language. I can say with
full confidence that C++11 has set such changes in motion. With C++11, we got move
semantics, lambda expressions, automatic type deduction, deleted and defaulted
functions, a lot of enhancements of the Standard Library, and many more useful things.

But this also meant that these new features came on top of the already existing
features. It is not possible to remove a significant feature from C++ without breaking
large amounts of existing code bases. This means that the complexity of the language
increased, because C++11 is larger than its predecessor C++98, and thus it is harder to
learn this language in its entirety.

Its successor, C++14, was an evolutionary development with some bug fixes and
minor enhancements. If you plan to switch to modern C++, you should at least start with
this standard and skip C++11.

Three years later, with C++17, numerous new features were added again, but this
revision also removed a few. And in December 2020, the C++ standardization committee
completed and published the new C++20 standard, which is called “the next big thing”
by some people. This standard again adds lots of new features besides many extensions
to the core language, the Standard Library, and other stuff, especially the so-called “big
four”: Concepts, Coroutines, Ranges Library, and Modules.

If we look at C++ development over the past 10 years, we can see that the complexity
of the language has increased significantly. In the meantime, C++23 development
has already begun. I question whether this is the right way to go about things in the
long run. Perhaps it would be appropriate at some point not only to permanently add
functionalities, but also to review the existing features, consolidate them, and simplify
the language again.

Who This Book Is For

As a trainer and consultant, I have had the opportunity to look at many companies that
are developing software. Furthermore, I observe very closely what is happening in the
developer scene. And I've recognized a gap.

My impression is that C++ programmers have been ignored by those promoting
software craftsmanship and clean code development. Many principles and practices,

CHAPTER 1 INTRODUCTION

which are relatively well known in the Java environment and in the hip world of web or
game development, seem to be largely unknown in the C++ world.

This book tries to close that gap a little, because even with C++, developers can write
clean code! If you want to learn about writing clean C++, this book is for you. It is written
for C++ developers of all skill levels and shows by example how to write understandable,
flexible, maintainable, and efficient C++ code. Even if you are a seasoned C++ developer,
there are interesting hints and tips in this book that you will find useful in your work.

This book is not a C++ primer! In order to use the knowledge in this book
efficiently, you should already be familiar with the basic concepts of the language. If
you just want to start with C++ development and still have no basic knowledge of the
language, you should first learn the basic concepts, which can be done with other books
or with a good C++ introduction training. This book also does not discuss every single
new C++20 language feature, or the features of its predecessors, in detail. As I have
already pointed out, the complexity of the language is now relatively high. There are
other very good books that introduce the language from A to Z.

Furthermore, this book doesn’t contain any esoteric hack or kludge. I know that a lot
of nutty and mind-blowing things are possible with C++, but these are usually not in the
spirit of clean code and should not be used to create a clean and modern C++ program.
If you are really crazy about mysterious C++ pointer calisthenics, this book is not for you.

Apart from that, this book is written to help C++ developers of all skill levels. It
shows by example how to write understandable, flexible, maintainable and efficient C++
code. The presented principles and practices can be applied to new software systems,
sometimes called greenfield projects, as well as to legacy systems with a long history,
which are often pejoratively called brownfield projects.

Note Please consider that not every C++ compiler currently supports all of the
new language features, especially not those from the latest C++20 standard,
completely.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic font is used to introduce new terms and names.

CHAPTER 1 INTRODUCTION

Bold font is used within paragraphs to emphasize terms or
important statements.

Monospaced font is used within paragraphs to refer to program
elements such as class, variable, or function names, statements,
and C++ keywords. This font is also used to show command line
inputs, an address of a website (URL), a keystroke sequence, or the
output produced by a program.

Sidebars

Sometimes I pass on small bits of information that are tangentially related to the content
around it, which can be considered separate from that content. Such sections are known
as sidebars. Sometimes I use a sidebar to present an additional or contrasting discussion
about the topic around it.

THIS HEADER CONTAINS THE TITLE OF A SIDEBAR

This is the text in a sidebar.

Notes, Tips, and Warnings

Another kind of sidebar for special purposes is used for notes, tips, and warnings. They
are used to provide some special information, to provide a useful piece of advice, or to
warn you about things that can be dangerous and should be avoided.

Note This is the text of a note.

Code Samples

Code examples and code snippets appear separately from the text, syntax-highlighted
(keywords of the C++ language are bold), and in a monospaced font. Longer code
sections usually have numbered titles. To reference specific lines of the code example in
the text, code samples sometimes include line numbers (see Listing 1-1).

CHAPTER 1 INTRODUCTION

Listing 1-1. A Line-Numbered Code Sample

01 class Clazz {

02 public:

03 Clazz();

04 virtual ~Clazz();
05 void doSomething();
06

07 private:

08 int attribute;
09

10 void function();
11}

To better focus on specific aspects of the code, irrelevant parts are sometimes
obscured and represented by a comment with an ellipsis (...), like in this example:

void Clazz::function() {
// ...

Coding Style

Just a few words about the coding style I use in this book.

You may get the impression that my programming style has a strong likeness to
typical Java code, mixed with the Kernighan and Ritchie (K&R) style. I've spent nearly
20 years as a software developer, and even later in my career, [have learned other
programming languages (for instance, ANSI-C, Java, Delphi, Scala, and several scripting
languages). Hence, I've adopted my own programming style, which is a melting pot of
these different influences.

Maybe you will not like my style, and you instead prefer Linus Torvald’s Kernel style,
the Allman style, or any other popular C++ coding standard. This is of course perfectly
okay. I like my style, and you like yours.

10

CHAPTER 1 INTRODUCTION

C++ Core Guidelines

You may have heard of the C++ Core Guidelines, found at https://isocpp.github.io/
CppCoreGuidelines/CppCoreGuidelines.html [Cppcore21]. This is a collection of
guidelines, rules, and good practices for programming with modern C++. The project
is hosted on GitHub and released under a MIT-style license. It was initiated by Bjarne
Stroustrup, but has a lot more editors and contributors, e.g., Herb Sutter.

The number of rules and recommendations in the C++ Core Guidelines is pretty
high. There are currently 30 rules on the subject of interfaces alone, about the same
number on error handling, and no less than 55 rules on functions. And that is by no
means the end of the story. Further guidelines exist on topics such as classes, resource
management, performance, and templates.

I first had the idea of linking the topics in my book to the rules from the C++ Core
Guidelines. But that would have led to countless references to the guidelines and might
even have reduced the readability of the book. Therefore, I have largely refrained from
doing so, but would like to explicitly recommend the C++ Core Guidelines at this point.
They are a very good supplement to this book, even though I do not agree with every rule.

Companion Website and Source Code Repository

This book is accompanied by a companion website: www.clean-cpp.com.
The website includes:

o The discussion of additional topics not covered in this book.
» High-resolution versions of all the figures in this book.

Some of the source code examples in this book, and other useful additions, are
available on GitHub at:

https://github.com/Apress/clean-cpp20
You can check out the code using Git with the following command:
$> git clone https://github.com/clean-cpp/book-samples.git

You can get a .ZIP archive of the code by going to https://github.com/clean-cpp/
book-samples and clicking the Download ZIP button.

11

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
http://www.clean-cpp.com
https://github.com/Apress/clean-cpp20
https://github.com/clean-cpp/book-samples
https://github.com/clean-cpp/book-samples

CHAPTER 1 INTRODUCTION

UML Diagrams

Some illustrations in this book are UML diagrams. The Unified Modeling Language (UML)

is a standardized graphical language used to create models of software and other systems.

In its current version, 2.5.1, UML offers 15 diagram types to describe a system entirely.
Don’t worry if you are not familiar with all diagram types; I use only a few of them

in this book. I present UML diagrams from time to time to provide a quick overview of

certain issues that possibly cannot be understood quickly enough by just reading the

code. Appendix A contains a brief overview of the used UML notations.

12

CHAPTER 2

Build a Safety Net

“Testing is a skill. While this may come as a surprise to some people, it is a
simple fact.:

—Mark Fewster and Dorothy Graham,
Software Test Automation, 1999

That I start the main part of this book with a chapter about testing may be surprising to
some readers, but this is for several good reasons. During the past few years, testing on
certain levels has become an essential cornerstone of modern software development.
The potential benefits of a good test strategy are enormous. All kinds of tests, if well
engineered, can be helpful and useful. In this chapter, I describe why I think that unit tests,
especially, are indispensable to ensure a fundamental level of high quality in software.
Note that this chapter is about what is sometimes called POUT (“plain old unit
testing”) and not the design-supporting tool test-driven development (TDD), which I
cover in Chapter 8.

The Need for Testing

1962: NASA MARINER 1

The Mariner 1 spacecraft was launched on July 22, 1962, as a Venus flyby mission for planetary
exploration. Due to a problem with its directional antenna, the Atlas-Agena B launching rocket
worked unreliably and lost its control signal from ground control shortly after launch.

This exceptional case had been considered during design and construction of the rocket.
The Atlas-Agena launching vehicle switched to automatic control by the on-board guidance
computer. Unfortunately, an error in the software of that computer led to incorrect control
commands that caused a critical course deviation and made steering impossible. The rocket
was directed toward Earth and pointed to a critical area.

13
© Stephan Roth 2021

S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_2

https://doi.org/10.1007/978-1-4842-5949-8_2#DOI

CHAPTER 2 BUILD A SAFETY NET

At T+293 seconds, the Range Safety Officer sent the destruct command to blow the rocket. A
NASA examination report' mentions a typo in the computer’s source code, the lack of a hyphen
(-), as the cause of the error. The total loss was $18.5 million, which was a huge amount of
money in those days.

If software developers are asked why tests are good and essential, I suppose that the
most common answer would be the reduction of bugs, errors, or flaws. No doubt this is
basically correct: testing is an elementary part of quality assurance.

Software bugs are usually perceived as an unpleasant nuisance. Users are annoyed
about the wrong behavior of the program, which produces invalid output, or they are
seriously ticked off about regular crashes. Sometimes even odds and ends, such as a
truncated text in a dialog box of a user interface, are enough to significantly bother
software users in their daily work. The consequence may be an increasing dissatisfaction
with the software, and at worst its replacement by another product. In addition to a
financial loss, the image of the software manufacturer suffers from bugs. At worst, the
company gets into serious trouble and many jobs are lost.

But the previously described scenario does not apply to every piece of software. The
implications of bugs can be much more dramatic.

1986: THERAC-25 MEDICAL ACCELERATOR DISASTER

This case is probably the most consequential failure in the history of software development.
The Therac-25 was a radiation therapy device. It was developed and produced from 1982 until
1985 by the state-owned enterprise Atomic Energy of Canada Limited (AECL). Eleven devices
were produced and installed in clinics in the United States and Canada.

Due to bugs in the control software, an insufficient quality assurance process, and other
deficiencies, three patients lost their lives caused due to radiation overdoses. Three other
patients were irradiated and suffered permanent, heavy health problems.

An analysis of this case determined that, among other things, the software was written by only
one person who was also responsible for the tests.

'NASA National Space Science Data Center (NSSDC): Mariner 1, http://nssdc.gsfc.nasa.gov/
nmc/spacecraftDisplay.do?id=MARINZ, retrieved 2021-0305.

14

http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1
http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1

CHAPTER 2 BUILD A SAFETY NET

When people think of computers, they usually have a desktop PC, laptop, tablet, or
smartphone in mind. And if they think about software, they usually think about web
shops, office suites, or business IT systems.

But these kinds of software and computers make up only a very small percentage
of all systems with which we have contact every day. Most software that surrounds us
controls machines that physically interact with the world. Our whole life is managed by
software. In a nutshell: There is no life today without software! Software is everywhere
and an essential part of our infrastructure.

If we board an elevator, our lives are in the hands of software. Aircrafts are controlled
by software, and the entire, worldwide air traffic control system depends on software.
Our modern cars contain a significant amount of small computer systems with software
that communicates over a network, responsible for many safety-critical functions of
the vehicle. Air conditioning, automatic doors, medical devices, trains, automated
production lines in factories ... no matter what we're doing nowadays, we permanently
come in touch with software. And with the digital revolution and the Internet of Things
(IoT), the relevance of software in our life will again increase significantly. This fact could
not get more evident than with the autonomous (driverless) car.

It is unnecessary to emphasize that any bug in these software-intense systems could
have catastrophic consequences. A fault or malfunction of an important system can be
a threat to lives or physical condition. At worst, hundreds of people could lose their lives
during a plane crash, possibly caused by a wrong if statement in a subroutine of the
Fly-by-Wire subsystem. Quality is under no circumstances negotiable in these kinds of
systems. Never!

But even in systems without functional safety requirements, bugs can have serious
implications, especially if they are subtler in their destructiveness. It is easy to imagine
that bugs in financial software could trigger a worldwide bank crisis. Imagine if the
financial software of an arbitrary big bank completed every posting twice due to a bug,
and this issue was not noticed for a few days.

15

CHAPTER 2 BUILD A SAFETY NET

1990: THE AT&T CRASH

On January 15th, 1990, the AT&T long distance telephone network crashed and 75 million
phone calls failed for the following nine hours. The blackout was caused by a single line of
code (a wrong break statement) in a software upgrade that AT&T deployed to all 114 of its
computer-operated electronic switches (4ESS) in December 1989. The problem began the
afternoon of January 15 when a malfunction in AT&T’s Manhattan control center led to a chain
reaction and disabled switches throughout half the network.

The estimated loss for AT&T was $60 million. There were also probably a huge amount of
losses for businesses that relied on the telephone network.

Introduction to Testing

There are different levels of quality assurance measures in software development
projects. These levels are often visualized in the form of a pyramid—the so-called test
pyramid. The fundamental concept was developed by the American software developer
Mike Cohn, one of the founders of the Scrum Alliance. He described the test automation
pyramid in his book, Succeeding with Agile [Cohn09]. With the aid of the pyramid,

Cohn describes the degree of automation required for efficient software testing. In the
following years, the test pyramid has been further developed by different people. The
one depicted in Figure 2-1 is my version.

16

