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CHAPTER 1

Introduction

“

ow it is done is as important as having it done.”

—Eduardo Namur

Dear readers, I introduced the first edition of this book with the words: “It is still a sad
reality that many software development projects are in bad condition, and some might
even be in a serious crisis.” That was a little over three years ago, and I am pretty sure that
the general situation has not improved significantly since then.

The reasons that many software development projects are still having difficulties are
manifold. There are a lot of risk factors that can cause software development projects to
fail. Some projects, for example, are afflicted because of lousy project management. In
other projects, the conditions and requirements constantly and rapidly change, but the
development process does not support this high-dynamic environment. Furthermore,
the all-important requirements elicitation and use case analysis is given little space in
some projects. In particular, communication between external stakeholders, such as
between domain experts and developers, can be difficult, leading to misunderstandings
and the development of unnecessary features. And as if all this were not bad enough,
quality assurance measures, such as testing, are given too little importance.

STAKEHOLDER

The term stakeholder in systems and software engineering is commonly used to refer to
individuals or organizations that can potentially contribute requirements to a development
project or that define important constraints for the project.

Usually, a distinction is made between external and internal stakeholders. Examples of
external stakeholders are the customers, all users of the system, domain experts, system
administrators, regulatory authorities, the legislators, etc. Internal stakeholders are those

© Stephan Roth 2021
S. Roth, Clean C++20, https://doi.org/10.1007/978-1-4842-5949-8_1
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CHAPTER 1  INTRODUCTION

from within the development organization and can be the developers and software architects,
business analysts, product management, requirements engineers, quality assurance,
marketing personnel, etc.

The previously listed points are all typical and well-known problems in professional
software development, but beyond that, another fact exists: In some projects the code
base is poor quality!

That does not necessarily mean that the code is not working correctly. Its external
quality, measured by the quality assurance (QA) department using integration or
acceptance tests, can be pretty high. It can pass QA without complaints, and the test
report might state that they found nothing wrong. The software users might also possibly
be satisfied and happy, and the development may even have been completed on time
and on budget (... which is rare, I know). Everything seems to be fine on first sight ...
really, everything?!

Nevertheless, the internal quality of this code, which works correctly, can be very
poor. Often the code is difficult to understand and horrible to maintain and extend.
Countless software units, like classes or functions, are very large, some of them with
thousands of lines of code, making their comprehensibility and adaptability a serious
challenge. Too many dependencies between software units lead to unwanted side effects
if something changes. The software has no perceivable architecture. Its structure seems to
be randomly originated and some developers speak about “historically grown software”
or “architecture by accident.” Classes, functions, variables, and constants have bad and
mysterious names, and the code is littered with lots of comments: some of them are
outdated, just describe obvious things, or are plain wrong. Developers are afraid to change
something or to extend the software because they know that it is rotten and fragile, and
they know that unit test coverage is poor, if there are any unit tests at all. “Never touch a
running system” is a statement that is frequently heard from people working within such
kinds of projects. The implementation of a new feature doesn’t just need a few hours or
days until it is ready for deployment; it takes several weeks or even months.

This kind of bad software is often referred to as a big ball of mud. This term was first
used in 1997 by Brian Foote and Joseph W. Yoder in a paper for the Fourth Conference
on Patterns Languages of Programs (PLoP '97/EuroPLoP '97). Foote and Yoder describe
the big ball of mud as “.. a haphazardly structured, sprawling, sloppy, duct-tape-and-
baling-wire, spaghetti-code jungle.” Such software systems are costly and time-wasting
maintenance nightmares, and they can bring a development organization to its knees!



CHAPTER 1 INTRODUCTION

The pathological phenomena just described can be found in software projects in all
industrial sectors and domains. The programming language they use doesn’t matter.
You'll find big balls of mud written in Java, PHP, C, C#, C++, and other more or less
popular languages. Why is that so?

Software Entropy

First of all, there is the natural law of entropy, or disorder. Just like any other closed and
complex system, software tends to get messier over time. This phenomenon is called
software entropy. The term is based on the second law of thermodynamics. It states that
a closed system'’s disorder cannot be reduced; it can only remain unchanged or increase.
Software seems to behave this way. Every time a new function is added or something is
changed, the code gets a little bit more disordered. There are also numerous influencing
factors that can contribute to software entropy:

e Unrealistic project schedules raise the pressure and abet developers
to botch things and to do their work in a bad and unprofessional way.

e The immense complexity of today’s software systems, both
technically and in terms of the requirements to be satisfied.

o Developers with different skill levels and experience.

o Globally distributed, cross-cultural teams, enforcing communication
problems.

o Development mainly pays attention to the functional aspects
(functional requirements and the system’s use cases) of the software,
whereby the quality requirements (non-functional requirements),
such as performance, efficiency, maintainability, availability,
usability, portability, security, etc., are neglected or at worst are fully
ignored.

o Inappropriate development environments and bad tools.

e Management is focused on earning money quickly and doesn’t
understand the value of sustainable software development.

e Quick and dirty hacks and non-design-conformable
implementations (broken windows).
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THE BROKEN WINDOW THEORY

The Broken Window Theory was developed in connection with American crime research. The
theory states that a single destroyed window at an abandoned building can be the trigger

for the dilapidation of an entire neighborhood. The broken window sends a fatal signal to the
environment: “Look, nobody cares about this building!” This attracts further decay, vandalism,
and other antisocial behavior. The Broken Window Theory has been used as the foundation for
several reforms in criminal policy, especially for the development of zero-tolerance strategies.

In software development, this theory was taken up and applied to the quality of code. Hacks
and bad implementations, which are not compliant with the software design, are called
“broken windows.” If these bad implementations are not repaired, more hacks to deal with
them may appear in their neighborhood. And thus, code dilapidation is set into motion.

Don’t tolerate “broken windows” in your code—fix them!

Why C++?

“C makes it easy to shoot yourselfin the foot. C++ makes it harder, but when
you do, you blow away your whole leg!”

—Bjarne Stroustrup, Bjarne Stroustrup’s FAQ: Did you really say that?

First and foremost, phenomena like software entropy, code smells, anti-patterns, and
other problems with the internal software quality, are basically independent of the
programming language. However, it seems to be that C and C++ projects are especially
prone to messiness and tend to slip into a bad state. Even the World Wide Web is full of
bad, but apparently very fast and highly optimized, C++ code examples. They often have
a cruel syntax that completely ignores elementary principles of good design and well-
written code. Why is that?

One reason for this might be that C++ is a multi-paradigm programming language
on an intermediate level; that is, it comprises both high-level and low-level language
features. C++ is like a melting pot that blends many different ideas and concepts
together. With this language, you can write procedural, functional, or object-
oriented programs, or even a mixture of all three. In addition, C++ allows template
metaprogramming (TMP), a technique in which so-called templates are used by a
compiler to generate temporary source code that is merged with the rest of the source
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code and then compiled. Ever since the release of ISO standard C++11 (ISO/IEC
14882:2011 [ISO11]) in September 2011, even more ways have been added; for example,
functional programming with anonymous functions are now supported in a very elegant
manner by lambda expressions. As a consequence of these diverse capabilities, C++

has a reputation for being very complex, complicated, and cumbersome. And with each
standard after C++11 (C++14, C++17, and now C++20), a lot of new features were added,
which have further increased the complexity of the language.

Another cause for bad software could be that many developers didn’t have an IT
background. Anyone can begin to develop software nowadays, no matter if they have
a university degree or any other apprenticeship in computer science. A vast majority
of C++ developers are (or were) non-experts. Especially in the technological domains
automotive, railway transportation, aerospace, electrical/electronics, or mechanical
engineering domains, many engineers slipped into programming during the last
decades without having an education in computer science. As the complexity grew
and technical systems contained more and more software, there was an urgent need
for programmers. This demand was covered by the existing workforce. Electrical
engineers, mathematicians, physicists, and lots of people from strictly nontechnical
disciplines started to develop software. They learned to do it mainly by self-education
and hands-on, by simply doing it. And they have done it to their best knowledge and
belief.

Basically, there is absolutely nothing wrong with that. But sometimes just
knowing the tools and the syntax of a programming language is not enough. Software
development is not the same as programming. The world is full of software that was
tinkered together by improperly trained software developers. There are many things on
abstract levels a developer must consider to create a sustainable system, for example,
architecture and design. How should a system be structured to achieve certain quality
goals? What is this object-oriented thing good for and how do I use it efficiently? What
are the advantages and drawbacks of a certain framework or library? What are the
differences between various algorithms, and why doesn’t one algorithm fit all similar
problems? And what the heck is a deterministic finite automaton, and why does it help
to cope with complexity?!

But there is no reason to lose heart! What really matters to a software program’s
ongoing health is that someone cares about it, and clean code is the key!
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Clean Code

What, exactly, is meant by “clean code”?

A major misunderstanding is to confuse clean code with something that can be
called “beautiful code.” Clean code doesn’t have necessarily to be beautiful (...whatever
that means). Professional programmers are not paid to write beautiful or pretty code.
They are hired by development companies as experts to create customer value.

Code is clean if it can be understood and maintained easily by any team member.

Clean code is the basis of fast code. If your code is clean and test coverage is high, it
only takes a few hours or a couple of days to implement, test, and deploy a change or a
new function—not weeks or months.

Clean code is the foundation for sustainable software; it keeps a software
development project running over a long time without accumulating a large amount of
technical debt. Developers must actively tend the software and ensure it stays in shape
because the code is crucial for the survival of a software development organization.

Clean code is also the key to being a happier developer. It leads to a stress-free life. If
your code is clean and you feel comfortable with it, you can keep calm in every situation,
even when facing a tight project deadline.

All of the points mentioned here are true, but the key point is this: Clean code saves
money! In essence, it’s about economic efficiency. Each year, development organizations
lose a lot of money because their code is in bad shape. Clean code ensures that the value
added by the development organization remains high. Companies can earn money from
its clean code for a long time.

C++11: The Beginning of a New Era

“Surprisingly, C++11 feels like a new language: The pieces just fit together
better than they used to and I find a higher-level style of programming more
natural than before and as efficient as ever.”

—Bjarne Stroustrup, C++11 - the new ISO C++ standard [Stroustrup16]

After the release of the C++ language standard C++11 (ISO/IEC 14882:2011 [ISO11]) in
September 2011, some people predicted that C++ would undergo a renaissance. Some
even spoke of a revolution. They predicted that the idiomatic style of how development
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was done with this “modern C++” would be significantly different and not comparable to
the “historical C++” of the early 1990s.

No doubt, C++11 has brought a bunch of great innovations and changed the way
we think about developing software with this programming language. I can say with
full confidence that C++11 has set such changes in motion. With C++11, we got move
semantics, lambda expressions, automatic type deduction, deleted and defaulted
functions, a lot of enhancements of the Standard Library, and many more useful things.

But this also meant that these new features came on top of the already existing
features. It is not possible to remove a significant feature from C++ without breaking
large amounts of existing code bases. This means that the complexity of the language
increased, because C++11 is larger than its predecessor C++98, and thus it is harder to
learn this language in its entirety.

Its successor, C++14, was an evolutionary development with some bug fixes and
minor enhancements. If you plan to switch to modern C++, you should at least start with
this standard and skip C++11.

Three years later, with C++17, numerous new features were added again, but this
revision also removed a few. And in December 2020, the C++ standardization committee
completed and published the new C++20 standard, which is called “the next big thing”
by some people. This standard again adds lots of new features besides many extensions
to the core language, the Standard Library, and other stuff, especially the so-called “big
four”: Concepts, Coroutines, Ranges Library, and Modules.

If we look at C++ development over the past 10 years, we can see that the complexity
of the language has increased significantly. In the meantime, C++23 development
has already begun. I question whether this is the right way to go about things in the
long run. Perhaps it would be appropriate at some point not only to permanently add
functionalities, but also to review the existing features, consolidate them, and simplify
the language again.

Who This Book Is For

As a trainer and consultant, I have had the opportunity to look at many companies that
are developing software. Furthermore, I observe very closely what is happening in the
developer scene. And I've recognized a gap.

My impression is that C++ programmers have been ignored by those promoting
software craftsmanship and clean code development. Many principles and practices,



CHAPTER 1  INTRODUCTION

which are relatively well known in the Java environment and in the hip world of web or
game development, seem to be largely unknown in the C++ world.

This book tries to close that gap a little, because even with C++, developers can write
clean code! If you want to learn about writing clean C++, this book is for you. It is written
for C++ developers of all skill levels and shows by example how to write understandable,
flexible, maintainable, and efficient C++ code. Even if you are a seasoned C++ developer,
there are interesting hints and tips in this book that you will find useful in your work.

This book is not a C++ primer! In order to use the knowledge in this book
efficiently, you should already be familiar with the basic concepts of the language. If
you just want to start with C++ development and still have no basic knowledge of the
language, you should first learn the basic concepts, which can be done with other books
or with a good C++ introduction training. This book also does not discuss every single
new C++20 language feature, or the features of its predecessors, in detail. As I have
already pointed out, the complexity of the language is now relatively high. There are
other very good books that introduce the language from A to Z.

Furthermore, this book doesn’t contain any esoteric hack or kludge. I know that a lot
of nutty and mind-blowing things are possible with C++, but these are usually not in the
spirit of clean code and should not be used to create a clean and modern C++ program.
If you are really crazy about mysterious C++ pointer calisthenics, this book is not for you.

Apart from that, this book is written to help C++ developers of all skill levels. It
shows by example how to write understandable, flexible, maintainable and efficient C++
code. The presented principles and practices can be applied to new software systems,
sometimes called greenfield projects, as well as to legacy systems with a long history,
which are often pejoratively called brownfield projects.

Note Please consider that not every C++ compiler currently supports all of the
new language features, especially not those from the latest C++20 standard,
completely.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic font is used to introduce new terms and names.
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Bold font is used within paragraphs to emphasize terms or
important statements.

Monospaced font is used within paragraphs to refer to program
elements such as class, variable, or function names, statements,
and C++ keywords. This font is also used to show command line
inputs, an address of a website (URL), a keystroke sequence, or the
output produced by a program.

Sidebars

Sometimes I pass on small bits of information that are tangentially related to the content
around it, which can be considered separate from that content. Such sections are known
as sidebars. Sometimes I use a sidebar to present an additional or contrasting discussion
about the topic around it.

THIS HEADER CONTAINS THE TITLE OF A SIDEBAR

This is the text in a sidebar.

Notes, Tips, and Warnings

Another kind of sidebar for special purposes is used for notes, tips, and warnings. They
are used to provide some special information, to provide a useful piece of advice, or to
warn you about things that can be dangerous and should be avoided.

Note This is the text of a note.

Code Samples

Code examples and code snippets appear separately from the text, syntax-highlighted
(keywords of the C++ language are bold), and in a monospaced font. Longer code
sections usually have numbered titles. To reference specific lines of the code example in
the text, code samples sometimes include line numbers (see Listing 1-1).
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Listing 1-1. A Line-Numbered Code Sample

01 class Clazz {

02 public:

03 Clazz();

04 virtual ~Clazz();
05 void doSomething();
06

07 private:

08 int attribute;
09

10 void function();
11}

To better focus on specific aspects of the code, irrelevant parts are sometimes
obscured and represented by a comment with an ellipsis (...), like in this example:

void Clazz::function() {
// ...

Coding Style

Just a few words about the coding style I use in this book.

You may get the impression that my programming style has a strong likeness to
typical Java code, mixed with the Kernighan and Ritchie (K&R) style. I've spent nearly
20 years as a software developer, and even later in my career, [ have learned other
programming languages (for instance, ANSI-C, Java, Delphi, Scala, and several scripting
languages). Hence, I've adopted my own programming style, which is a melting pot of
these different influences.

Maybe you will not like my style, and you instead prefer Linus Torvald’s Kernel style,
the Allman style, or any other popular C++ coding standard. This is of course perfectly
okay. I like my style, and you like yours.
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C++ Core Guidelines

You may have heard of the C++ Core Guidelines, found at https://isocpp.github.io/
CppCoreGuidelines/CppCoreGuidelines.html [Cppcore21]. This is a collection of
guidelines, rules, and good practices for programming with modern C++. The project
is hosted on GitHub and released under a MIT-style license. It was initiated by Bjarne
Stroustrup, but has a lot more editors and contributors, e.g., Herb Sutter.

The number of rules and recommendations in the C++ Core Guidelines is pretty
high. There are currently 30 rules on the subject of interfaces alone, about the same
number on error handling, and no less than 55 rules on functions. And that is by no
means the end of the story. Further guidelines exist on topics such as classes, resource
management, performance, and templates.

I first had the idea of linking the topics in my book to the rules from the C++ Core
Guidelines. But that would have led to countless references to the guidelines and might
even have reduced the readability of the book. Therefore, I have largely refrained from
doing so, but would like to explicitly recommend the C++ Core Guidelines at this point.
They are a very good supplement to this book, even though I do not agree with every rule.

Companion Website and Source Code Repository

This book is accompanied by a companion website: www.clean-cpp.com.
The website includes:

o The discussion of additional topics not covered in this book.
» High-resolution versions of all the figures in this book.

Some of the source code examples in this book, and other useful additions, are
available on GitHub at:

https://github.com/Apress/clean-cpp20
You can check out the code using Git with the following command:
$> git clone https://github.com/clean-cpp/book-samples.git

You can get a .ZIP archive of the code by going to https://github.com/clean-cpp/
book-samples and clicking the Download ZIP button.

11


https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
http://www.clean-cpp.com
https://github.com/Apress/clean-cpp20
https://github.com/clean-cpp/book-samples
https://github.com/clean-cpp/book-samples

CHAPTER 1  INTRODUCTION

UML Diagrams

Some illustrations in this book are UML diagrams. The Unified Modeling Language (UML)

is a standardized graphical language used to create models of software and other systems.

In its current version, 2.5.1, UML offers 15 diagram types to describe a system entirely.
Don’t worry if you are not familiar with all diagram types; I use only a few of them

in this book. I present UML diagrams from time to time to provide a quick overview of

certain issues that possibly cannot be understood quickly enough by just reading the

code. Appendix A contains a brief overview of the used UML notations.
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Build a Safety Net

“Testing is a skill. While this may come as a surprise to some people, it is a
simple fact.:

—Mark Fewster and Dorothy Graham,
Software Test Automation, 1999

That I start the main part of this book with a chapter about testing may be surprising to
some readers, but this is for several good reasons. During the past few years, testing on
certain levels has become an essential cornerstone of modern software development.
The potential benefits of a good test strategy are enormous. All kinds of tests, if well
engineered, can be helpful and useful. In this chapter, I describe why I think that unit tests,
especially, are indispensable to ensure a fundamental level of high quality in software.
Note that this chapter is about what is sometimes called POUT (“plain old unit
testing”) and not the design-supporting tool test-driven development (TDD), which I
cover in Chapter 8.

The Need for Testing

1962: NASA MARINER 1

The Mariner 1 spacecraft was launched on July 22, 1962, as a Venus flyby mission for planetary
exploration. Due to a problem with its directional antenna, the Atlas-Agena B launching rocket
worked unreliably and lost its control signal from ground control shortly after launch.

This exceptional case had been considered during design and construction of the rocket.
The Atlas-Agena launching vehicle switched to automatic control by the on-board guidance
computer. Unfortunately, an error in the software of that computer led to incorrect control
commands that caused a critical course deviation and made steering impossible. The rocket
was directed toward Earth and pointed to a critical area.
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At T+293 seconds, the Range Safety Officer sent the destruct command to blow the rocket. A
NASA examination report' mentions a typo in the computer’s source code, the lack of a hyphen
(-), as the cause of the error. The total loss was $18.5 million, which was a huge amount of
money in those days.

If software developers are asked why tests are good and essential, I suppose that the
most common answer would be the reduction of bugs, errors, or flaws. No doubt this is
basically correct: testing is an elementary part of quality assurance.

Software bugs are usually perceived as an unpleasant nuisance. Users are annoyed
about the wrong behavior of the program, which produces invalid output, or they are
seriously ticked off about regular crashes. Sometimes even odds and ends, such as a
truncated text in a dialog box of a user interface, are enough to significantly bother
software users in their daily work. The consequence may be an increasing dissatisfaction
with the software, and at worst its replacement by another product. In addition to a
financial loss, the image of the software manufacturer suffers from bugs. At worst, the
company gets into serious trouble and many jobs are lost.

But the previously described scenario does not apply to every piece of software. The
implications of bugs can be much more dramatic.

1986: THERAC-25 MEDICAL ACCELERATOR DISASTER

This case is probably the most consequential failure in the history of software development.
The Therac-25 was a radiation therapy device. It was developed and produced from 1982 until
1985 by the state-owned enterprise Atomic Energy of Canada Limited (AECL). Eleven devices
were produced and installed in clinics in the United States and Canada.

Due to bugs in the control software, an insufficient quality assurance process, and other
deficiencies, three patients lost their lives caused due to radiation overdoses. Three other
patients were irradiated and suffered permanent, heavy health problems.

An analysis of this case determined that, among other things, the software was written by only
one person who was also responsible for the tests.

'NASA National Space Science Data Center (NSSDC): Mariner 1, http://nssdc.gsfc.nasa.gov/
nmc/spacecraftDisplay.do?id=MARINZ, retrieved 2021-0305.
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When people think of computers, they usually have a desktop PC, laptop, tablet, or
smartphone in mind. And if they think about software, they usually think about web
shops, office suites, or business IT systems.

But these kinds of software and computers make up only a very small percentage
of all systems with which we have contact every day. Most software that surrounds us
controls machines that physically interact with the world. Our whole life is managed by
software. In a nutshell: There is no life today without software! Software is everywhere
and an essential part of our infrastructure.

If we board an elevator, our lives are in the hands of software. Aircrafts are controlled
by software, and the entire, worldwide air traffic control system depends on software.
Our modern cars contain a significant amount of small computer systems with software
that communicates over a network, responsible for many safety-critical functions of
the vehicle. Air conditioning, automatic doors, medical devices, trains, automated
production lines in factories ... no matter what we're doing nowadays, we permanently
come in touch with software. And with the digital revolution and the Internet of Things
(IoT), the relevance of software in our life will again increase significantly. This fact could
not get more evident than with the autonomous (driverless) car.

It is unnecessary to emphasize that any bug in these software-intense systems could
have catastrophic consequences. A fault or malfunction of an important system can be
a threat to lives or physical condition. At worst, hundreds of people could lose their lives
during a plane crash, possibly caused by a wrong if statement in a subroutine of the
Fly-by-Wire subsystem. Quality is under no circumstances negotiable in these kinds of
systems. Never!

But even in systems without functional safety requirements, bugs can have serious
implications, especially if they are subtler in their destructiveness. It is easy to imagine
that bugs in financial software could trigger a worldwide bank crisis. Imagine if the
financial software of an arbitrary big bank completed every posting twice due to a bug,
and this issue was not noticed for a few days.
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1990: THE AT&T CRASH

On January 15th, 1990, the AT&T long distance telephone network crashed and 75 million
phone calls failed for the following nine hours. The blackout was caused by a single line of
code (a wrong break statement) in a software upgrade that AT&T deployed to all 114 of its
computer-operated electronic switches (4ESS) in December 1989. The problem began the
afternoon of January 15 when a malfunction in AT&T’s Manhattan control center led to a chain
reaction and disabled switches throughout half the network.

The estimated loss for AT&T was $60 million. There were also probably a huge amount of
losses for businesses that relied on the telephone network.

Introduction to Testing

There are different levels of quality assurance measures in software development
projects. These levels are often visualized in the form of a pyramid—the so-called test
pyramid. The fundamental concept was developed by the American software developer
Mike Cohn, one of the founders of the Scrum Alliance. He described the test automation
pyramid in his book, Succeeding with Agile [Cohn09]. With the aid of the pyramid,

Cohn describes the degree of automation required for efficient software testing. In the
following years, the test pyramid has been further developed by different people. The
one depicted in Figure 2-1 is my version.
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