BestMasters

Felix Rühle

Vielteilchendynamik in der inertialen Mikrofluidik

Eine Simulationsstudie unter Verwendung der Lattice-Boltzmann-Methode

BestMasters

Mit "BestMasters" zeichnet Springer die besten Masterarbeiten aus, die an renommierten Hochschulen in Deutschland, Österreich und der Schweiz entstanden sind. Die mit Höchstnote ausgezeichneten Arbeiten wurden durch Gutachter zur Veröffentlichung empfohlen und behandeln aktuelle Themen aus unterschiedlichen Fachgebieten der Naturwissenschaften, Psychologie, Technik und Wirtschaftswissenschaften.

Die Reihe wendet sich an Praktiker und Wissenschaftler gleichermaßen und soll insbesondere auch Nachwuchswissenschaftlern Orientierung geben.

Felix Rühle

Vielteilchendynamik in der inertialen Mikrofluidik

Eine Simulationsstudie unter Verwendung der Lattice-Boltzmann-Methode

Felix Rühle Berlin, Deutschland

Masterarbeit, Technische Universität Berlin, 2016

BestMasters ISBN 978-3-658-17913-7 DOI 10.1007/978-3-658-17914-4 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Spektrum

© Springer Fachmedien Wiesbaden GmbH 2017

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Spektrum ist Teil von Springer Nature Die eingetragene Gesellschaft ist Springer Fachmedien Wiesbaden GmbH Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Danksagung

Diese Arbeit wäre ohne die Hilfe, die Geduld und den Sachverstand von Betreuern, zahlreichen Kollegen und Freunden nicht möglich gewesen. Ich danke Prof. Holger Stark für die Betreuung und persönliche Begleitung durch diese und andere Arbeiten. Ich danke Dr. Christopher Prohm für seine unablässige Unterstützung, seine zahlreichen Hilfestellungen und Erklärungen und die Erstellung des atroos-Codes, der unter anderem die Basis dieser Arbeit bildet. Ich danke Prof. Sabine Klapp für ihre Bereitschaft, das Zweitgutachten zu erstellen. Ich danke Josua Grawitter und Florian Grabner für hilfreiche Diskussionen, ebenso wie der ganzen SRD-Subgroup. Ebenso danke ich Kevin Irmer (†) für seine Hilfe. Ein großer Dank geht an meine Eltern und an Agnes, die mir stets mit Geduld und Liebe zur Seite stand.

Inhaltsverzeichnis

Danksagung			V	
A	bbild	lungsv	erzeichnis	XI
1	Einleitung			1
2	The	eorie d	er Hydrodynamik	5
	2.1	Bilanz	zgleichungen der Kontinuumsmechanik	5
		2.1.1	Massenerhaltung	6
		2.1.2	Impulserhaltung	7
		2.1.3	Energieerhaltung	9
	2.2	Navie	r-Stokes-Gleichungen	10
		2.2.1	Newton'sche Flüssigkeiten	11
		2.2.2	Inkompressibilität	12
		2.2.3	Randbedingung	13
		2.2.4	Reynoldszahl und typische Kräfte	13
		2.2.5	Stokes-Gleichungen	15
		2.2.6	Poiseuille-Fluss	17
	2.3	Kolloi	de in mikroskopischen Kanälen	19
		2.3.1	Kolloid-Fluid-Wechselwirkung	20
		2.3.2	Hydrodynamische Wechselwirkung	22
		2.3.3	Wände des Kanals	25
		2.3.4	Inertiale Effekte in der Mikrofluidik	26

3	Nu	merisc	he Methoden	33
	3.1	Comp	utersimulation von Fluiden	33
	3.2	Lattic	e-Boltzmann-Simulation	36
		3.2.1	$Bhat nagar Gross Krook-Approximation \ . \ . \ .$	38
		3.2.2	Chapman-Enskog-Expansion	39
		3.2.3	Einbinden externer Kräfte	43
		3.2.4	Ränder und Immersed-Boundary-Methode	44
		3.2.5	Kraftbilanz des Kolloids und Messen von Lift-	
			kräften	47
4	Ergebnisse			49
	4.1	Liftkr	aft-Profile von Teilchenpaaren	51
		4.1.1	Profile für verschiedene Positionen und Reynolds-	
			zahlen	54
		4.1.2	Skalierung der Liftkräfte mit Re^{α}	58
		4.1.3	Abhängigkeit vom axialen Abstand	60
		4.1.4	Konturplots	62
	4.2	Trajel	ktorien von Teilchenpaaren	65
		4.2.1	Gedämpfte Oszillationen	67
		4.2.2	Überholen	76
		4.2.3	Austausch	78
		4.2.4	Axiale Selbstorganisation durch inertiale Fokus-	
			sierung	82
	4.3	Kolle	tive Dynamik	86
5	Erg	ebnisz	usammenfassung und Ausblick	95

Literaturverzeichnis 99 Anhang 109 A Notation 109 B Animationen 110

Abbildungsverzeichnis

3.1	Eindimensionale diskrete Delta-Funktion nach Ref. [73]	45
4.1	Schematischer Schnitt des Kanals durch die x -z-Ebene	
	mit Fluss in z -Richtung	49
4.2	Oben: Verlauf von $\mathbf{x}(t)$ für die meisten links abgebilde-	
	ten Radien und Reynoldszahlen. Unten: Liftkraftprofile	
	für verschiedene Teilchenradien a und Reynoldszahlen.	51
4.3	Für ein Teilchenpaar besteht keine Symmetrie bezüg-	
	lich der axialen Vertauschung, jedoch eine Symmetrie	
	bezüglich der Spiegelung an der z-Achse (Kanalmitte).	53
4.4	Liftkraftprofile für zwei Teilchen mit Radius $a=0.4w$	
	bei $\operatorname{Re} = 5, 0.$	55
4.5	Liftkraftprofil für das vordere Teilchen mit Radius $a =$	
	$0.4w$ bei $\mathrm{Re}=5,0$ für verschiedene Positionen des hin-	
	teren Teilchens	56
4.6	Liftkraftprofile für das vordere Teilchen mit Radius $a =$	
	0.4w bei Re = 20,0 für verschiedene Positionen des	
	hinteren Teilchens	57
4.7	Skalierung der Paar-Liftkraft mit der Reynolds-Zahl	
	bei $a = 0.4w$ für verschiedene axiale Abstände	59
4.8	Laterale Kräfte für zwei Teilchen mit Radius $a=0,\!4w$	
	bei Re = 5,0 in Abhängigkeit des axialen Abstands Δz .	61

4.9	Konturplots der Liftkraft bei verschiedenen Abständen.	63
4.10	Konturplots für hinteres und vorderes Teilchen bei ei-	
	ner Reynoldszahl von 5,0 und einem axialen Abstand	
	von $3a$	64
4.11	Parameterraum zweier Teilchen für $\Delta z = 5a.$	65
4.12	Trajektorien eines Teilchenpaars während einer gedämpf-	
	ter Oszillation bei $Re = 5. \dots \dots \dots \dots \dots$	68
4.13	Gedämpfte Oszillationen eines Teilchenpaars bei ${\rm Re}=$	
	5: zeitlicher Verlauf der x - und z - Komponenten und	
	des axialen Abstands	69
4.14	Abklingkonstante der gedämpften Oszillationen für $\Delta z =$	
	3,25a	70
4.15	Oszillationsfrequenz in Abhängigkeit der Reynoldszahl.	70
4.16	Interpretation der Oszillationen anhand der Liftkraft-	
	profile	71
4.16	Interpretation der Oszillationen anhand der Liftkraft-	
	profile (Fortsetzung): 3. Der axiale Abstand der Teil-	
	chen erreicht ein Maximum und beginnt sich wieder	
	zu verringern. 4. Die lateralen Positionen der Teilchen	
	ähneln der Anfangssituation, die relativen axialen Po-	
	sitionen sind verändert.	72
4.17	Axialer, lateraler und absoluter Abstand beim Über-	
	holvorgang zweier Teilchen.	76
4.18	Überholen zweier Teilchen	77

4.19	Zeitlicher Verlauf der x - und z -Komponenten für Aus-	
	tauschtrajektorien eines Teilchenpaars bei $\mathrm{Re}=3.$	79
4.20	Überkreuzter Austausch beim Aufeinandertreffen zwei-	
	er Teilchen.	81
4.20	Überkreuzter Austausch beim Aufeinandertreffen zwei-	
	er Teilchen (Fortsetzung). Durch die periodischen Rand-	
	bedingungen treffen die Teilchen ein zweites Mal auf-	
	einander und kehren erneut um	82
4.21	Links: Entwicklung der axialen Distan z Δz mit der Zeit	
	für verschiedene Anfangsabstände. Rechts: Abhängig-	
	keit des Endabstandes und der relativen Veränderung	
	des Abstandes vom Anfangsabstand für $\mathrm{Re}=5,0$ und	
	$\operatorname{Re} = 20, 0$	83
4.22	Laterale und axiale Positionen von Vielteilchensyste-	
	men in Abhängigkeit der Zeit	86
4.23	Ausschnitte aus Abbildung 4.22, in denen Austausch-	
	trajektorien (links) und kurze Abschnitte von gedämpf-	
	ten Oszillationen (rechts) zu sehen sind. \ldots	88
4.24	Endkonfiguration von Vielteilchensystemen für $n=8$	
	Kolloide und Entwicklung der Abstände zum hinteren	
	Nachbarn mit der Zeit	90

4.25	Endkonfiguration von Vielteilchensystemen für $n = 15$	
	Kolloide und Entwicklung der Abstände zum hinteren	
	Nachbarn mit der Zeit (Fortsetzung)	92
4.26	Zuordnung der axialen Abstände benachbarter Teil-	
	chen für ein Gesamtsystem von $n = 15$ in Bänder	93
