
Getting Started with Java,
C#, and Python
 ―
Robert Ciesla

Programming
Basics

PROGRAMMING BASICS

GETTING STARTED WITH JAVA, C#,
AND PYTHON

Robert Ciesla

Programming Basics: Getting Started with Java, C#, and Python

ISBN-13 (pbk): 978-1-4842-7285-5 ISBN-13 (electronic): 978-1-4842-7286-2
https://doi.org/10.1007/978-1-4842-7286-2

Copyright © 2021 by Robert Ciesla

This work is subject to copyright. All rights are reserved by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use
the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, New York, NY 100043. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information,
reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978- 1- 4842- 7285- 5. For more detailed information, please visit http://www.apress.com/
source- code.

Printed on acid-free paper

Robert Ciesla
HELSINKI, Finland

https://doi.org/10.1007/978-1-4842-7286-2

Dedication

Thank you to the Association of Finnish Non-fiction
Writers for their support in the production of this book.

Contents

Chapter 1: Wet Toes: The Very Basics of Programming � � � � � � � � � � � � � � 1

Chapter 2: Java, C#, and Python 101� 13

Chapter 3: Setting Up Your Programming Environments � � � � � � � � � � � 29

Chapter 4: Object-Oriented Programming (OOP) � � � � � � � � � � � � � � � � � 43

Chapter 5: File Operations, Multithreading, and Other Wonders
of Java � 63

Chapter 6: And Now for Something Completely Different:
Advanced Python � 85

Chapter 7: Calendars, Culture, and Multithreading in C# � � � � � � � � � � 107

Chapter 8: Graduation Day: Slightly Larger Programming
Projects � 129

Chapter 9: UML Class Diagrams � 145

 Index � 167

About the Author � vii

About the Technical Reviewer �ix

About the Author
Robert Ciesla is an author and filmmaker from
Helsinki, Finland. He is also a freelance-pro-
grammer working mostly in the indie game
scene. Robert is the author of Encryption for
Organizations and Individuals (2020), Game
Development with Ren'Py (2019), and Mostly
Codeless Game Development (2017).

Visit www.robertciesla.com for more infor-
mation. (image © by A.C. in 2021)

http://www.robertciesla.com

About the Technical
Reviewer
Apoorv Gupta is a Software Engineer in New York. He has worked on
several subscription products at Youtube and Google Workspace. He enjoys
hiking, snowboarding and advising startups.

© Robert Ciesla 2021
R. Ciesla, Programming Basics, https://doi.org/10.1007/978-1-4842-7286-2_1

C H A P T E R

1

Wet Toes: The
Very Basics of
Programming
What do video games, social networks, and your activity bracelet have in
common? They run on software a group of (more or less) programmers
wrote somewhere far, far away. Gadgets and hardware are only one, more
visible side of the coin of our technology-driven societies. In this chapter, we’ll
discuss the very basics of programming. We’ll also take a gander at the visible
parts of digital systems: the hardware.

 What Is Programming Anyway?
Basically, programming is the act of telling digital devices, such as your personal
computer, what to do. We type in listings of commands, as defined by a
programming language, in order to have useful or entertaining events occur.
Properly programmed computers run much of the communications and online
services in the world. You can mention things like ATMs, ticket readers, and
smart phones as gadgets that run on software that somebody created in some
programming language.

https://doi.org/10.1007/978-1-4842-7286-2_1#DOI

2

 Basic Hardware Rundown
As a budding programmer, you’ll benefit from understanding the kind of universally
found electronics you’re working with. It’s a good idea to have at least a basic
understanding of the most commonly found components inside a computer.

These hardware components in a computer represent your work force. As a
programmer, you run this show. Think of the act of programming as telling the
factory workers what to build. You manufacture applications, whether they be big,
complicated software projects or tutorials from some awesome book on coding.

For the purposes of this book, any relatively modern desktop or laptop computer works fine. We

won’t be needing any expensive hardware while getting our feet wet in programming.

 1. Central Processing Unit (CPU)
Naturally, a digital device can’t run on software alone; a central processing
unit (CPU) is the hardware “brain” which executes code and makes things
actually happen (see Figure 1-1). Even in a less complicated piece of electronics, all
instructions flow toward and through a CPU (or a bunch of them). Being very
small in size, these microchips have increasingly been a part of our lives since the
1970s. Every digital device has a CPU in it, probably even your stationary bicycle/
clothes rack.

Figure 1-1. A top-down view of an older Intel “Pentium 4” CPU used in millions of PCs back
in 2005. Image by Eric Gaba. CC BY-SA 3.0

Chapter 1 | Wet Toes: The Very Basics of Programming

3

 2. Hard Drives (a.k.a. Hard Disks)
This component is there to store data just about permanently. Within a hard
drive, you’ll find tens of thousands of files, whether they be pictures, text files,
or databases. Your operating system (e.g., Windows or macOS), too, rests
within the confines of a hard drive. These devices come in two varieties:
mechanical hard drives (see Figure 1-2) and solid state disks (SSDs).

Mechanical drives are more affordable, but since they have moving parts
inside, they are somewhat more easily damaged than SSDs by excessive
vibration and extreme weather. In addition, solid state disks usually operate
much faster.

 3. Video Card
Video cards are responsible for displaying a system’s visuals, whether they be
plain text or dazzling 3D graphics in a modern video game. These devices
come in a variety of configurations and prices, ranging from $30 word
processor fiends to $1000 gaming monsters (see Figure 1-3). Computer
monitors are typically connected directly to a video card.

Figure 1-2. A top-down view of a Western Digital mechanical hard drive. Image by “Darkone.”
Licensed under CC BY-SA 2.5 (creativecommons.org/licenses/by-sa/2.5/deed.en)

Programming Basics

https://www.creativecommons.org/licenses/by-sa/2.5/deed.en

4

The video card business has basically been a duopoly between Nvidia and AMD, two multibillion

tech giants, ever since the early 2000s. However, Intel is making gains in this sector as well.

 4. Random Access Memory (RAM)
Random access memory, commonly called RAM, is used as a computer’s
temporary storage. Physically it most often comes in the form of stick-like
add-ons (see Figure 1-4). When running any type of software, your computer
uses RAM to execute it from. Switching off your device will clear out your
RAM. By contrast, data written on hard drives isn’t erased when powering off
a computer. Save your documents on a regular basis.

As of 2021, 4 GB (i.e., four gigabytes) is an adequate amount of RAM to have for most uses.

Power users, such as video editors, will benefit from having 16 GB of RAM or more.

Figure 1-3. An Nvidia 7900GS video card from 2006

Figure 1-4. A typical stick of RAM. Image by Henry Kellner. CC BY-SA 4.0. Source:
upload.wikimedia.org/wikipedia/commons/3/32/DDR3_RAM_53051.jpg

Chapter 1 | Wet Toes: The Very Basics of Programming

https://www.upload.wikimedia.org/wikipedia/commons/3/32/DDR3_RAM_53051.jpg

5

 5. Motherboard
All of the aforementioned four hardware components (i.e., the CPU, the
video card, the hard disks, and RAM) come together at the motherboard to
create a working computer unit. The motherboard also has connectors for
keyboard, mice, and other control devices (see Figure 1-5).

 The Three Requirements of Becoming
a Decent Programmer
Let’s next discuss some personal priorities all programmers should have in
order to advance in their craft, whatever their starting level might be:

 1. Self-confidence: Ask yourself this, why do you want to
learn to code? Some perfectly valid answers include “For
professional development,” “To maintain my faculties,”
and “I want to be a part of something great.” Now,
programming is sometimes considered a frightening
activity by laypeople. It does take some guts to sit down,
tune out, and enter the world of bit manipulation. Just
remember that you, too, can achieve competence in this
field, even if you’re a complete beginner. Confidence
comes from experience. Line by line you will obtain more
good vibes and gain independence from programming
books and online tutorials.

Figure 1-5. A modern PC motherboard. Image by Evan-Amos. CC BY-SA 3.0. Source:
upload.wikimedia.org/wikipedia/commons/0/0c/A790GXH-128M-Motherboard.jpg

Programming Basics

https://www.upload.wikimedia.org/wikipedia/commons/0/0c/A790GXH-128M-Motherboard.jpg

6

 2. The right language: Not all of us benefit from becoming
fluent in Esperanto or Classical Latin. When learning a
new language, we tend to go for something useful, such
as Spanish or French. Similarly, choosing a programming
language which best suits your intentions is of paramount
importance. If you want to eventually code recipe apps
for mobile users, becoming proficient in, say, FORTRAN
from 1957 only gets you so far. For this reason, this book
introduces three of the most popular programming
languages of our times: Java, C#, and Python.

 3. Patience: After choosing which programming language
you want to specialize in, you quite simply just have to
stick to it. It takes anything between six months and a
year of hands-on experience to become proficient in a
new language. This is actually good news. Coding is great
for insomnia and boredom. It may also ward off dementia,
as it does fire those brain synapses to quite an extent.

 A Novice Programmer’s Glossary
We’ll now delve into some essential terminology related to the hallowed
hobby of coding. There are hundreds of terms and concepts related to the
various programming techniques and languages available. However, we’ll only
be focusing on the most relevant associated keywords, and in no particular
order.

 Input/Output
Input in the context of programming refers to us entering data for a piece of
software running on a computer to process. This comes in the form of typed
text, mouse commands, or various types of files. For example, a word
processing program (e.g., Microsoft Office) most often takes its input mostly
as alphanumerical data provided by keystrokes. Output refers to data that has
been processed by software. In a word processor this usually refers to a file
document saved with the program. Such output can also be directed at
printers or other devices. The output from programmers (carbon dioxide and
other things notwithstanding) is typically a working application, whether it’s a
completed tutorial file or a bigger project.

Chapter 1 | Wet Toes: The Very Basics of Programming

7

 Algorithm
A working program listing basically constitutes an algorithm, which refers to a
set of steps created to solve problems. Most software consists of numerous
sub-algorithms. In the case of, say, a video game, there are algorithms for
displaying graphics, saving and loading the game state, and playing audio files
to name just a few.

 Flowchart
Programming projects and their algorithms are often visualized using flowcharts,
especially in a team environment. These are a great way to demonstrate basic
program flow in most instances.

Flowcharts consist of only a few universal elements (see Figure 1-6). In their
most fundamental form, they use four symbols. These are the terminal
(rounded rectangle), the process (rectangle), the decision (diamond/rhombus),
and the f lowline (arrowhead). The terminal symbol is used to denote the
beginning and the end of a program flow. Any operations and general data
manipulation are represented by process rectangles.

Figure 1-6. A very simple flowchart describing a program for April fools

Programming Basics

8

Flowcharts are interpreted from top to bottom and left to right in most cases.
The American National Standards Institute (ANSI) created the standards for
flowcharts and their symbols back in the 1960s. This set of symbols has been
expanded on during the 1970s and 1980s by the International Organization for
Standardization (ISO). For the purposes of this book, we’ll stick to the originals.

 Source Code
This term refers to the collection of the more or less typed-in programming
listings each software project is made of. As a programmer, you are a creator
of source code. Simple programs come in the form of a single piece of source
code, whereas complicated software, such as operating systems (e.g.,
Windows), potentially consists of tens of thousands of listings all constituting
a single product.

 Syntax
A syntax is a set of rules and principles that govern the structure of sentences
in a given language, including in the context of programming. Different
programming languages use different keywords for specific actions. Now,
behold actual lines of programming which display a string of text in two
programming languages:

Java, like you may have gathered already, is one of the main languages featured
in this book. The other programming language used in Table 1-1 is called
FORTRAN. Devised mainly for scientific computation, this language was created
way back in the 1950s by IBM. A lot of industrial hardware runs on
FORTRAN. Even some geeks still use it for the tech chic (and to a small
extent, so did we).

You may notice one of our examples in Table 1-1 started with a number (1). This is known as a

line number in coding parlance, and the practice has been pretty much abandoned a while ago.

As a rule, current-generation programming languages don’t need line numbering.

Table 1-1. A demonstration of the syntactical differences between two programming languages

Java FORTRAN
System.out.print(“Hello! I like Cake!”); 1 print *, “Hello! I like Cake!”

Chapter 1 | Wet Toes: The Very Basics of Programming

9

 Routine
A routine in the context of programming is a term for code which does a
specific task and is intended to be summoned repeatedly at will by the coder.
For example, a program may contain a simple routine for playing a sound
effect. Instead of writing and rewriting the code each time said sound effect is
needed, the programmer will trigger the same code (i.e., the routine) ad hoc.

Depending on the context and the programming language in use, a routine is sometimes

also referred to as a sub-routine, a function, a procedure, or a method. We’ll address the

nomenclature in more detail later in this book.

 File Formats
A f ile format is a method of encoding data. By 2021, you’ve encountered many
a file format already in your daily life. Digital photographs, love letters typed
in OpenOffice, and those sassy Excel spreadsheets all represent different file
formats. An image file (e.g., apress_is_great.jpg) resting on one’s hard drive can
only be used with software that deciphers it the way it was intended to, as an
image. Similarly, opening love-letter.doc in a photo-editing suite would not
provide you with optimal results, displaying gibberish at best. Most operating
systems associate different available file formats with the right software, so
you can safely double-click files and expect them to load up just fine.

 ASCII
American Standard Code for Information Interchange (ASCII) is a character-
encoding standard that assigns letters, numbers, and other characters for use
in computing and other digital equipment. In essence, what you are reading
now is ASCII code. As a programmer, you’ll come across the term rather
frequently. An “ASCII file” is often used as a shorthand for “human-readable
text file.” The system dates back to 1963.

On the Internet of today, the most commonly used character-encoding standard is the UTF-8,

which includes all of the ASCII alphanumericals as well as many other symbols.

Programming Basics

10

 Boilerplate Code
The term boilerplate refers to programming code which is more or less
automatically inserted into a program, needing little to no editing. When you
start a new project in, say, a C++ environment, current-generation
development tools will usually set you up with the necessary boilerplate code
needed to run the program. If not, you can relatively safely copy-paste
boilerplate code from your older working projects right into your new one to
get started.

 Software Framework
A software framework is a set of generic functionalities which typically spare
the coder a lot of time. There’s no reason to reinvent the wheel, especially in
software projects. A framework includes various software libraries of various
focus, including file manipulation routines, audio playback, and 3D graphics
routines (in the case of 3D video game development and other highly visual
applications).

For the purposes of this book, we won’t be delving deep in any complicated software

frameworks, but it’s important you understand the concept.

 Full Stack
A full stack is the software that makes up a fully working web application, such
as an online database. A web application is often divided into two areas: a front
end and a back end. The front end is made for the user; it contains all the user
interface elements needed to use the app. The back end consists of web
servers, frameworks, and databases. A full stack developer is therefore someone
who knows their way across both the front end and the back end of online
application coding.

Chapter 1 | Wet Toes: The Very Basics of Programming

11

 In Closing
Finishing this chapter you’ll have hopefully gained some understanding of the
following:

•	 The basic five hardware components in a computer

•	 The three main requirements for becoming a programmer

•	 Some essential programming concepts, including source
code, syntax, and boilerplate code

•	 What flowcharts refer to and what their basic building
blocks are

Programming Basics

