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Preface

In these notes, we consider two kinds of nonlinear evolution problems of von
Karman type on R

2m, m � 2. Each of these problems consists of a system that
results from the coupling of two highly nonlinear partial differential equations, one
hyperbolic or parabolic, and the other elliptic. These systems are called “of von
Karman type” because of a formal analogy with the well-known equations of the
same name in the theory of elasticity in R

2.

1 The Classical Equations

1. To describe the classical hyperbolic von Karman system in R
2, we introduce

the nonlinear coupling of the second order derivatives of two sufficiently smooth
functions g D g.x; y/ and h D h.x; y/, defined by

Œg; h� WD det

�
gxx gxy

hyx hyy

�
; (1)

and then we set

N.g; h/ WD Œg; h�C Œh; g� D gxx hyy C gyy hxx � 2 gxy hxy : (2)

The classical von Karman equations in R
2 consist of the system

utt C�2u D N.f ; u/C N.'; u/ ; (3)

�2f D �N.u; u/ ; (4)

where � the usual Laplace operator in R
2, and ' D '.t; x; y/ is a given external

source. Equations (3) and (4) model the dynamics of the vertical oscillations
(buckling) of an elastic two-dimensional thin plate, represented by a bounded

vii
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domain � � R
2, due to both internal and external stresses. More precisely, in this

model the unknown function u D u.t; x; y/ is a measure of the vertical displacement
of the plate; Eq. (4) formally defines a map u 7! f .u/, where f .u/ represents the
so-called Airy stress function, which is related to the internal elastic forces acting
on the plate, and depends on its deformation u; finally, ' represents the action of
the external stress forces. Typically, Eqs. (3)C(4) are supplemented by the initial
conditions

u.0/ D u0 ; ut.0/ D u1 ; (5)

where u0 and u1 are a given initial configuration of the displacement and its velocity,
and by appropriate constraints on u at the boundary of �.
2. A detailed and precise description of the modeling issues related to the classical
von Karman equations, and a discussion of their physical motivations, can be found
in, e.g., Ciarlet and Rabier [12], or in Ciarlet [10, 11]; in addition, we refer to the
recent, exhaustive study by Chuesov and Lasiecka [9] of a large class of initial-
boundary value problems of von Karman type on domains of R2, with a multitude
of different boundary conditions, including nonlinear ones. The stationary state of
the classical von Karman equations, described by the nonlinear elliptic system

�2u D N.f ; u/C N.'; u/ ; (6)

�2f D �N.u; u/ ; (7)

has been investigated by several authors; in particular, Berger [3], devised a
remarkable variational method to establish the existence of suitably regular solu-
tions to the stationary system (6)C(7) in a bounded domain of R

2, subject to
appropriate boundary conditions. Weak solutions of the corresponding system of
evolution (3)C(4)C(5), again under appropriate boundary conditions, have been
established, among others, by Lions [21, Chap. 1, Sect. 4], and Favini et al. [15, 16],
and Chuesov and Lasiecka [9].

2 The Generalized Equations

1. To introduce the generalization of the von Karman system (3)C(4) we wish to
consider, we now let m 2 N�2, and, given m C 1 smooth functions u1; : : : ; um; u
defined on R

2m, we set

N.u1; : : : ; um/ WD ı
i1 ��� im
j1 ��� jm

r j1
i1

u1 � � � r jm
im

um ; (8)

M.u/ WD N.u; : : : ; u/ D mŠ �m.r2u/ ; (9)
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where we adopt the usual summation convention for repeated indices, and use the
following notations. For i1; : : : ; im, j1; : : : ; jm 2 f1; : : : 2mg, ıi1 ��� im

j1 ��� jm
denotes the

Kronecker tensor; for 1 � i; j � 2m, r j
i WD @i@j, and �m is the m-th elementary

symmetric function of the eigenvalues �k D �k.@i@ju/, 1 � k � 2m, of the Hessian
matrix H.u/ WD Œ@i@ju�, that is,

�m.r2u/ WD
X

1�k1<k2< :::<km�2m

�k1 � � � �km : (10)

We also introduce the convention

N
�

u.k1/1 ; : : : ; u
.kp/
p

�
WD N.u1; : : : ; u1„ ƒ‚ …

k1 factors

; : : : up; : : : ; up„ ƒ‚ …
kp factors

/ ; (11)

with k1 C � � � C kp D m, and set � WD � r j
j u.

In Lemma 1.3.1 of Chap. 1, we shall show that the elliptic equation

�mf D � M.u/ (12)

can be uniquely solved, in a suitable functional frame, for f in terms of u, thereby
defining a map u 7! f WD f .u/. Let T > 0. Given a source term ' defined on
Œ0;T� � R

2m, we consider the Cauchy problem, of hyperbolic type, in which we
wish to determine a function u on Œ0;T� � R

2m, satisfying the equation

utt C�mu D N.f .u/; u.m�1//C N.'.m�1/; u/ ; (13)

and subject to the initial conditions (5), where, now, u0 and u1 are given functions
defined on R

2m. We refer to this Cauchy problem, that is, explicitly, to (13)C (12)C
(5), as “problem (VKH)”.

Problem (VKH) appears to be analogous to the original von Karman system (3)
and (4) on R

2, but this analogy is only formal, in the following sense. Let d denote
the space dimension. In the linear part at the left side of Eqs. (3) and (4) of the
original system, the order of the differential operator �2 is twice the dimension
of space (i.e., 4 D 2d, d D 2), and the nonlinear operators of Monge-Ampère
type at the right side of the equations are defined in terms of the complete Hessian
of functions depending on u, f , and '. In contrast, at the left side of Eqs. (13)
and (12) the order of the differential operator�m equals the dimension of space (i.e.,
2m D d), while the Monge-Ampère operators at the right side of these equations
are defined in terms of elementary symmetric functions of order m D d

2
of Hessian

matrices of functions depending on u, f , and '. To illustrate this difference explicitly,
in the original equation (4) the term N.u; u/ is twice the determinant of the Hessian



x Preface

matrix

H.u/ D
�

uxx uxy

uyx uyy

�
(14)

of u; since this matrix has two eigenvalues �1.@i@ju/ and �2.@i@ju/, whose product
equals the determinant uxx uyy � uxy of H.u/, we obtain that

N.u; u/ D 2 det H.u/ D 2 �1.@i@ju/ �2.@i@ju/ : (15)

In contrast, when m D 1 the condition 1 � j1 � 2m D 2 in the sum of (10) reduces
to j1 D 1 or j1 D 2, so that definitions (9) and (10) yield a completely different
expression for N.u; u/, namely

N.u; u/ D 2Š �1.r2u/ D 2
�
�1.@i@ju/C �2.@i@ju/

�
: (16)

The difference between (15) and (16) shows that, indeed, the analogy between the
original von Karman system and the equations we consider here is only formal.
For completeness’ sake, we mention that the extension of the original von Karman
equations (3) and (4) to even space dimension d D 2m would consist of the system

utt C�mC1u D N.f .u/; u.2m�1//C N.'.2m�1/; u/ ; (17)

�mC1f D �N.u; : : : ; u„ ƒ‚ …
2m factors

/ ; (18)

where now, instead of (8),

N.u1; : : : ; ud/ WD ı
i1 ��� id
j1 ��� jd

r j1
i1

u1 � � � r jd
id

ud : (19)

Even though we do not consider system (17)C(18) in these notes, we point out that,
from an analytical point of view, its study turns out to be much simpler than that
of (13)C(12).
2. Our main emphasis in these notes is on the hyperbolic version of the generalized
von Karman equations in R

2m, for which we have a rather complete well-posedness
theory for solutions with different types of regularity, from weak to smooth;
however, we shall also briefly consider the parabolic version of these equations,
for which, in contrast, we only have a well-posedness theory for strong solutions. In
this system, Eq. (13) is replaced by its parabolic counterpart

ut C�mu D N.f .u/; u.m�1//C N.'.m�1/; u/ ; (20)

with f .u/ still defined by (12), and u is subject to the single initial condition

u.0/ D u0 : (21)
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We refer to the Cauchy problem (20) C (12) C (21) as “problem (VKP)”.
3. We started our investigation of the generalized von Karman equations in [4],
where we considered an elliptic system formally similar to (6) C (7) on a compact
Kähler manifold, with boundary, and arbitrary complex dimension m � 2. This
generalization involved a number of analytic difficulties, due to the rather drastic
role played by the limit case of the Sobolev imbedding theorem. We then considered,
in [7], the corresponding hyperbolic evolution problem, and gave some partial
results on the so-called strong solutions (see Definition 1.4.1 of Chap. 1) of these
equations, again on a compact Kähler manifold of arbitrary complex dimension
m � 2 (this explains in part why we only consider an even number 2m of real
variables). In [5, 6], we also gave some qualitatively similar results on strong
solutions to the parabolic problem (VKP) on compact Kähler manifolds. Most of
these results on strong solutions for both problems (VKH) and (VKP) have been
extended to the whole space case (i.e., on all of R

2m) in the last chapter of our
textbook [8], where we presented these results as an application of a general theory
of quasi-linear evolution equations of hyperbolic and parabolic type. In these works,
we were able to establish the existence and uniqueness of strong solutions in a
suitable function space framework, by applying the linearization and fixed-point
technique developed by Kato and others (see, e.g., Kato [18, 19]). Evolution systems
of von Karman type can also be studied in the context of Riemannian manifolds with
boundary, with a number of extra difficulties due to the curvature of the metric of
the manifold, and the presence of boundary conditions.

3 Overview of Results

1. Our first and main goal in these notes is to present a comprehensive study of the
initial value problem for the generalized model of the hyperbolic equations of von
Karman type (13) C (12), in the whole space R2m, with arbitrary integer m � 2. We
seek solutions to problem (VKH) with different degrees of smoothness in the space
variables, as described by the index k in the chain of anisotropic Sobolev spaces

Xm;k.T/ WD C.Œ0;T�I HmCk/ \ C1.Œ0;T�I Hk/ ; (22)

where for r 2 N, Hr is the usual Sobolev space on R
2m (that is, Hr D Wr;2.R2m/).

We obtain different results, depending on whether k D 0 or k > 0. If k D 0, we
are able to establish the existence of solutions in a space Ym;0.T/ which is larger
than (22); more precisely, such that

Xm;0.T/ � Ym;0.T/

� ˚
u 2 L1.0;TI Hm/ j ut 2 L1.0;TI L2/

� I
(23)
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(see (1.131) of Chap. 1). These solutions are called WEAK, and are defined globally
in time; that is, for all values of t in the same interval Œ0;T� where the given source
' is defined. In contrast, when k > 0 we can establish the existence of solutions that
are defined only on a smaller interval Œ0; �� � Œ0;T�; that is, solutions in Xm;k.�/, for
some � 2 �0;T�. We call these STRONG, LOCAL solutions. Remarkably, the value of
� is independent of k; in fact, it only depends, in a generally decreasing fashion,
on the size of the data u0 in HmC1, u1 in H1, and ' in the space Sm;1.T/ defined
in (1.137) of Chap. 1. In addition, these strong solutions depend continuously on the
data u0, u1, and ', in a sense described precisely at the end of Chap. 1.
2. A similar kind of results holds for the initial value problem for the generalized
model of the parabolic equations of von Karman type (20) C (12), again in the whole
space R

2m, m � 2. Here too, we seek solutions to problem (VKP) with different
degrees of smoothness in the space variables, described by the index h in the chain
of isotropic Sobolev spaces

Pm;h.T/ WD ˚
u 2 L2.0;TI HmCh/ j ut 2 L2.0;TI Hh�m/

�
: (24)

When h � m, these solutions are called STRONG, and as in the hyperbolic case we
are able to establish the existence of strong, local solutions in Pm;h.�/, for some � 2
�0;T�. Again, � is independent of h, and its size depends, in a generally decreasing
fashion, on the size of the data u0 in Hm and ' in the space Sm;0.T/ defined in (1.137)
of Chap. 1. In addition, these strong solutions depend continuously on the data
u0 and ', in a sense described precisely at the end of Chap. 1. Weak solutions
correspond to the case 0 � h < m in (24); however, in contrast to the hyperbolic
case, we are not able to even give a meaningful definition of weak solutions to
problem (VKP) in the context of the spaces Pm;k.T/, except when m D 2.
3. These notes are organized as follows. In Chap. 1 we prepare the analytic and
functional space framework in which we study the hyperbolic equations of von
Karman type (3) C (4), and state the results we seek to establish. In Chap. 2, we
prove the existence of global weak solutions to problem (VKH), extending the
above-cited result of Lions [21], to arbitrary even space dimension 2m. In Chap. 3,
we prove the local well-posedness of the equations in a suitable strong sense, when
m C k � 4, and in Chap. 4, we prove a weaker well-posedness result for the
exceptional case m D 2, k D 1. In Chap. 5, we briefly consider the parabolic
version (20) C (12) of the von Karman equations, and establish a result on the
local existence and uniqueness of strong solutions of problem (VKP), and one on
the existence of weak solutions when m D 2. In contrast to our earlier work (as
summarized, e.g., in [8, Chap. 7, Sect. 2]), all existence results here are established
via suitable Galerkin approximation schemes. Finally, in Chap. 6, we report some
technical results on the Hardy space H1 on R

N , which we then use to show the
well-posedness of weak solutions of problem (VKH) for the classical von Karman
equations (3) C (4) in R

2.
4. While the physical significance of the von Karman system we consider may not be
evident, the interest of this problem resides chiefly in a number of specific analytical
features, which make the study of these equations a rich subject of investigation. The
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two major difficulties we encounter are the lack of compactness, which characterizes
the study of evolution equations in the whole space (and which is, obviously, not
present in the case of a compact manifold, or other types of bounded domains with
appropriate boundary conditions), and a lack of regularity of the second order space
derivatives of the function @2x f defined by (12). This difficulty is related to the limit
case of the Sobolev imbedding theorem. More precisely, we encounter a drastic
difference between the situation where the derivatives @2x f .t; �/ are in L1, or not.
Interestingly enough, in the hyperbolic case that is of most interest to us it turns out
that we are not able to determine whether this condition holds or not, only when
either m � 2 and k D 0 (case of the weak solutions), or when m D 2 and k D 1,
which is a somewhat exceptional case; in all others, including the case m D 1, k � 0

of the classical von Karman equations, the condition @2x f .t; �/ 2 L1 does hold.
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