Hermann von Helmholtz

On the Conservation of Force

Published by Good Press, 2021
goodpress@okpublishing.info
EAN 4064066467050

Table of Contents


Cover
Titlepage
Text

AS I have undertaken to deliver here a series of lectures, I think the best way in which I can discharge that duty will be to bring before you, by means of a suitable example, some view of the special character of those sciences to the study of which I have devoted myself. The natural sciences, partly in consequence of their practical applications, and partly from their intellectual influence on the last four centuries, have so profoundly, and with such increasing rapidity, transformed all the relations of the life of civilised nations; they have given these nations such increase of riches, of enjoyment of life, of the preservation of health, of means of industrial and of social intercourse, and even such increase of political power, that every educated man who tries to understand the forces at work in the world in which he is living, even if he does not wish to enter upon the study of a special science, must have some interest in that peculiar kind of mental labour, which works and acts in the sciences in question.

On a former occasion I have already discussed the characteristic differences which exist between the natural and the mental sciences as regards the kind of scientific work. I then endeavoured to show that it is more especially in the thorough conformity with law which natural phenomena and natural products exhibit, and in the comparative ease with which laws can be stated, that this difference exists. Not that I wish by any means to deny, that the mental life of individuals and peoples is also in conformity with law, as is the object of philosophical, philological, historical, moral, and social sciences to establish. But in mental life, the influences are so interwoven, that any definite sequence can but seldom be demonstrated. In Nature the converse is the case. It has been possible to discover the law of the origin and progress of many enormously extended series of natural phenomena with such accuracy and completeness that we can predict their future occurrence with the greatest certainty; or in cases in which we have power over the conditions under which they occur, we can direct them just according to our will. The greatest of all instances of what the human mind can effect by means of a well-recognised law of natural phenomena is that afforded by modern astronomy. The one simple law of gravitation regulates the motions of the heavenly bodies not only of our own planetary system, but also of the far more distant double stars; from which, even the ray of light, the quickest of all messengers, needs years to reach our eye; and, just on account of this simple conformity with law, the motions of the bodies in question can be accurately predicted and determined both for the past and for future years and centuries to a fraction of a minute.

On this exact conformity with law depends also the certainty with which we know how to tame the impetuous force of steam, and to make it the obedient servant of our wants. On this conformity depends, moreover, the intellectual fascination which chains the physicist to his subjects. It is an interest of quite a different kind to that which mental and moral sciences afford. In the latter it is man in the various phases of his intellectual activity who chains us. Every great deed of which history tells us, every mighty passion which art can represent, every picture of manners, of civic arrangements, of the culture of peoples of distant lands or of remote times, seizes and interests us, even if there is no exact scientific connection among them. We continually find points of contact and comparison in our conceptions and feelings; we get to know the hidden capacities and desires of the mind, which in the ordinary peaceful course of civilised life remain unawakened.

It is not to be denied that, in the natural sciences, this kind of interest is wanting. Each individual fact, taken by itself, can indeed arouse our curiosity or our astonishment, or be useful to us in its practical applications. But intellectual satisfaction we obtain only from a connection of the whole, just from its conformity with law. Reason we call that faculty innate in us of discovering laws and applying them with thought. For the unfolding of the peculiar forces of pure reason in their entire certainty and in their entire bearing, there is no more suitable arena than inquiry into Nature in the wider sense, the mathematics included. And it is not only the pleasure at the successful activity of one of our most essential mental powers; and the victorious subjections to the power of our thought and will of an external world, partly unfamiliar, and partly hostile, which is the reward of this labour; but there is a kind, I might almost say, of artistic satisfaction, when we are able to survey the enormous wealth of Nature as a regularly-ordered whole—a kosmos, an image of the logical thought of our own mind.

The last decades of scientific development have led us to the recognition of a new universal law of all natural phenomena, which, from its extraordinarily extended range, and from the connection which it constitutes between natural phenomena of all kinds, even of the remotest times and the most distant places, is especially fitted to give us an idea of what I have described as the character of the natural sciences, which I have chosen as the subject of this lecture.

This law is the Law of the Conservation of Force, a term the meaning of which I must first explain. It is not absolutely new; for individual domains of natural phenomena it was enunciated by Newton and Daniel Bernoulli; and Rumford and Humphry Davy have recognised distinct features of its presence in the laws of heat.

The possibility that it was of universal application was first stated by Dr. Julius Robert Mayer, a Schwabian physician (now living in Heilbronn), in the year 1842, while almost simultaneously with, and independently of him, James Prescot Joule, an English manufacturer, made a series of important and difficult experiments on the relation of heat to mechanical force, which supplied the chief points in which the comparison of the new theory with experience was still wanting.

The law in question asserts, that the quantity of force which can be brought into action in the whole of Nature is unchangeable, and can neither be increased nor diminished. My first object will be to explain to you what is understood by quantity of force; or, as the same idea is more popularly expressed with reference to its technical application, what we call amount of work in the mechanical sense of the word.