AWT - ARBEITSGEMEINSCHAFT WÄRMEBEHANDLUNG UND WERKSTOFFTECHNIK E.V. - FACHAUSSCHUSS 4 (HRSG.)

Thermochemische Behandlung von Eisenwerkstoffen im Gas

Verfahren und Anlagen

2., durchgesehene Auflage

ıns Lösungen mit Anspruch. verden bei uns ganz

asnitrieren asnitrocarburieren ichtarbeiten

- Gasnitrocarburieren
 mit nachoxidieren
- Reinigungsstrahlen

Wittmann Härterei GmbH | Plochinger Strasse 3 | 73066 Uhingen Tel. 071 61/98 68 87 - 0 | Fax - 10 | www.wittmann-haerterei.de | info@wittmann-haerterei.de

Thermochemische Behandlung von Eisenwerkstoffen im Gas

AWT-Fachausschuss 4 (Hrsg.) Winfried Gräfen, Franz Hoffmann, Dieter Liedtke, Karl-Helmut Weissohn, Karl-Michael Winter

Thermochemische Behandlung von Eisenwerkstoffen im Gas

Verfahren und Anlagen

2., durchgesehene Auflage

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

2., durchgesehene Auflage 20211. Auflage 2014

© 2021 · expert verlag GmbH Dischingerweg 5 · D-72070 Tübingen

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Alle Informationen in diesem Buch wurden mit großer Sorgfalt erstellt. Fehler können dennoch nicht völlig ausgeschlossen werden. Weder Verlag noch Autoren oder Herausgeber übernehmen deshalb eine Gewährleistung für die Korrektheit des Inhaltes und haften nicht für fehlerhafte Angaben und deren Folgen.

Internet: www.expertverlag.de eMail: info@verlag.expert

CPI books GmbH, Leck

ISBN 978-3-8169-3522-3 (Print) ISBN 978-3-8169-8522-8 (ePDF) In diesem Handbuch werden für die thermochemischen Verfahren Aufkohlen, Carbonitrieren, Nitrieren und Nitrocarburieren die theoretischen Grundlagen und die industrielle Durchführung eingehend behandelt.

Es entstand in langjähriger Gemeinschaftsarbeit des AWT-Fachausschusses 4 "Einsatzhärten" aus den Beiträgen verschiedener Mitglieder des Ausschusses. Die Beiträge wurden von einem Redaktionsstab zusammengefasst, intensiv überarbeitet, ergänzt und Texte und Bilder einheitlich gestaltet.

Bei den Grundlagen und der praktischen Durchführung werden die Verfahren bei Normaldruck, sowie bei Niederdruck mit und ohne Plasmaunterstützung, behandelt. Weiterhin werden charakteristische physikalische Eigenschaften der zum Herstellen der verschiedenen Ofenatmosphären erforderlichen Gase aufgeführt.

Die industriell gebräuchlichsten Arten von Öfen und die zugehörige Mess- und Regeltechnik werden beschrieben und den Verfahren zugeordnet. Betrachtungen zur Energiebilanz, dem Umweltschutz und der Entsorgung der verbrauchten Hilfsstoffe, sowie dem sicheren Betreiben der Wärmebehandlungsanlagen, runden den Inhalt des Buchs ab.

Der Themenband richtet sich an den mit dem Planen und Durchführen von Wärmebehandlungen befassten Personenkreis, an Konstruktions-, Entwicklungs- und Fertigungsingenieure aber auch an Studierende und an der Wärmebehandlungspraxis Interessierte.

Bei der Überarbeitung der ersten Auflage aus dem Jahr 2014 wurden die inzwischen erkannten Druckfehler beseitigt, Inhalt und Darstellung des Buchs blieben gleich.

Der Redaktionsstab:

Winfried Gräfen Franz Hoffmann Dieter Liedtke Karl-Michael Winter

Der an der ersten Auflage im Redaktionsstab mitwirkende Experte für die Regeltechnik von Wärmebehandlungsanlagen, Karl-Helmut Weissohn, ist inzwischen verstorben. Seinem Andenken ist diese zweite Auflage gewidmet.

Im August 2020

AWT-Fachausschuss "Einsatzhärten"

Im vorliegenden Handbuch werden für die Verfahren Einsatzhärten (Aufkohlen, Carbonitrieren), Nitrieren und Nitrocarburieren sowohl die theoretischen Grundlagen als auch die industrielle Durchführung eingehend behandelt.

Das Werk ist aus einer Vielzahl einzelner Beiträge von Mitgliedern des AWT-Fachausschusses 5 "Anlagentechnik" entstanden, der nach Abschluss der Arbeiten in den Fachausschuss 4 "Einsatzhärten" integriert wurde. Die ersten Texte reichen bis in das Jahr 1988 zurück. Seit dieser Zeit haben sich sowohl die Verfahrenstechnik, die Anlagentechnik wie auch die Mess- und Regeltechnik deutlich weiterentwickelt. Durch Forschungsvorhaben auf dem Gebiet der Wärmebehandlungstechnik und die Erfahrungen aus der industriellen Praxis konnten das Wissen erweitert, vertieft und neue Erkenntnisse gewonnen werden. Dies floss in die Texte ein, die kontinuierlich diskutiert, bearbeitet und an den sich weiterentwickelnden Stand der Technik angepasst wurden. Die so entstandenen Vorlagen wurden schließlich durch einen Redaktionsstab unter angemessener Berücksichtigung des gegenwärtigen Kenntnisstands intensiv überarbeitet und, wo erforderlich, ergänzt. Dabei wurden die unterschiedlichen Texte und Bilder der verschiedenen Autoren zur besseren Lesbarkeit einheitlicher gestaltet.

In der Abhandlung werden die Grundlagen und die Durchführung der Verfahren der thermochemischen Behandlung im Gas bei Normaldruck und bei Niederdruck sowie ohne als auch mit Plasmaunterstützung dargestellt. Anschließend daran sind charakteristische physikalische Eigenschaften der zum Herstellen der verschiedenen Ofenatmosphären erforderlichen Gase angegeben.

Ein weiterer Teil befasst sich mit der Mess- und Regeltechnik. Die industriell gebräuchlichsten Arten von Öfen werden kurz beschrieben und charakterisiert. Betrachtungen zur Energiebilanz, dem Umweltschutz und der Entsorgung der verbrauchten Hilfsstoffe sowie dem sicheren Betreiben der Wärmebehandlungsanlagen runden den Inhalt des Handbuchs ab.

Der Themenband richtet sich an den mit dem Planen und Durchführen von Wärmebehandlungen befassten Personenkreis, an Konstruktions-, Entwicklungs- und Fertigungsingenieure aber auch an Studierende und an der Wärmebehandlungspraxis Interessierte.

Viele Mitautoren sind inzwischen aus dem aktiven Berufsleben und aus dem Fachausschuss ausgeschieden, neue sind hinzugekommen und haben ebenfalls aktiv mitgearbeitet. Ihnen allen sei an dieser Stelle für ihr Mitwirken gedankt:

Herwig Altena Hans Georg Bittner Gottfried Böhm Michael Bonhagen Herbert Boßmann Stephan Dorn Ralf Jennes Alexander Jurmann † Jürgen Klix Heinrich Klümper-Westkamp Ralf Kotz Christoph Laumen Karl Ritzka † Dieter Roempler Hans-Jürgen Rönnecke Richard Seemann Hans-Peter Schmidt Werner Schwan

- Hans-Erwin Esser Jürgen Genz Winfried Gräfen Dieter Grassl Peter Haase Paul Heilmann Erwin Heumüller † Franz Hoffmann Rüdiger Hoffmann Uwe Huchel Olaf Irretier
- Wolfgang Lerche Dieter Liedtke Michael Lohrmann Helmut Mallener Albrecht Melber Dzo Mikulovic Franz Neumann Manfred Oswald Guido Plicht Karl Ritter
- Karl Schweyher † Wolfgang Specht Hartmut Steck-Winter Matthias Steinbacher Frank Treptow Werner Trojahn Werner Vogel Karl-Helmut Weissohn Karl-Helmut Weissohn Karl-Michael Winter Urs Wyss †

Der Redaktionsstab:

Winfried Gräfen Franz Hoffmann Dieter Liedtke Karl-Helmut Weissohn Karl-Michael Winter

Im Dezember 2013

AWT-Fachausschuss 4 "Einsatzhärten"

		Seite
	Vorwort	
1	Grundlagen der Verfahrenstechnik	1
1.1	Einsatzhärten	1
1.1.1	Aufkohlen	1
1.1.1.1	Verfahren	1
1.1.1.1.1	Die Aufkohlungsreaktionen, ihre Gleichgewichtsbeziehungen und die für das Prozessregeln spezifischen Indikatoren	2
1.1.1.1.2	Die Kohlenstoffaktivität / C-Aktivität ac	5
1.1.1.1.3	Der Kohlenstoffpegel / C-Pegel Cp	6
1.1.1.1.4	Der Legierungsfaktor k∟	6
1.1.1.1.5	Der Kohlenstoff-Übergangskoeffizient –	8
	die Kohlenstoff-Übergangszahl β	
1.1.1.1.6	Die Kohlenstoffverfügbarkeit	9
1.1.1.1.7	Die Kohlenstoffdiffusion	12
1.1.1.1.8	Randoxidation	15
1.1.1.2	Niederdruckaufkohlen	19
1.1.1.2.1	Die Reaktionen beim Niederdruckaufkohlen	20
1.1.1.2.2	Prozesskontrolle	26
1.1.1.2.3	Prozesstypische Erscheinungen	27
1.1.1.3	Das Reaktionsmedium Plasma für Diffusionsbehandlungen	29
1.1.1.4	Plasmaaufkohlen	32
1.1.1.4.1	Verfahrenstechnik	32
1.1.1.4.2	Einfluss von Plasmastrom- bzw. Plasmaleistungsdichte auf die Aufkohlungsergebnisse	37
1.1.1.5	Gegenüberstellung der unterschiedlichen Aufkohlungsverfahren	40
1.1.2	Carbonitrieren	40
1.1.2.1	Carbonitrieren bei Normaldruck	41
1.1.2.1.1	Die Wechselwirkung zwischen Kohlenstoff- und Stickstoffaktivität	44
1.1.2.1.2	Anwendung des Carbonitrierens	46
1.1.2.1.3	Anlagen- und Chargeneinfluss beim Carbonitrieren	47
1.1.2.2	Niederdruckcarbonitrieren	49
1.1.3	Sonderverfahren	50
1.1.3.1	Aufkohlen austenitischer Stähle bei Niedrigtemperatur	50
1.1.3.2	Aufkohlen bei hoher Temperatur – Hochtemperaturaufkohlen	54
1.1.3.3	Aufkohlen in sauerstofffreien Atmosphären	55
1.1.3.4	Aufkohlen mit hohen Randkohlenstoffgehalten –	55
	Excess Carburizing	
1.1.4	Härten, Anlassen, Tiefkühlen	55
1.1.4.1	Verfahren zum Härten	57
1.1.4.1.1	Direkthärten (Typ A)	58
1.1.4.1.2	Einfachhärten (Typ B)	59
1.1.4.1.3	Härten nach isothermischem Umwandeln (Typ C)	59
1.1.4.1.4	Doppelhärten (Typ D)	60
1.1.4.2	Warmbadhärten	60

1.1.4.3 1.1.4.4 1.1.4.5	Tiefkühlen Der einsatzgehärtete Zustand Anlassen	Seite 61 62 63
1.2	Nitrieren und Nitrocarburieren	64
1.2.1	Begriffsbestimmung	64
1.2.2	Nitrieren	65
1.2.3	Nitrocarburieren	67
1.2.3.1	Die Reaktionen	67
1.2.3.2	Kenngrößen	69
1.2.3.3	Einfluss der Kenngrößen auf das Ergebnis des Nitrierens und Nitrocarburierens	72
1234	Wechselwirkung von Stickstoff und Kohlenstoff	77
	in der Nitrierschicht	
1.2.4	Plasmanitrieren	78
1.2.4.1	Das Reaktionsmedium Plasma	78
1.2.4.2	Prozessablauf	78
1.2.5	Sonderverfahren/Kombinationsverfahren	83
1.2.5.1	Nitrieren/Nitrocarburieren bei niedriger Temperatur	83
1.2.5.2	Nitrieren/Nitrocarburieren oberhalb 590 °C	84
	bzw. oberhalb Ac _{1(Fe-N-C)}	
1.2.5.3	Hochtemperaturnitrieren	87
1.2.5.4	Niederdrucknitrieren	89
1.2.5.5	Drucknitrieren	90
1.2.5.6	Nitrieren/Nitrocarburieren und Beschichten	90
1.2.5.7	Nitrocarburieren und anschließendes Härten im Vakuumofen	90
1.2.5.8	Nitrocarburieren und anschließendes Randschichthärten	91
1.2.6	Vor- und Nachbehandlung	91
1.2.6.1	Reinigen	94
1.2.6.1.1	Waschen	94
1.2.6.1.2	Strahlen	95
1.2.6.1.3	Beizen	95
1.2.6.2	Vorbehandlung	96
1.2.6.2.1	Entgraten	96
1.2.6.2.2	Voroxidieren	96
1.2.6.2.3	Spannungsarmglühen	97
1.2.6.2.4	Normalglühen	98
1.2.6.2.5	Vergüten	98
1.2.6.2.6	Vorbereiten für eine örtlich begrenzte Diffusionsbehandlung	99
1.2.6.3	Nachbehandlung	99
1.2.6.3.1	Reinigen	99
1.2.6.3.2	Auslagern	100
1.2.6.3.3	Nachoxidieren	101
1.2.6.3.4	Diffusionsbehandeln	102
1.2.6.3.5	Spanendes Bearbeiten	102
1.2.6.3.6	Richten oder Kalibrieren	103
1.2.6.4.7	Korrosionsschützen	104

2	Verfahrensdurchführung	Seite 105
2.1	Herstellung der Behandlungsatmosphären	105
2.1.1	Gase, allgemeine Bemerkungen	105
2.1.2	Propan	107
2.1.3	Methan/Erdgas	108
2.1.4	Ammoniak	109
2.1.5	Ammoniak-Spaltgas	110
2.1.6	Kohlenstoffdioxid	111
2.1.7	Kohlenstoffmonooxid	112
2.1.8	Stickstoff	113
2.1.9	Acetylen	115
2.1.10	Wasserstoff	120
2.1.11	Argon	121
2.1.12		122
2.1.13	Endogas	122
2.1.14	Exogas	123
2.1.10	Atmosphäron zum Wärmobohandoln	124
2.2	Atmosphären zum Aufkohlen und Carbonitrieren	120
2.2.1	Atmosphären zum Nitrieren und Nitrocarburieren	120
2.2.2	Atmosphärenwechsel	120
2.2.0	Messen Steuern und Regeln	131
231	Prozess-Zielarößen	133
2.3.1.1	Aufkohlen, Carbonitrieren, Finsatzhärten	134
2.3.1.2	Nitrieren und Nitrocarburieren	135
2.3.2	Prozessparameter	135
2.3.2.1	Temperatur	135
2.3.2.1.1	Temperaturmessung	135
2.3.2.1.2	Temperaturregelung	141
2.3.2.2	Atmosphärenkenngrößen	142
2.3.2.2.1	Messen und Bestimmen der Kenngrößen	142
2.3.2.2.1.1	C-Pegel	142
2.3.2.2.1.2	Carbonitrierpegel C _{pCarb} und N _{pCarb}	148
2.3.2.2.1.3	Kohlenstoffübergangszahl β	149
2.3.2.2.1.4	Dissoziationsgrad beim Nitrieren/Nitrocarburieren	150
2.3.2.2.1.5	Nitrierkennzahl	150
2.3.2.2.1.6	Oxidationskennzahl	152
2.3.2.2.1.7	Kohlungskennzahl	152
2.3.2.2.2	Regelung der Kenngrößen	153
2.3.2.2.2.1	C-Pegel	153
2.3.2.2.2.2	C-Pegel in Ungleichgewichtsatmosphären	155
2.3.2.2.2.3	Der Kohlenstoffübergangskoeffizient β in Gleichgewichtsatmosphären	156
2.3.2.2.2.4	Nitrierwirkung beim Carbonitrieren	158
2.3.2.2.2.5	Dissoziationsgrad und Nitrierkennzahl	158
2.3.2.2.2.6	Oxidationskennzahl	161
2.3.2.2.2.7	Kohlungskennzahl	161

		Seite
2.3.2.3	Atmosphärenzusammensetzung	162
2.3.2.3.1	Messen der Atmosphärenzusammensetzung	162
2.3.2.3.1.1	Infrarot-Analysatoren	162
2.3.2.3.1.2	Sauerstoffsonden	165
2.3.2.3.1.3	Schüttelflasche	167
2.3.2.3.1.4	Wärmeleitfähigkeits-Messgeräte	169
2.3.2.3.1.5	Taupunktmessgeräte	170
232316	Wasserstoff-Partialdruck-Messgerät	172
23232	Regelung der Atmosphärenzusammensetzung	173
2324	Gasmengen	173
23241	Messen der Gasdurchflussmengen	174
23242	Regelung der Gasdurchflussmengen	177
2325	Druck	178
23251	Druckmessung	178
23252	Druckregelung	181
2.0.2.0.2	Prozessführung	182
2.-	Beschicken und Erwärmen	192
2.4.1	Einbringen in den kalten Ofen	102
2.4.1.1	Einbringen in den warmen Ofen	103
2.4.1.2	Verevidieren ver dem Nitrieren und Nitreeerburieren	103
2.4.1.3		104
2.4.2	Nitrieren und Nitregerburieren	104
2.4.2.1	Nulleren und Nullocarbuneren	184
2.4.2.2		100
2.4.3	ADKUMEN	100
2.4.3.1	Nitrieren und Nitrocarburieren	186
2.4.3.2	Autkonien und Carbonitrieren	186
3	Anlagentechnik	188
3.1	Einrichtungen zur Gasversorgung	188
3.1.1	Endogaserzeuger	188
3.1.2	Direktbegasungsverfahren	193
3.1.2.1	Direktbegasung mit Kohlenwasserstoff-Luft-Gemischen	193
3.1.2.2	Trägergas aus Methanol und Stickstoff	193
3.1.3	Ammoniak-Spaltgas-Erzeuger	194
3.2	Begasung der Öfen	196
3.2.1	Anlagen bei Normaldruck	196
3.2.2	Anlagen bei Niederdruck	198
3.3	Prozessablauf und Prozessüberwachung	198
3.3.1	Anlagen bei Normaldruck	199
3.3.2	Anlagen bei Niederdruck	199
3.3.3	Sicherheitseinrichtungen	199
3.4	Schacht- und Haubenöfen	200
3.4.1	Beschreibung der Anlagen	200
3.5	Mehrzweck-Kammeröfen	208
3.6	Durchstoß-Öfen/Ringherdöfen	215
3.7	Drehherdöfen	219
3.8	Banddurchlauföfen	222
3.9	Rollenherdöfen	225
3.10	Anlagen zum Niederdruckaufkohlen	228

		Seite
3.11	Anlagen für thermochemische Behandlungen mit	234
	Plasmaunterstützung	234
3.11.1	Anlagen zum Plasmanitrieren/-nitrocarburieren	234
3.11.1.1	Beschreibung der Anlagen	234
3.11.1.2	Aufbau der Anlagen	237
3.11.1.3		238
3.12	Aligemeine Hinweise zur Ofenauswani	241
3.13	Abschreckanlagen Hinweise zum Chargenneeken	242
3.14 2.15	Chargentransport	240
3.15	Chargentialisport	240
4	Energiebilanz	249
4.1	Der Energiebedarf für thermochemische Prozesse	249
4.2	Beispiele aus der Praxis	254
4.2.1	Beispiel 1: Doppelkammerofen	254
4.2.2	Beispiel 2: Durchstoßofen	257
4.2.3	Beispiel 3: Vakuum-Mehrzweck-Kammerofen	258
	zum Niederdruckaufkohlen	
5	Umweltschutz und Entsorgung	261
51	Umweltschutz und Genehmigungsrecht	261
5.2	Gefahrstoffe	262
5.2.1	Lagern von Gefahrstoffen	262
5.2.2	Einsatz von Gefahrstoffen	263
5.3	Anlagen und Ausrüstungen	263
5.4	Abfallentsorgung	263
5.5	Nutzen aus Umweltschutz und Entsorgung	266
6	Hinweise zum sicheren Betrieb der Anlagen	267
6.4	Paianiala für die Naturndigkeit von Sieherheitemeßnehmen	267
6.1	Allgemeines	207
6.2	Sicharhait für Laih und Laban	200
6.0	Sicherheit für die Anlage	200
6.5	Sicherung des Behandlungsgutes	273
6.6	elenerang ave Benanalangegatee	
0.0	Prüfung und Instandhaltung	275
0.0	Prüfung und Instandhaltung	275 276
0.0	Prüfung und Instandhaltung	275 276
0.0	Prüfung und Instandhaltung Literatur Stichwortverzeichnis	275 276 293

1 Grundlagen der Verfahrenstechnik

1.1 Einsatzhärten

Das Einsatzhärten besteht aus Aufkohlen oder Carbonitrieren und anschließendem Härten (DIN EN 10 052). Durch diese Wärmebehandlung erhalten Werkstücke einen Werkstoffzustand mit unterschiedlicher Gefügeausbildung über den Querschnitt: einer hohen Härte und Festigkeit am Rand und im Inneren, je nach Werkstoffzusammensetzung und Werkstückquerschnitt, ebenfalls eine gegenüber dem Ausgangszustand höhere Härte und Festigkeit. Außerdem liegt ein entsprechendes Eigenspannungsprofil über den Werkstückquerschnitt vor.

1.1.1 Aufkohlen

Beim Aufkohlen wird die Werkstückrandschicht im austenitischen Zustand mit Kohlenstoff angereichert /Wys83/, /Wys90/, /AWT97/, /Neu94-1/, /Neu94-2/, /Nue94-3/, /Lie94/.

Zum Aufkohlen stehen feste Mittel wie Pulver oder Granulat, Gase oder Salzschmelzen zur Verfügung. Das Gasaufkohlen kann bei Normaldruck durchgeführt werden oder in einem Niederdruckbereich ohne oder mit Plasmaunterstützung.

Das Aufkohlen erfolgt in mehreren Teilschritten:

- 1. Reaktionen im Aufkohlungsmittel
- 2. Diffusion im Aufkohlungsmittel
- 3. Phasengrenzflächenreaktionen zwischen Aufkohlungsmittel und Stahl
- 4. Diffusion im Stahl
- 5. Reaktionen im Stahl

Voraussetzung für einen sicheren Erfolg des Aufkohlens ist die Kenntnis der thermodynamischen Gesetzmäßigkeiten der Reaktionen im Aufkohlungsmittel und in der Werkstückrandschicht sowie der Einsatz geeigneter Mess- und Regelverfahren. Ausführliche Beschreibungen hierzu sind in "Die Prozeßregelung beim Aufkohlen und Einsatzhärten" zu finden /AWT97/. Nachfolgend werden die wesentlichen Gesichtspunkte daraus wiedergegeben.

1.1.1.1 Verfahren

Der Transport der Kohlenstoffspender - in der Regel sind dies Kohlenwasserstoffe wie Methan, Propan u. a. oder deren Sauerstoffderivate - erfolgt über das so bezeichnete Trägergas. Dieses bildet die Grundgaszusammensetzung der Ofenatmosphäre und ermöglicht, je nach Art der Herstellung der Atmosphäre, eine Einteilung in die verschiedenen industriell gebräuchlichen Gasaufkohlungs-Verfahren. Die heute industriell üblichen sind in Tabelle 1-1 aufgelistet, vgl. auch /Ede94/, /Ede01/.

Mit Endogas-Generator	Ohne Gas-Generator	
Trägergas-Verfahren:	Trägergas-Verfahren:	
- Unvollständiges Verbrennen von Pro- pan, Erdgas oder Methan mit Luft und Zugabe von Propan, Methan oder Erd-	Spalten von Methan → Spaltgas, Mi- schen mit Stickstoff (60 : 40) und Zugabe von Propan, Erdgas oder Methan	
gas $ ightarrow$ Trägergasverfahren	Eintropf-Verfahren:	
- Erdgas, Methan, Propan oder Butan und Kohlendioxid und Zugabe von Pro- pan, Erdgas oder Methan	- Eintropfen von flüssigem Methanol und Stickstoff und Zugabe von Propan, Erdgas oder Methan	
	 Eintropfen von flüssigem Methanol und Aceton, Alkohole oder Ethylacetat 	
	Direktbegasung:	
	- Methan, Erdgas, Propan oder Butan und Kohlendioxid und Zugabe von z. B. Propan	
	- Propan, Erdgas oder Methan und Luft	
	- Isopropanol oder andere Alkohole und Luft	
	- Methanol und Stickstoff und Zugabe von Propan	

Tabelle 1-1: Derzeit übliche Gas-Aufkohlungsverfahren

Maßgebende Kenngrößen für das Aufkohlen sind neben der Temperatur die Kohlenstoffaktivität a_c , der Kohlenstoffpegel C_P, die Kohlenstoffübergangszahl β und die Kohlenstoffverfügbarkeit.

1.1.1.1.1 Die Aufkohlungsreaktionen, ihre Gleichgewichtsbeziehungen und die für das Prozessregeln spezifischen Indikatoren

Grundlage für das Regeln des Gasaufkohlens bei Normaldruck sind die in Tabelle 1-2 aufgeführten vier Reaktionen und die dazu gehörenden Indikatoren und Regelgrößen.

Die Indikatoren errechnen sich aus der Beziehung der Partialdrucke der Gaskomponenten gemäß der Gleichungen in Tabelle 1-2, die mit dem Kohlenstoffgehalt [C] an der Stahloberfläche ein Gleichgewicht anstreben. Der Partialdruck entspricht bei einem Normaldruck von 1 bar dem Volumenanteil in Prozent dividiert durch 100 (20 Vol-% CO z. B., entsprechen 0,2 bar).

Die sich daraus ergebenden Messgrößen gelten für die Reaktionen (1-1) und (1-3) bei konstantem CO-Gehalt in der Aufkohlungsatmosphäre und für die Reaktion (1-2)

bei konstantem Produkt (%CO)•(%H₂). Methan kommt infolge seiner relativ trägen Reaktionsgeschwindigkeit als Regelgröße nicht in Frage. Bei Verfahren mit variablem CO-Gehalt muss dieser kontinuierlich mit gemessen und im Prozessrechner berücksichtigt werden.

	Reaktion	Indikator	Regelgröße
(1-1)	$2 \text{ CO} \Leftrightarrow \text{CO}_2 + [\text{C}]$	$\frac{p_{CO}^2}{p_{CO_2}}$	Vol-% CO2
(1-2)	$CO+H_2 \Leftrightarrow H_2O\ + [C]$	$\frac{p_{\text{CO}} \cdot p_{\text{H}_2}}{p_{\text{H}_2\text{O}}}$	Vol-% H₂O bzw. Taupunkttemperatur
(1-3)	$CO \qquad \Leftrightarrow \frac{1}{2}O_2 + [C]$	$\frac{p_{CO}}{p_{O_2}^{0,5}}$	p _{o₂} bzw. Sondenspannung
(1-4)	$CH_4 \qquad \Leftrightarrow 2 \ H_2 \ \textbf{+} [C]$	$\frac{p_{_{CH_4}}}{p_{_{H_2}}^2}$	

Tabelle 1-2: Reaktionen, Indikatoren und Regelgrößen beim Gasaufkohlen

Bild 1-1: Beziehung zwischen C-Pegel (%C), Ofentemperatur und CO₂-Gehalt bei verschiedenen CO-Gehalten der Atmosphäre /AWT97/, /Neu94-2/

Die Bilder 1-1, 1-2 und 1-3 enthalten Nomogramme, aus denen zu vorgegebenen C-Pegeln, CO-Gehalten und Ofentemperaturen die entsprechenden Messgrößen entnommen werden können.

Im rechten Teil der Bilder 1-1 und 1-2 ist für die verschiedenen C-Pegel der erforderliche Indikatorwert als Funktion der Ofentemperatur dargestellt. Im jeweils linken Teilbild ist die Verbindung der Regelgrößen CO₂ (Bild 1-1) bzw. Taupunkt (Bild 1-2) zur Gaszusammensetzung: CO-Gehalt, Produkt (%CO)•(%H₂), dargestellt, so dass ausgehend von Ofentemperatur und C-Pegel die betreffenden Regelgrößen abgelesen werden können.

Bild 1-2: Beziehung zwischen C-Pegel (%C), Ofentemperatur und Taupunkt bei verschiedenen CO- und H₂-Gehalten der Atmosphäre /AWT97/, /Neu94-2/

In Bild 1-3 ist in gleicher Weise die Funktion des Indikators der Reaktion (3) berücksichtigt. In der Praxis wird der Sauerstoffpartialdruck mit Sauerstoffsonden als eine elektrische Spannung (EMK) gemessen. Diese ist über das angesetzte linke Teilbild unter Einbeziehung des CO-Gehalts der Atmosphäre zum temperaturbezogenen C-Pegel in Verbindung zu bringen. Der Zusammenhang zwischen dem Sauerstoffpartialdruck und der Sondenspannung ist in /AWT97/ und /Neu94-2/ beschrieben.

Bild 1-3: Beziehung zwischen C-Pegel (%C), Ofentemperatur und O₂-Sondenspannung (mV) bei verschiedenen CO-Gehalten der Atmosphäre /AWT97/, /Neu94-2/

1.1.1.1.2 Die Kohlenstoffaktivität/C-Aktivität ac

Die Wirksamkeit von Elementen in Gasreaktionen oder Legierungen kann durch einen Aktivitätskoeffizienten beschrieben werden. Dieser ist temperatur- und druckabhängig und dimensionslos. Triebkraft für die Kohlenstoffaufnahme im Eisen ist die Potentialdifferenz, die sich aus den unterschiedlichen Aktivitäten des Kohlenstoffs in der Gasphase und im Austenit (γ -Mischkristall) ergibt und die einen Ausgleich der Aktivitätsunterschiede anstrebt. Was also die Reaktionen einer Werkstoffoberfläche mit einer Aufkohlungsatmosphäre angeht, tritt keine Reaktion auf, wenn der Kohlenstoff in der Atmosphäre und der im Werkstoff die gleiche Aktivität aufweisen. Ist die Kohlenstoffaktivität in der Atmosphäre höher als im Werkstoff, findet ein Aufkohlen statt, ist sie kleiner, wird der Werkstoff entkohlt.

Die Aktivität a_c kann aus der Konzentration des im Austenit gelösten Kohlenstoffs in Masse-% und der Temperatur in Kelvin wie folgt mit den Daten in /Koh63/ berechnet werden:

$$\log a_C = \frac{2296,28}{T} + 0.15 \cdot \% C + \log \left(\frac{\% C}{0.785 \cdot \% C + 21.5}\right) - 0.864$$
(1-5)

Dieser Zusammenhang ist in Bild 1-4 für das Löslichkeitsgebiet des Kohlenstoffs im Austenit mit Linien gleicher Kohlenstoffaktivität dargestellt /Neu94-1/. Die Linie S'-E' entspricht der Aktivität $a_c = 1,0$. Wird sie überschritten, werden Carbide gebildet.

Bild 1-4: Eisen-Kohlenstoff-Zustands-Diagramm mit den Iso-Aktivitätslinien für Kohlenstoff /Hor85/

1.1.1.1.3 Der Kohlenstoffpegel/C-Pegel CP

Als Maß für die Aufkohlungswirkung einer Atmosphäre wird der Kohlenstoffpegel C_P verwendet. Er kennzeichnet das Aufkohlungspotential der Atmosphäre gegenüber Reineisen und ist definiert durch den sich einstellenden Massenanteil Kohlenstoff in %.

Nach DIN EN 10 052 ist der C-Pegel der Kohlenstoffgehalt, angegeben in Massenanteilen Kohlenstoff in %, den eine Probe aus Reineisen innerhalb des Löslichkeitsgebiets des Austenits bei einer bestimmten Temperatur im Gleichgewicht mit einem umgebenden Mittel annimmt.

1.1.1.1.4 Der Legierungsfaktor kL

Bei legierten Eisenwerkstoffen wird durch die Legierungselemente die Kohlenstoffaktivität gegenüber Reineisen verändert. So wird z. B. durch die Elemente Silizium, Nickel, Bor, Stickstoff und Cobalt die Aktivität erhöht und durch Chrom, Mangan, Molybdän, Wolfram, Titan und Vanadium erniedrigt. Eine Erhöhung der C-Aktivität durch die Legierungselemente führt bei gegebenem C-Pegel bei unveränderter C-Aktivität des Aufkohlungsmittels nach Erreichen des Gleichgewichtszustands zu einer geringeren Kohlenstoffkonzentration C_L im legierten Eisenwerkstoff gegenüber reinem Eisen, siehe Bild 1-5. Wird dagegen die C-Aktivität durch Legierungselemente erniedrigt, so ergibt sich bei gleicher C-Aktivität des Aufkohlungsmittels eine höhere Gleichgewichts-Kohlenstoffkonzentration C_L als bei Reineisen. Soll dieselbe Gleichgewichts-Kohlenstoffkonzentration wie bei unlegiertem Eisen erreicht werden, muss daher der C-Pegel entsprechend angepasst werden. Die Korrektur ist mit Hilfe des reziproken Aktivitätskoeffizienten, bezogen auf a_c = konstant, vorzunehmen.

Bild 1-5: Darstellung der Kohlenstoffaktivität ac als Funktion der Kohlenstoffkonzentration einer reinen Fe-C-Legierung, einer Fe-C-Legierung mit 1,2 Masse-% Silizium und einer mit 2,0 Masse-% Chrom

Der reziproke Aktivitätskoeffizient wird als Legierungsfaktor k∟ bezeichnet, wobei gilt:

$$k_L = \frac{C_L}{C_P} \tag{1-6}$$

Der Legierungsfaktor k_L errechnet sich aus den thermodynamischen Wirkungskoeffizienten und der Konzentration der jeweiligen Legierungselemente /Neu94-1/, /Lie94/:

$$lg k_{L} = -0.055 \cdot (\%Si) - 0.011 \cdot (\%Ni) + 0.012 \cdot (\%Mn) + 0.009 \cdot (\%Mo) + 0.043 \cdot (\%Cr)$$
(1-7)

In der Tabelle 1-3 sind die danach berechneten Werte für die in DIN EN 10 084 enthaltenen Einsatzstähle zusammengestellt. Die Mittelwerte in Spalte 3 der Tabelle können verwendet werden, wenn die genaue Analyse der betreffenden Stahlsorte nicht bekannt ist.

Werden Werkstücke aus Stählen mit unterschiedlichen Legierungsfaktoren gemeinsam aufgekohlt, stellen sich unterschiedliche Rand-Kohlenstoffgehalte und Kohlenstoff-Konzentrationsprofile ein.

Stahl	Legierungsfaktor k∟		
Bezeichnung	Grenzwerte	Mittelwert	
C10/C10E			
C15/C15E	0,95 bis 1,02	0,99	
C16E			
17Cr3	0,99 bis 1,12	1,06	
28Cr4	1,05 bis 1,16	1,10	
16MnCr5/16MnCr5B	1,05 bis 1,16	1,11	
20MnCr5	1,07 bis 1,19	1,13	
18CrMo4	1,05 bis 1,17	1,11	
20MoCr3	1,00 bis 1,12	1,06	
20MoCr4	1,00 bis 1,11	1,05	
22CrMoS3-5	1,04 bis 1,16	1,10	
16NiCr4	0,99 bis 1,12	1,06	
18NiCr5-4	1,04 bis 1,15	1,10	
20NiCrMo2-2	0,98 bis 1,10	1,04	
17NiCrMo6-4	1,00 bis 1,13	1,06	
20NiCrMoS6-4	0,98 bis 1,10	1,04	
17CrNi6-6	1,05 bis 1,18	1,12	
15NiCr13	1,04 bis 1,15	1,10	
17CrNiMo6-4	1,06 bis 1,19	1,13	
18CrNiMo7-6	1,06 bis 1,14	1,10	
14NiCrMo13-4	0,94 bis 1,01	0,98	

Tabelle 1-3: Legierungsfaktor für die in DIN EN 10084 enthaltenen Stähle

1.1.1.1.5 Der Kohlenstoff-Übergangskoeffizient – die Kohlenstoff-Übergangszahl β

Der Kohlenstoff-Übergangskoeffizient ß fasst die kinetischen Zusammenhänge des Kohlenstoffübergangs aus dem Aufkohlungsmittel in die Werkstück-Randschicht zusammen. Er ist ein Maß dafür, wie rasch ein vorgegebener Randkohlenstoffgehalt erreicht werden kann.

Die Kohlenstoff-Übergangszahl β gibt an, wieviel Gramm Kohlenstoff durch eine Werkstückoberfläche von 1 cm² pro Sekunde eindiffundieren, bezogen auf die jeweilige Differenz zwischen dem C-Pegel im Aufkohlungsmittel und dem Randkohlenstoffgehalt. Sie hat die Dimension cm/s und ist somit mitverantwortlich für die Geschwindigkeit, mit der sich der Randkohlenstoffgehalt C_R eines Werkstücks beim Aufkohlen dem Gleichgewichtskohlenstoffgehalt nähert. Nachweislich läuft die Reaktion (1-1) mit CO und CO₂, besonders aber die Reaktion (1-4) mit CH₄ äußerst langsam ab. Die Anwesenheit von Wasserstoff erhöht die Übergangsgeschwindigkeit. Nach Bild 1-6 ist der Kohlenstoff-Übergangskoeffizient weitgehend eine Funktion des Produktes der Partialdrücke pco und pH2 und steigt demzufolge bis zu einem Höchstwert bei 50 % CO und 50 % H2 an /Neu94-2/, /Neu70/. Aus der Darstellung ist zu entnehmen, dass β je nach Gaszusammensetzung Werte zwischen 1·10⁻⁵ und 3·10⁻⁵ cm/s annehmen kann.

Bild 1-6: Kohlenstoff-Übergangszahl β für das System (H₂/H₂O/CH₄) – (CO/CO₂) bei 900 °C

1.1.1.1.6 Die Kohlenstoff-Verfügbarkeit

Die Kohlenstoffverfügbarkeit ist ein wichtiger Faktor für die Sicherstellung des durch die Kohlenstoffaufnahme benötigten Nachschubs an Kohlenstoff und damit auch maßgebend für die Gleichmäßigkeit der Aufkohlung über die gesamte Ofencharge /AWT97/, /Neu94-2/, /Neu70/. Es wird zwischen primärer und sekundärer Kohlenstoff-Verfügbarkeit unterschieden.

Die primäre Kohlenstoff-Verfügbarkeit ist definiert als die Kohlenstoffmenge in Gramm, die von 1 m³ Aufkohlungsgas abgegeben werden kann, bis sein C-Pegel auf 1 Masse-% Kohlenstoff als Vergleichsbasis absinkt. Diese Menge ist bei Kohlenwasserstoffen am größten, da die Gleichgewichts-CH₄-Gehalte sehr niedrig sind. Das bedeutet, dass Aufkohlungsmittel mit hoher primärer Kohlenstoff-Verfügbarkeit zur Aufrechterhaltung des Schichtwachstums eine geringere Zufuhrmenge benötigen als solche mit geringer primärer Kohlenstoff-Verfügbarkeit, siehe Bild 1-7a.

Die sekundäre Kohlenstoff-Verfügbarkeit bezieht sich auf geregelte Ofenatmosphären und ist gekennzeichnet durch diejenige Kohlenstoffmenge in g, die von 1 m³ Gas abgegeben werden kann, während der C-Pegel von 1 % auf 0,9 % absinkt. Aus den Aufkohlungsreaktionen (1-1) und (1-2) lassen sich die an die Stahloberfläche abgegebenen Kohlenstoffmengen berechnen.

Bild 1-7a: Primäre Kohlenstoff-Verfügbarkeit verschiedener Gase (nach Winter)

Im Bild 1-7b sind für verschiedene Gasgemische die sekundären Kohlenstoff-Verfügbarkeiten dargestellt. Deutlich wird darin auch der positive Einfluss des Wasserstoffs auf die Kohlenstoffverfügbarkeit zum Ausdruck gebracht, vgl. CO-N₂- und CO-H₂-Gemische.

Bild 1-7b: Sekundäre Kohlenstoff-Verfügbarkeit verschiedener Gase (nach Winter)

Eine hohe sekundäre Kohlenstoffverfügbarkeit hat zur Folge, dass das Gas weniger rasch an verfügbarem Kohlenstoff verarmt und dadurch eine gewisse Pufferwirkung besitzt. Dies begünstigt ein gleichmäßiges Aufkohlen auch an den Stellen, die weniger gut von der Ofenatmosphäre umspült sind, wie in Sacklöchern oder Bohrungen.

Beispiel für die Berechnung der Kohlenstoffverfügbarkeit:

a) Kohlenstoffmonooxid (CO):

Ein Nm³ Gas enthält 44,6 Mol. Mit dem CO-Molgewicht von 28,01 g/mol (C = 12,011, O = 15,9994) ergibt sich für 1 Nm³ CO ein Gewicht von 1249,26 g. Davon sind 535,7 g Kohlenstoff.

Bei 900 °C entspricht ein C-Pegel von 1,0 einer Kohlenstoffaktivität $a_c = 0,7879$.

Gemäß
$$a_{C} = \frac{K_{C}^{B}}{K_{1}} = \frac{1}{K_{1}} \cdot \frac{p_{CO}^{2}}{p_{CO_{2}}}$$
 (1-8) und $p_{CO_{2}} + p_{CO}^{2} = 1$ (1-9)

und mit

$$\log K_1 = +\frac{8817}{T} + 9,071 \tag{1-10}$$

ergeben sich etwa 96,7 Vol-% CO und 3,3 Vol-% CO $_2\,\text{im}$ ausreagierten Gas. Aufgrund der Volumenänderung zerfallen

$$\frac{3,3Vol\%CO \cdot 100}{(100 + 3,3Vol\%CO)} \cong 3,2Vol\%CO$$

von der ursprünglichen Gasmenge von 1,0 m³. Beim Zerfall sind damit

abgegeben worden.

b) Endoträgergas:

Besteht das Trägergas aus einem Gemisch von CO und H_2 , kommt es zur heterogenen Wassergasreaktion:

$$CO + H_2 \rightarrow C_{ad} + H_2O$$
 (1-11)

und zur Boudouard-Reaktion: $2 \text{ CO} \rightarrow \text{C}_{ad} + \text{CO}_2$ (1-12)

sowie zur Einstellung des Wassergasgleichgewichtes: $CO + H_2O \rightarrow CO_2 + H_2$ (1-12). Damit finden parallel zwei Aufkohlungsreaktionen statt:

$$a_{C} = K_{1} \cdot K_{C}^{B} = K_{1} \cdot \frac{p_{CO}^{2}}{p_{CO_{2}}}$$
 (1-13) und $a_{C} = K_{2} \cdot K_{C}^{W} = K_{2} \cdot \frac{p_{CO} \cdot p_{H_{2}}}{p_{H_{2}O}}$ (1-14)

mit
$$\log K_2 = -\frac{7100}{T} + 7,496$$
 (1-15)

Nachdem die heterogene Wassergasreaktion um ein Vielfaches schneller verläuft als die Boudouard-Reaktion, wurde diese zur Berechnung als Hauptreaktion herangezogen.

c) Kohlenwasserstoffe:

Kohlenwasserstoffe besitzen eine extrem hohe Kohlenstoffaktivität. Aus diesem Grund muss sich der Kohlenwasserstoff bis zur Einstellung eines Gleichgewichts-C-Pegels bis auf geringe Spuren vollständig spalten. Damit ergibt sich keine messbare Abhängigkeit der primären Kohlenstoffverfügbarkeit von der Temperatur. Nachdem damit schon bis zur Absenkung auf einen C-Pegel von 1 % C der gesamte Kohlenwasserstoff in Kohlenstoff umgesetzt wurde, kann eine sekundäre Kohlenstoffverfügbarkeit nicht mehr angegeben werden. Sie ist rechnerisch gleich null.

Ungespaltene Kohlenwasserstoffe in der Aufkohlungsatmosphäre erhöhen die Aufkohlungswirkung und führen zu einem höheren Randkohlenstoffgehalt als nach der heterogenen Wassergasreaktion zu erwarten ist. Nach Collin /Col70/ ergibt sich der Kohlenstoff-Massenstrom J in g Kohlenstoff/cm²·s:

$$J = \rho \cdot \left[\frac{k_1}{a_s} g(a_g^M - a_s) + \frac{k_2}{a_s} (a_g^B - a_s) + k_3 (a_g^W - a_s) \right] \quad \text{g/cm}^2 \cdot \text{s}$$
(1-16)

In dieser Gleichung werden neben der heterogenen Wassergasreaktion (1-2) auch die Boudouard-Reaktion (1-1) und die Methanzerfallsreaktion (1-4) berücksichtigt. Der Kohlenstoff-Massenstrom J ergibt sich aus den Kohlenstoff-Aktivitäten im Stahl as, den Aktivitäten agM, agB und agW aus den drei Reaktionen (1-4), (1-1) und (1-2) sowie den kinetischen Wirkfaktoren k₁, k₂ und k₃. Die Quotienten k₁/a_s, k₂/a_s und k₃ sind die Kohlenstoffübergangszahlen der einzelnen Kohlenstoff freisetzenden Reaktionen. Das k₃ entspricht dem üblichen β-Wert. Die Geschwindigkeit der Kohlenstoffüberfäubertragung der einzelnen Reaktionen (1-4), (1-1) und (1-2) stehen im Verhältnis 1:3:100; ρ ist die spezifische Dichte des Stahls.

1.1.1.1.7 Die Kohlenstoffdiffusion

Nach Übergang des Kohlenstoffs in die Randschicht diffundiert dieser weiter ins Werkstoffinnere. Die Diffusionsgeschwindigkeit hängt vom Konzentrationsgefälle und den im Diffusionskoeffizienten zusammengefassten Größen Temperatur, lokaler Kohlenstoffgehalt sowie Werkstoffzusammensetzung, ab. In der Folge entsteht dabei ein Kohlenstoff-Konzentrationsprofil mit einem stetigen Abfall von außen nach innen, siehe Bild 1-8. /Wün68/, /Col70/, /Col75/, /Wys90/, /Hof95/.

Aus dem Kohlenstoffprofil, das auch Aufkohlungskurve genannt wird, lässt sich die Zielgröße des Aufkohlens, die Aufkohlungstiefe entnehmen. Dies ist üblicherweise der senkrechte Abstand von der Werkstückoberfläche bis zu dem Punkt, an dem noch eine Kohlenstoffkonzentration von 0,35 Masse-% vorliegt. Dieser Kohlenstoffgehalt ergibt - nach der Gesetzmäßigkeit der Aufhärtbarkeit /Ger48/ - nach dem Härten bei einem Martensitanteil von 100 % eine Härte von 550 HV. Diese Härte entspricht im Regelfall nach DIN EN ISO 2639 der Grenzhärte für die Bestimmung der Einsatzhärtungs-Härtetiefe aus dem Härteprofil. Der einsatzgehärtete Zustand hängt also maßgeblich vom aufgekohlten Zustand ab /Wys95/, /Wei95/.

Bild 1-8: Das Kohlenstoff-Konzentrationsprofil: die Aufkohlungskurve

Bei geringer Härtbarkeit bzw. großem Werkstückquerschnitt muss ein höherer Grenzkohlenstoffgehalt benutzt werden, um an dieser Stelle ein vollständig martensitisches Gefüge zu erhalten, vgl. Bild 1-9.

Bild 1-9: Zusammenhang zwischen dem Grenzkohlenstoffgehalt und dem Durch-Messer von Rundproben aus legierten und unlegierten Einsatzstählen /Kel01/, /Lie10/

Bild 1-10 zeigt das charakteristische Aussehen der Randschicht eines aufgekohlten und langsam abgekühlten Werkstücks im Lichtmikroskop. Ausgehend von der Werkstückoberfläche, links im Bild, nehmen mit zunehmendem Abstand von der Oberfläche der Anteil des Perlits im Gefüge ab und der Anteil des Ferrits zu.

Bild 1-10: Lichtmikroskopische Gefügeaufnahme der Randschicht eines aufgekohlten Werkstücks

Der Diffusionsvorgang wird mit den Fick'schen Gesetzen beschrieben. Der Kohlenstoffverlauf kann mit Hilfe numerischer Methoden berechnet werden /HoF95/, /Wün68/, /Wei95/, /CoI70/. So ergibt sich das Kohlenstoff-Konzentrationsprofil aus der Beziehung /Sla43/:

$$C(x,t) = C_{\kappa} + (C_{\kappa} - C_{R}) \cdot \left[1 - \psi \left(\frac{x + \frac{D}{\beta}}{2 \cdot \sqrt{D \cdot t}} \right) \right]$$
(1-17)

z. B. mit dem Diffusionskoeffizienten nach Wünning /Wün68/:

$$D = (1 - 0,23) \cdot exp\left[\frac{4300 \cdot C_P^{1,5} - 18900}{T} - 2,63 \cdot C_P^{1,5} - 0,38\right] \quad \frac{cm^2}{s}$$
(1-18)

Entsprechend darauf aufgebaute Rechenprogramme gestatten, den Aufkohlungsvorgang zu simulieren und die zeitliche Änderung des Kohlenstoffprofils zu visualisieren /AWT97/.

Eine Näherungslösung der Beziehung /Wün68/ liefert für die Aufkohlungstiefe:

$$At = K \cdot \sqrt{t} - \frac{D}{\beta}$$
 mm (mit t in h, D in mm²/s und β in mm/s) (1-19)

K ist ein Term, der die Temperatur, den C-Pegel, das Aufkohlungsmittel und die Stahlzusammensetzung berücksichtigt.

Mit Hilfe des in Bild 1-11 wiedergegebenen Nomogramms lassen sich die Werte K

und D/ β für eine Atmosphäre mit aus Propan hergestelltem Trägergas und Propanzugabe ermitteln /Wys78/.

Bild 1-11: Nomogramm zum Ermitteln des K-Wertes und der Relation D/β für Endoträgergas aus Propan oder Erdgas /Wys78/

Wird die Löslichkeit des Kohlenstoffs lokal überschritten, bildet sich bei unlegiertem Stahl Eisencarbid oder Zementit, vgl. Bild 1-4. Legierungselemente verändern die Ausscheidungsgrenze S'-E'. Dabei können weitere Elemente von dem sich ausscheidenden Eisencarbid aufgenommen werden, so dass Mischcarbide (Fe,M)₃C mit M = Cr, Mn, Mo usw., entstehen. In /AWT97/, /Pac90/, sind hierzu weitere Einzelheiten zu finden. Dem Aufkohlen schließt sich das Härten an.

1.1.1.2.8 Randoxidation

Aufkohlungsatmosphären enthalten über ihren Anteil an Kohlenstoffmonooxid und durch Reaktion mit Wasserstoff Sauerstoff enthaltende Reaktionsprodukte. Über die Anteile an CO und CO₂ bzw. H₂ und H₂O haben diese Atmosphären nicht nur eine aufkohlende sondern auch eine oxidierende Wirkung. Da sich das Oxidationspotential der Atmosphäre aus dem Verhältnis von CO₂/CO bzw. H₂O/H₂ ergibt, kann jedem C-Pegel ein Oxidationspotential zugeordnet werden. Dies führt dazu, dass während des Aufkohlens gleichzeitig eine Oxidation der Randschicht erfolgt. Dieser Vorgang wird als Randoxidation – im Englischen als "Internal Oxidation", d. h. innere Oxidation - bezeichnet.

An der Oberfläche adsorbierter Sauerstoff diffundiert in den Werkstoff ein. Nach Überschreiten der Löslichkeit von Sauerstoff im Eisen von einigen ppm oxidieren zunächst Legierungselemente mit einer höheren Sauerstoffaffinität als Eisen. In besonderem Maße werden in der äußeren Randschicht die Elemente Silizium, Mangan, Chrom, Vanadium und Aluminium zu Oxiden abgebunden, vgl. Bild 1-12. Dies führt in der Randschicht zu einer Verarmung der für die Härtbarkeit wirksamen Legierungselemente, was den Gefügezustand und den Härte- und Eigenspannungs-Verlauf beeinträchtigt.

Bild 1-12: Gleichgewichtslage der Oxidationsreaktionen von Legierungselementen nach Richardson und Jeffes /Ric48/

Der Diffusionskoeffizient von Kohlenstoff in Eisen ist etwa um den Faktor 100 größer als der von Sauerstoff. Daraus ergibt sich, dass die Tiefe des oxidierten Randbereichs etwa ein Hundertstel der Aufkohlungstiefe beträgt. Auch die Verteilung der Oxid bildenden Legierungselemente wird verändert, wie als Beispiel in Bild 1-13 zu sehen ist.

Bild 1-13: Elementverteilung in der Randschicht nach Randoxidation