

LASER IN DER MATERIALBEARBEITUNG

Forschungsberichte des IFSW

Michael Eckerle

Generation and amplification of ultrashort pulsed high-power cylindrical vector beams

Michael Eckerle

Generation and amplification of ultrashort pulsed high-power cylindrical vector beams

Laser in der Materialbearbeitung Band 96

Ebook (PDF)-Ausgabe:

ISBN 978-3-8316-7508-1 Version: 1 vom 22.10.2019

Copyright© utzverlag 2019

Alternative Ausgabe: Softcover ISBN 978-3-8316-4804-7 Copyright© utzverlag 2019

Laser in der Materialbearbeitung Forschungsberichte des IFSW

M. Eckerle Generation and amplification of ultrashort pulsed high-power cylindrical vector beams

Laser in der Materialbearbeitung Forschungsberichte des IFSW

Herausgegeben von Prof. Dr. phil. nat. Thomas Graf, Universität Stuttgart Institut für Strahlwerkzeuge (IFSW)

Das Strahlwerkzeug Laser gewinnt zunehmende Bedeutung für die industrielle Fertigung. Einhergehend mit seiner Akzeptanz und Verbreitung wachsen die Anforderungen bezüglich Effizienz und Qualität an die Geräte selbst wie auch an die Bearbeitungsprozesse. Gleichzeitig werden immer neue Anwendungsfelder erschlossen. In diesem Zusammenhang auftretende wissenschaftliche und technische Problemstellungen können nur in partnerschaftlicher Zusammenarbeit zwischen Industrie und Forschungsinstituten bewältigt werden.

Das 1986 gegründete Institut für Strahlwerkzeuge der Universität Stuttgart (IFSW) beschäftigt sich unter verschiedenen Aspekten und in vielfältiger Form mit dem Laser als einem Werkzeug. Wesentliche Schwerpunkte bilden die Weiterentwicklung von Strahlquellen, optischen Elementen zur Strahlführung und Strahlformung, Komponenten zur Prozessdurchführung und die Optimierung der Bearbeitungsverfahren. Die Arbeiten umfassen den Bereich von physikalischen Grundlagen über anwendungsorientierte Aufgabenstellungen bis hin zu praxisnaher Auftragsforschung.

Die Buchreihe "Laser in der Materialbearbeitung – Forschungsberichte des IFSW" soll einen in der Industrie wie in Forschungsinstituten tätigen Interessentenkreis über abgeschlossene Forschungsarbeiten, Themenschwerpunkte und Dissertationen informieren. Studenten soll die Möglichkeit der Wissensvertiefung gegeben werden.

Generation and amplification of ultrashort pulsed high-power cylindrical vector beams

von Dr.-Ing. Michael Eckerle Universität Stuttgart

Als Dissertation genehmigt von der Graduate School of Excellence advanced Manufacturing Engineering der Universität Stuttgart

Hauptberichter: Prof. Dr. phil. nat. Thomas Graf Mitberichter: Prof. Dr.-Ing. Manfred Berroth

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugleich: Dissertation, Stuttgart, Univ., 2019

D 93

Das Werk ist urheberrechtlich geschützt. Sämtliche, auch auszugsweise Verwertungen bleiben vorbehalten.

Copyright © utzverlag GmbH 2019

ISBN 978-3-8316-4804-7

Printed in Germany

utzverlag GmbH, München

Tel.: 089-277791-00 · www.utzverlag.de

Contents

Co	onten	ts		5
Li	st of S	Symbol	s	8
Al	bstrac	:t		12
Kı	urzfas	ssung		15
1	Intr	oductio	on .	20
2	Stat	e of the	e art	22
	2.1	Extra-	cavity generation of CVBs	. 22
	2.2		cavity generation of CVBs in continuous wave operation	
	2.3		cavity generation of CVBs in pulsed operation	
	2.4		ification of CVBs	
3	Objective of this work			
	3.1	Polari	zation state	. 28
	3.2	Pulsed	d operation	. 28
	3.3	Laser	technology	. 29
4	Cyli	ndrical	l vector beams	31
	4.1	Vortex	x versus cylindrical vector beams	. 31
	4.2	Evalua	ation of the polarization purity	. 34
5	Rad	ially po	olarized mode-locked thin-disk laser	42
	5.1	Consid	derations regarding the behavior of the SESAM	. 42
		5.1.1	Saturation	. 42
		5.1.2	Damage threshold	. 45
	5.2	Gratin	ng waveguide output coupler	. 47
		5.2.1	Design	. 47
		5.2.2	Production and qualification	. 49
	5.3	Effect	s of an intra-cavity phase shift	
	5.4		derations regarding the cavity design	55

6 Contents

Ac	Acknowledgements 10				
Bi	bliogi	raphy	92		
7	Sum	mary and outlook	89		
	6.6	Summary	87		
	6.5	Experimental results	77		
	6.4	Setup	76		
	6.3	High-power pumping	73		
	6.2	Kerr lens self-focussing	70		
	6.1	Single-crystal fiber module	70		
6	High	n-power single-stage single-crystal fiber amplifier	69		
	5.7	Summary	66		
		5.6.2 Performance in mode-locked operation	61		
		5.6.1 Performance in continuous wave operation	60		
	5.6	Experimental results	58		
	5.5	Setup	56		

List of Symbols

Symbol	Meaning	SI-Units	
Latin Letters			
A	Constant; Entry in the cavity round trip matrix		
AOI	Angle of incidence	0	
A_{RAH}	Magnitude of an Extended Jones state		
D	Entry in the cavity round trip matrix		
DOAP	Degree of azimuthal polarization	%	
DOH1P	Degree of hybrid1 polarization	%	
DOH2P	Degree of hybrid2 polarization	%	
DORP	Degree of radial polarization	%	
E	Electric field	V/m	
Ê	Normalized measured electric field vector		
\hat{E}_{azi}	Normalized electric field vector of an ideal		
	azimuthally polarized beam		
\hat{E}_{h1}	Normalized electric field vector of an ideal		
	hybrid1 polarized beam		
\hat{E}_{h2}	Normalized electric field vector of an ideal		
	hybrid2 polarized beam		
\hat{E}_{rad}	Normalized electric field vector of an ideal		
	radially polarized beam		
$E_{1,RAH}$	Electric field of a CVB with a radial polarization	V/m	
$E_{2,RAH}$	Electric field of a CVB with an azimuthal polarization	V/m	
$E_{3,RAH}$	Electric field of a CVB with a hybrid1 polarization	V/m	
$E_{4,RAH}$	Electric field of a CVB with a hybrid2 polarization	V/m	
E_{mn}	Electric field of a Hermite-Gaussian mode	V/m	
E_p	Pulse energy	J	
E_{pl}	Electric field of a Laguerre-Gaussian mode	V/m	
f_{rep}	Repetition rate of a pulse laser	1/s	
F_p	Pulse fluence	J/m ²	
F_{pD}	Pulse fluence of a doughnut-shaped beam	J/m ²	