WERKSTOFFWISSENSCHAFTEN

Untersuchungen zum Bildungsund Wachstumsmechanismus von mehrphasigen Chrom-Carbidschichten im Pulververfahren auf Stahl

Stefan Pintoiu

Untersuchungen zum Bildungs- und Wachstumsmechanismus von mehrphasigen Chrom-Carbidschichten im Pulververfahren auf Stahl

Herbert Utz Verlag · München 2017

Werkstoffwissenschaften

Ebook (PDF)-Ausgabe: ISBN 978-3-8316-7310-0 Version: 1 vom 08.06.2017 Copyright© Herbert Utz Verlag 2017

Alternative Ausgabe: Softcover ISBN 978-3-8316-4652-4 Copyright© Herbert Utz Verlag 2017

Stefan Pintoiu

Untersuchungen zum Bildungs- und Wachstumsmechanismus von mehrphasigen Chrom-Carbidschichten im Pulververfahren auf Stahl

Herbert Utz Verlag · München

Werkstoffwissenschaften

Zugl.: Diss., Dresden, Techn. Univ., 2017

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Wiedergabe auf fotomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben – auch bei nur auszugsweiser Verwendung – vorbehalten.

Copyright © Herbert Utz Verlag GmbH · 2017

ISBN 978-3-8316-4652-4

Printed in EU Herbert Utz Verlag GmbH, München 089-277791-00 · www.utzverlag.de

Vorwort

Die vorliegende Arbeit entstand an der Fakultät Maschinenwesen, Institut für Werkstoffwissenschaft der Technischen Universität Dresden. Zu ihrem Gelingen haben viele Mitarbeiter des Instituts beigetragen, denen ich herzlich danken möchte. Mein besonderer Dank gilt:

Herrn Prof. Dr. rer. nat. habil. Hans-Jürgen Ullrich, Professor am Institut für Werkstoffwissenschaft, Fakultät Maschinenwesen der TU Dresden, danke ich für die wissenschaftliche Betreuung und Förderung der Arbeit.

Frau Prof. Dr.–Ing. habil. Elke Simmchen, Institut für Werkstoffwissenschaft, Fakultät Maschinenwesen der TU Dresden, danke ich für Ihre zahlreichen Ratschläge und Anregungen, die wesentlich zum Gelingen der Arbeit beigetragen haben.

Herrn Prof. Dr.-Ing. Peter Leibl, Fakultät für angewandte Naturwissenschaften und Mechatronik der Hochschule der angewandten Wissenschaften München, für die Anregungen und die Diskussion zur vorliegenden Arbeit.

Herrn Dipl.-Ing. Thomas Asam, TAZ GmbH, danke ich für die Durchführung der zahlreicher GDOS-Untersuchungen, die große Bedeutung für diese vorliegende Arbeit hatten.

Herrn Dr.–Ing. Ralph Malke, IST-GmbH, danke ich für die rasterelektronenmikroskopischen Untersuchungen und für die stete Diskussionsbereitschaft.

Herrn Dr. rer. nat. Herbert Göbel und Frau Dr. techn. Ulrike Hermeking-Göbel, von der Firma LabXA, danke ich sehr für die Durchführung von röntgenografischen Untersuchungen und die hilfreiche Zusammenarbeit.

Meiner Frau Silvia danke ich für ihre Geduld während der Entstehung dieser Arbeit und dass sie die Bürde des Korrekturlesens auf sich genommen hat.

Verzeichnis der verwendeten Symbole

А	Fläche		
ai	die jeweilige Aktivität		
α	thermischer Ausdehnungskoeffizient		
d	Netzebenenabstand (berechnet aus der Bragg'schen Gleichung)		
d _o	Netzebenenabstand im dehnungsfreien Zustand		
ΔG	molare Gibb'sche Enthalpie		
ΔGj	die molare Gibb'sche Enthalpie der Phase j		
ΔF°	freie Energie		
$\Delta_{\mu i}{}^{ m o}$	der Standard des chemischen Potentials		
$\Delta_{\mu i}$	das chemische Potential der Komponente i		
E	isotroper Elastizitätsmodul [GPa]		
3	Gitterdehnung		
φ	Azimut der Messebene gegenüber der Richtung der Hauptspan-		
	nung o ₁₁		
j	Gesamtzahl der Phasen		
hdP	hexagonal dichteste Packung		
HV	Vickershärte		
Н	Enthalpie		
h	Stunden		
Κ	Keim		
krz	kubisch-raumzentriertes Kristallgitter		
kfz	kubisch-flächenzentriertes Kristallgitter		
Λ	Wellenlänge der verwendeten Röntgenstrahlung		
Μ	(Cr,Fe)		
n	die Anzahl der Komponenten des Systems		
n _i	die Mohlzahl der Komponenten i		
ν	Querkotraktionszahl (Poissonzahl)		
Ω	Richtung der Gitterdehnungsmessung		
Pg	Partial Druck		
%	entspricht Masse-%, sofern nichts anderes angegeben ist		
qi	Anzahl der Mole der Einheitsformel in der Phase j		
R	Gaskonstante		
Ra	arithmetischer Mittelwert der Beträge aller Profilwerte des Rau-		
	heitsprofils		
Rmax	maximale Rautiefe		
Rq	quadratischer Mittelwert aller Profilwerte des Rauheitsprofils		

Verzeichnis der verwendeten Symbole

Rz	arithmetischer Mittelwert der Einzelrautiefen Rzi aufeinanderfol-
	gender Einzelmessstrecken
ρ	Dichte
σ	Sigma
S	Entropie
t	die Zeit
Т	absolute Temperatur
θ	Glanzwinkel
2θ	Beugungswinkel
х	Schichtdicke
Х	Chlor
Yi ^(s)	der atomare Anteil der Komponente i im Untergitter s
CVD	chemische Gasabscheidung (chemical vapour deposition)
PVD	physikalische Gasphasenabscheidung (physical vapour deposition)
REM	Rasterelektronenmikroskop
EDX	energiedispersive Röntgenspektroskopie
GEMINI	thermodynamisches Rechenmodel
ICDD	International Centre for Diffraction Data
WIN-HCU	Software für die Steuerung der Nanohärtemessung

Inhaltsverzeichnis

1	Einle	eitung ur	nd Zielsetzung	13	
2	Stand der Technik				
-	2.1	Aufbai	1 von Chromierschichten	15	
	2.2	Thermodynamik der Chromdiffusionsreaktion			
	2.3	Finfluss der Stahlzusammensetzung beim Chromieren			
	2 4	Mecha	nische Eigenschaften	25	
	2. 1	2.4.1	Haftfestigkeit	26	
		2.4.2	Härte. Zähigkeit	26	
		2.4.3	Elastizitätsmodul	26	
	2.5	Korros	ionseigenschaften von Chromierschichten	27	
	2.6	Phasen	diagramme	27	
	2.7	Kristal	lstrukturen. Netzebenenabstände und		
		Gitterr	parameter	31	
		- ··· I			
3	Experimentelle Untersuchungen				
	3.1	Eingesetzte Werkstoffe und Probenformen			
	3.2	Chromierprozess 4			
	3.3	3 Untersuchungsmethoden		42	
		3.3.1	Metallographische Untersuchungen	42	
		3.3.2	Rasterelektronenmikroskopische (REM / EDX)		
			Untersuchungen	43	
		3.3.3	Härtemessungen	44	
		3.3.4	Röntgenbeugungsuntersuchungen zur		
			Phasenanalyse	44	
		3.3.5	Eigenspannungsanalyse	48	
		3.3.6	Messung der Konzentrationsprofile – GDOS-		
			Untersuchung	53	
		3.3.7	Untersuchungen mittels Elektronenstrahl-		
			Mikrosonde	54	
		3.3.8	Mikrobeugungsuntersuchungen	55	
		3.3.9	Rauheits-Untersuchungen	56	
4	Versuchsergebnisse				
	4.1	Behand	llungsdauer 1,5 h	58	
			-		

		4.1.1	Lichtmikroskopische Untersuchungen	58
		4.1.2	Rasterelektronenmikroskopische Untersuchungen	61
		4.1.3	Röntgenographische Phasenanalyse zur	
			Charakterisierung der Chromcarbidschichten an	
			Rundproben bei einer Chromierzeit von 1,5h	66
	4.2	Behand	lungsdauer 3,0h: Lichtmikroskopische	
		Untersu	ichungen	74
	4.3	Behand	lungsdauer 5,0 h: Lichtmikroskopische	
		Untersu	ichung	77
	4.4	Behand	lungsdauer 7,0 h: Lichtmikroskopische	
		Untersu	ichung	79
	4.5	Phasen	wachstum an chromierten Rundproben während des	
		dynami	ischen und statischen Prozesses	81
		4.5.1	Dynamisches Verfahren	81
		4.5.2	Statisches Verfahren	85
	4.6	Eigensp	oannungsanalyse der Chromcarbidschichten	89
	4.7	GDOS-	Tiefenprofilanalyse	92
		4.7.1	Tiefenprofilanalysen nach 1,5 h Behandlung	94
		4.7.2	Tiefenprofilanalysen nach 3,0 h Behandlung	96
		4.7.3	Tiefenprofilanalysen nach 5,0 h Behandlung	99
		4.7.4	Tiefenprofilanalysen nach 7,0 h Behandlung	101
	4.8	Wachst	umsrichtung der Chromcarbidschichten	104
5	Schlu	Schlussfolgerung aus den Experimenten		
	5.1	Schicht	wachstum in der Anfangsphase und Schichtaufbau	
		beim Cl	hromieren	107
	5.2	Schicht	wachstum und Schichtkonfiguration in Abhängigkeit	
		von Ch	romierdauer	108
6	Fehle	r bei der	Bildung der Chromcarbidschichten	117
	6.1	Unvolls	ständige Bildung der Chromcarbidschichten – hell-	
		glänzen	de Flecken	117
		6.1.1	Mikroskopische Untersuchung	118
		6.1.2	Untersuchungen mittels Elektronenstrahl-	
			Mikroanalyse und analytischer Rasterelektronen-	
			Mikroskopie	120
		6.1.3	Röntgenographische Phasenanalyse mit hoher	
			lokaler Auflösung	128

		6.1.4	GDOS-Untersuchung der fehlerhaften Schichten .	133
		6.1.5	Rauheitsmessung	140
		6.1.6	Härteprüfung der Chromcarbidschichten im	
			Nanobereich	145
		6.1.7	Diskussion der Untersuchungsergebnisse und	
			Ursachen für Schichtbildungsfehler	149
		6.1.8	Maßnahmen zur Vermeidung des Fehlers	
			"unvollständige Schichtbildung"	151
	6.2	Trennm	nitteleinlagerungen in der Chromcarbidschicht	151
		6.2.1	Erscheinungsform und Ursachen	151
		6. 2. 2	Maßnahmen zur Vermeidung von	
			Trennmitteleinlagerungen	154
	6.3	Ansinte	erungen von Ferrochrompartikeln auf	
		Chrome	carbidschichten	154
		6.3.1	Erscheinungsform und Ursachen	154
		6.3.2	Maßnahmen zur Vermeidung von Ansinterungen	159
	6.4	Umwar	ndlungen der Chromcarbidschichten unter Einfluss	
des Härtemediums		159		
		6.4.1	Erscheinungsform und Ursachen	159
		6.4.2	Maßnahmen zur Vermeidung der Fehler	168
	6.5	Mechar	nische Abplatzungen der Carbidschichten	169
		6.5.1	Erscheinungsform und Ursachen	169
		6.5.2	Maßnahmen zur Vermeidung von Abplatzungen	171
7	Zusar	nmenfas	ssung	173
8	Litera	aturverze	eichnis	179
9	Abbil	dungsve	erzeichnis	183
10	Tabel	lenverze	eichnis	189
11	Anha	ng		191
	11.1	Anhang	g1	191
		11. 1. 1	Schichtwachstum der Chromcarbide auf	
			Rundproben nach 1,5; 3,0; 5,0 und 7h	191
		11. 1. 2	Schichtwachstum der Chromcarbide auf	
			Flachproben nach 1,5; 3,0; 5,0 und 7h	194
	11. 2	Anhang	g2	197
		11. 2. 1	Schichtdickenmessungen an Rundproben	197
		11. 2. 2	Schichtdickenmessungen an Flachproben	206
			—	

11.3	Anhang 3 2		
	11. 3. 1 EDX-Spektren auf Rundproben aus 51CrV4 nach		
	1,5h Behandlung	215	
	11. 3. 2 EDX-Spektren auf Rundproben aus 61CrSiV5 nach		
	1,5h Behandlung	218	
	11. 3. 3 EDX-Spektren auf Rundproben aus C60E nach 1,5h		
	Behandlung	221	
11.4	Anhang 4	224	
	11. 4.1 Rasterelektronische Aufnahmen der		
	Chromcarbidschichten nach 3h Behandlung	224	
11.5	Anhang 5	226	
	11. 5. 1 GDOS-Tiefenprofilanalysen an chromierten		
	Flachproben	226	
11.6	Anhang 6	242	
	11. 6. 1 GDOS-Tiefenprofilvergleiche	242	

1 Einleitung und Zielsetzung

Vor dem Hintergrund drohender Rohstoffverknappung und in Anbetracht der hohen volkswirtschaftlichen Verluste durch Verschleiß und Korrosion kommt der funktionellen Beschichtung zur Verhinderung oder Verminderung dieser Schäden eine steigende Bedeutung zu (1). Durch Reibung und Verschleiß entstehen den jeweiligen Volkswirtschaften der Industrieländer jährliche Verluste in Höhe von etwa 5 % des Bruttosozialproduktes; das bedeutet für Deutschland ca. 35 Milliarden Euro/Jahr (2). Durch konsequentes Umsetzen des bereits vorhandenen tribologischen Wissens könnten lt. Schätzungen ca. 5 Milliarden Euro/Jahr eingespart werden. Durch weitere tribologische Forschung kann dieses Sparpotential noch gesteigert werden. Die verstärkte Berücksichtigung tribologischer Kenntnisse bewirkt beträchtliche Einsparungen bei Energie- und Materialeinsatz, Produktion und Instandhaltung. Energie- und Rohstoffressourcen werden geschont, Umweltschäden vermieden und der Arbeitsschutz verbessert.

Durch die Beschichtung eines Maschinenbauteils wird meist der Grundsatz der Aufgabenteilung angewandt. Dabei sollen vom Grundwerkstoff die Festigkeitsund Steifigkeitseigenschaften erfüllt werden, während die Schicht den Anforderungen hinsichtlich des Korrosions- und Verschleißschutzes genügen muss, aber auch dekorative Funktion besitzen kann (3).

Die mittels verschiedenster physikalischer oder chemischer Verfahren auf das Werkstück aufgebrachten dünnen Schichten optimieren die im Einsatz geforderten Eigenschaften. Die Einsatzzeit von Bauteilen wird verlängert, indem der Verschleiß beträchtlich reduziert wird. Schichten schützen vor Korrosion und verringern die Reibung.

Bauteile und Werkzeuge können durch unterschiedliche Verfahren beschichtet werden, zu denen u.a. die Verfahren der Galvanotechnik, die Diffusions-, CVDund PVD-Verfahren, das thermische Spritzen, das Aufschmelzen und das Plattieren gehören.

Durch die Eindiffusion von Atomen eines oder mehrerer Elemente in Werkstoffoberflächen können deren Eigenschaften gezielt bestimmten Anforderungen angepasst werden. Ein hervorstehendes Merkmal, als Ergebnis dieser Eindiffusion, ist die starke Zunahme der Härte der Oberflächen. Hierüber gibt es in der Literatur sehr viele Beispiele. Eine besondere Rolle spielt dabei das Element Cr, das durch seine Eindiffusion zu einer enormen Verbesserung der Eigenschaften der Werkstoffoberfläche und damit des gesamten Bauteils führt. Das betrifft die Härte, Festigkeit, Korrosionsbeständigkeit und die tribologischen Eigenschaften. So können z. B. auf Stählen Carbid-Schichten erzeugt werden, die eine außenordentlich hohe Härte ausweisen und im Rahmen dieser Arbeit charakterisiert werden.

Unter den Beschichtungsverfahren ist die Aufbringung von Cr-Schichten heute das gebräuchlichste Beschichtungsverfahren. Der Prozess der Cr-Aufbringung durch Eindiffusion unterscheidet sich wesentlich von der Cr-Abscheidung auf galvanischem Wege. Betrachtet man den Stand der Technik, so ist festzustellen, dass eine Vielfalt von Veröffentlichungen zum Thema Diffusionsbeschichtung vorliegt. All diese Veröffentlichungen gehen jedoch nicht auf die Technologie der Herstellung in dem Maße ein, die zur Vermeidung von Fehlern in der Schicht notwendig wären. Die Fehler in der Schichtbildung bringen einen erheblichen Nachteil mit sich, wenn sich die Bauelemente im Einsatz befinden. Sie führen nämlich zu vorzeitigem Ausfall oder erreichen nicht die geforderten Eigenschaften.

Deshalb ist das Ziel der vorliegenden Arbeit, komplexe Cr-Carbidschichten unter produktionsnahen Bedingungen herzustellen und deren Eigenschaften entscheidend zu verbessern. Dabei kommt es auf solche wichtige Kenngrößen wie Schichtdicke, Oberflächenstruktur, Konzentrationsverteilung in der Schicht und im Grundwerkstoff, Härte und Rauheitswerten, den Aufbau und die Reihenfolge der Schichten an. Damit ist ersichtlich, dass die Thematik sehr umfangreich ist und zur Bearbeitung Fachwissen aus unterschiedlichen Gebieten der Werkstofftechnik benötigt wird. Als Beispiel kann aufgeführt werden, dass es notwendig ist die Komplexität der Schichten, d. h. den Aufbau und die Reihenfolge der sich bildenden intermetallischen Phasen zu charakterisieren und einen Vergleich zwischen verschiedenen Herstellungsprozessen durchzuführen, um die optimale Technologie zu erarbeiten.

Als Voraussetzung für diese Vorgehensweise ist es wichtig, die theoretische Betrachtung zur Thermodynamik und Reaktionsmechanismus anzustellen und aus den experimentellen Beschichtungsvorgängen Schlussfolgerungen zu ziehen, die für die Praxis relevant sind.

2 Stand der Technik

2.1 Aufbau von Chromierschichten

Die ersten systematischen Untersuchungen zur Cr-Eindiffusion und damit zur Herstellung von Hartschichten auf Cr-Basis gehen auf ein USA-Patent aus dem Jahre 1919 zurück (4). Dort wurde in Einsatzkästen Cr-Pulver eingepackt und die zu beschichtenden Materialien unter reduzierter Atmosphäre 4 Stunden geglüht. Daraus ergaben sich für Cr Eindringtiefen von 13 µm. In diesen ersten Untersuchungen wird darauf hingewiesen, dass die Behandlung in einer nicht oxidierenden Atmosphäre durchgeführt werden soll und dem metallischen Behandlungspulver ein feuerfestes Trennmittel beigemischt werden muss, um ein Zusammensintern des Cr-Spenders zu vermeiden. Die damaligen Ergebnisse waren für eine kommerzielle Anwendung nicht geeignet, da die notwendigen Temperaturen zu hoch waren und zu einer Entkohlung und ungünstigen Kornvergröberungen führten.

Auf Stählen lassen sich unterschiedliche Cr-Diffusionsschichten erzeugen. Dabei beeinflusst die Zusammensetzung des Stahls, insbesondere der C-Gehalt, die Art der sich bildenden Schicht. Bei Stählen mit niedrigem C-Gehalt erfolgt die Chromdiffusion relativ rasch und es bilden sich Fe-Cr-Mischcarbide. Die gebildeten Schichten werden deshalb auch als Mischcarbidschichten bezeichnet.

Bild 2-1 Chromcarbidbeschichtung auf C15 (C-Gehalt 0,12–0,18%)

Bild 2-1 zeigt eine im Rahmen dieser Arbeit erzeugte Cr-Beschichtung auf dem Stahl C15. Sie zeigt eine entkohlte Oberfläche und eine einlagige Mischcarbid-Schicht. Die Diffusionsbehandlung erfolgte wie üblich bei Temperaturen im Bereich von 950 bis 1100 °C, d. h. im γ -Gebiet, das aus dem binären Zustandsdiagramm Fe-Cr (Bild 2-2) abgelesen werden kann (5).

In vorliegendem Fall bildet sich ein Mischcarbid Fe-Cr-C mit kfz-Struktur. Wenn die Konzentration von Cr im Oberflächenbereich während der Diffusionsbehandlung ansteigt, erfolgt bei einem Cr-Gehalt von 12 bis 13% die Umwandlung des Fe-Cr-Mischkristalls von der kfz-Struktur in die krz-Struktur. Bei weiter fortschreitender Diffusion bilden sich als Folge dessen die typischen Stängel- oder Säulenkristalle aus. Dieser Schichtbereich erfährt bei der Abkühlung, ausgehend von der Chromiertemperatur, keine kristallographische Phasenumwandlung und grenzt sich somit von den Schichtbereichen ab, die beim Abkühlen die γ - α -Umwandlung durchlaufen.

Da die Mischcarbidschichten hohe Cr-Gehalte aufweisen, sind sie sehr korrosionsbeständig.

Bild 2-2 Fe-Cr Diagramm (5)

Bild 2-3 Chromcarbidbeschichtung auf C35 (C-Gehalt: 0,32 – 0,39%)

Das Chromieren von Stählen mit mittlerem C-Gehalt (0,20 – 0,39%C) führt zu Schichten, die aus einer dünnen äußeren Schicht aus Cr-Carbid und einer darunter befindlichen Fe-Cr-Mischkristallschicht bestehen (Bild 2-3).

Im Schliffbild eines chromierten Stahles mit mittleren C-Gehalten (0,20– 0,39 %) bilden sich zwischen 950–1100°C zwei Cr-Carbidschichten, wie aus dem Bild 2-3 zu erkennen ist. Die äußere dünne Schicht besteht aus dem Cr-Carbid (M_7C_3). Darunter befindet sich eine Mischkristallschicht, die direkt auf dem Grundwerkstoff haftet. Wie zu sehen ist, sorgt der C-Unterschied für die Bildung einer 2-lagigen Schicht.

Enthält der Stahl N, kann die zusammengesetzte Schicht auch Nitride enthalten.

Bild 2-4 Cr-Carbidschichten auf C60 (C-Gehalt 0,57–0,65%)

Bei Stählen mit höheren C-Gehalten (ab ca. 0,60 %) entstehen Schichten vom Carbidtyp M_7C_3 (auf dem Grundwerkstoff), Cr_7C_3 und $M_{23}C_6$ (Bild 2-4). E. Paulat (6) hat gefunden, dass sich unter Umständen zwischen Grundwerkstoff und Cr-Schicht eine Zwischenschicht aus M_3C oder Cr_3C_2 abscheiden kann.

Der im Stahl enthaltene Kohlenstoff diffundiert zur Stahloberfläche und bildet mit dem eindiffundierenden Cr Carbide. Die Cr-Diffusion in den Grundwerkstoff wird dadurch behindert. Der C-Gehalt der Schicht kann achtmal so groß werden wie der Durchschnittsgehalt des ursprünglich verwendeten Stahls. Die Carbidschichten von Bild 2-1 und Bild 2-3 sind im Vergleich zu Mischcarbidschichten aus Bild 2-4 wesentlich dünner. Die Cr-Carbidschichten wie in Bild 2-4 weisen aber eine bedeutend höhere Härte auf und sind damit als Verschleißschutzschichten in der Anwendung geeignet.

Wie ersichtlich, entstehen für höhere C-Gehalte Schichten aus mehreren Cr-Carbidphasen, die bis 20 µm Dicke aufweisen. Die genaueren Vorgänge bei der Entstehung dieser Schichten werden in Kap. 2 und 3 erörtert.

2.2 Thermodynamik der Chromdiffusionsreaktion

In den letzten Jahren wurden die Prozesse des Chromiervorgangs durch Studien über die physikalische Chemie der damit verbundenen Reaktionen auf eine solide Grundlage gestellt (7).

Die theoretische Betrachtung wird in dieser Arbeit herangezogen, um einen Vergleich mit den eigenen experimentellen Ergebnissen (Kapitel 5) durchführen zu können und die Komplexität des Chromierprozesses zu veranschaulichen. Die Theorie wird genutzt, um die praktische Anwendbarkeit zu ermöglichen.

Neben experimentellen Untersuchungen sind für die Erklärung von Chromiermechanismen thermodynamische Modelle entwickelt worden (8). Die Modellierung basiert auf der Minimierung der gesamten Gibbs-Energie ΔG des betrachteten Systems.

Im thermodynamischen Gleichgewicht und bei konstantem Druck ist ΔG ein Minimum. In Bezug auf die Aktivität der einzelnen Bestandteile gilt:

$$\Delta G = \sum_{i=1}^{n} n_i \Delta \mu_i = \sum_{i=1}^{n} n_i \Delta \mu_i^0 + \sum_{i=1}^{n} n_i RT \ln a_i$$
(2-1)

n stellt hierbei die Anzahl der Komponenten des Systems dar, n_i ist die jeweilige Molzahl der Komponenten i, $\Delta_{\mu i}$ ° ist das chemische Potential der Komponente i, $\Delta_{\mu i}$ ° ist der Standard des chemischen Potentials und a_i ist die jeweilige Aktivität. Die Aktivität einer Komponente ist gleich dem Produkt seines Atomanteils durch seinen Aktivitätskoeffzienten. Der Aktivitätskoeffizient ist repräsentativ für elementare Wechselwirkungen. Dieses Modell (Untergitter-Modell) wurde ursprünglich von Hillert und Steffansson (9) entwickelt und durch Sundman und Agreen (10) verallgemeinert. Ziel des Modells ist es, den Aktivitätskoeffizienten der einzelnen Komponenten in Abhängigkeit von Temperatur und der Zusammensetzung zu bestimmen. Dieses Modell berücksichtigt die Lage und Eigenschaften der Elemente in einer kristallinen Struktur. Die Minimierung von ΔG wird in der Literatur mit Hilfe des Computerprogramms GEMINI 2 (8) berechnet. Dabei werden die einzelnen Phasen über ein Untergitter-Modell beschrieben. Erst dadurch gelingt die Lösung der Phasenberechnung und ΔG kann über den Anteil der einzelnen Phasen ausgedrückt werden:

$$\Delta G = \sum_{j=1}^{J} q_j \Delta G_j \tag{2-2}$$

Hierbei ist j die Gesamtzahl der Phasen (Lösungen + kondensierte stöchiometrische Lösungen + Gasphase), q_i die Anzahl der Mole der Einheitsformel in der Phase j und ΔG_i die molare Gibbsche Enthalpie der jeweiligen Phase j.

 $\begin{array}{l} \Delta G_{j} \ \text{ist gleich } \Delta G_{j\,c}^{\circ} \ \text{für eine stöchiometrische abgeschiedene Substanz,} \\ \Delta G_{g}^{\circ} + RTln(P_{g}) \ \text{für eine stöchiometrische Substanz in Gasform (Partialdruck P_{g})} \\ \text{und } \Delta G_{\Phi} \ (Y_{i}^{(s)}) \ \text{für eine Lösung, die durch das Untergittermodel beschrieben ist;} \\ Y_{i}^{(s)} \ \text{ist der atomare Anteil der Komponente i im Untergitter s.} \end{array}$

Ziel ist das Minimum von ΔG wie in die Formel (2-2) zu finden. Die Berechnung der Gibbschen Enthalpie der verschiedenen möglichen Phasen des untersuchten Systems wird im Folgenden zusammengestellt, weil die thermodynamischen Vorgänge in der vorliegenden Arbeit bei der Phasenidentifizierung angewendet werden.

Für die Modellierung des ternären Systems C-Cr-Fe, das während der Chromierung entsteht, haben viele experimentelle und theoretische Studien (9; 10) gezeigt, dass eine Vielzahl von Phasen entstehen, unter ihnen:

- ternäre kfz-Mischcarbid-Phase, Austenit: kfz-Struktur A1
- ternäre krz-Phase (Ferrite): kfz_(A2-Struktur)
- ternäre krz-Carbidphasen: $M_{23}C_6:[C]_6[Cr,Fe]_3[Cr,Fe]_{20}; M_7C_3: [C]_3[Cr,Fe]_7,$ Zementit $M_3C_1: [C]_1[Cr,Fe]_3$
- binäre Intermetallverbindung σ-Phase: [Fe]₈[Cr]₄[Cr,Fe]₁₈
- binäre Carbide C₂Cr₃
- reiner C (hex_A9-Struktur): [C]₁
- die ternäre flüssige Phase: L; [C,Cr,Fe]

Für die Modellierung der Schichtentstehungsmechanismen mit dem Computerprogramm GEMINI 2 auf Datengrundlage von Coach (11) wurden folgende Phasen berechnet:

- 7 kondensierte Phasen (L, kfz_A1, krz_A2, $M_{23}C_6$, M_7C_3 , M_3C_1 , σ)

Die Gleichgewichtsberechnungen sind ebenfalls mittels Computerprogramm GE-MINI 2 (8) durchgeführt worden.

Diese komplexen Prozesse laufen auch bei den Experimenten im Rahmen der vorliegenden Arbeit ab. Das Endergebnis, d. h. die auf der Oberfläche zu erzeugende Schichtfolge muss optimale Eigenschaften haben. Die zur Herstellung der Schichten anzuwendenden Parameter bedingen eine diffizile experimentelle Vorgehensweise und bedürfen umfangreicher Kenntnisse und Fertigkeiten. Das thermodynamische Gleichgewicht Pulvergemisch/Gasphase des Chromiervorgangs ist entscheidend für den Erfolg des Chromiervorgangs. Für die Berechnungen wurde ein Überschuß des Chromspendergemischs im Vergleich zum Aktivator NH₄Cl berücksichtigt. NH₄Cl hat nach seiner Zersetzung die Aufgabe, das Cr zur Bauteiloberfläche zu transportieren.

Die Partialdrücke (P_g) der wichtigsten Bestandteile der Gasphase, die durch die Berechnung des thermodynamischen Gleichgewichts bestimmt wurden, sind H_2 ($P_gH_2=0,85$), HCl ($P_gHCl=0,13$), CrCl₂ ($P_gCrCl_2=0,015$) und FeCl₂ ($P_gFe-Cl_2=0,004$).

Die Verwendung von gasförmigen metallischen Halogeniden zum Herstellen von metallischen Beschichtungen und die Reaktionen, die bei solchen Verfahren ablaufen, erfordern eine Berücksichtigung der thermodynamischen Prinzipien, die nur kurz angedeutet werden konnten. Die Gleichgewichtskonzentration des eindiffundierenden Metalls an der Substratoberfläche hängt vom Dampfdruck-verhältnis CrCl₂ zu FeCl₂ ab. Der Vorgang der Chromierung vollzieht sich als Oberflächenreaktion, bei der das Cr als gasförmige Verbindung, z. B. CrCl₂, an die Oberfläche gelangt und dort atomar abgeschieden wird. In der zweiten Stufe erfolgt die Cr-Diffusion durch das Fe-Gitter des Grundwerkstoffs unter Bildung einer Legierungsschicht von Cr-Fe. Gleichzeitig erfolgen in umgekehrter Richtung die Fe-Diffusion aus dem Substratwerkstoff zur Oberfläche und die Bildung von flüchtigem FeCl₂ (eventuell auch FeCl₃). Infolge der Diffusion von Fe-Atomen zur Oberfläche wird deren katalytische Aktivität laufend regeneriert und der Fortlauf der Reaktion ist gesichert.

Bei der Metallablagerung können grundsätzlich drei Arten von Oberflächenreaktionen auftreten (12).

(I)	Austauschreaktion:	$MX_2 + Fe \rightleftharpoons M + FeX_2$
		MX_2 +Fe _{Oberfläche} \rightleftharpoons $M_{abgeschieden}$ + Fe X_2
(II)	Wasserstoffreduktion	$MX_2 + H_2 \rightleftharpoons M + 2HX$
		$MX_2 + H_2 \rightleftharpoons M_{abgeschieden} + 2HX$
(III)	Thermische Zersetzung	$MX_2 \rightleftharpoons M + X_2$
		$MX_2 \rightleftharpoons M_{abgeschieden} + X_2$

mit: M = CrX = Cl, I, F usw.

Die Reaktion (I) ist reversibel, die Austauschreaktionsrate hängt vom relativen Dampfdruck von Fe und MX₂ ab und nimmt dementsprechend beim Fortschreiten der Reaktion aufgrund der abnehmenden Aktivität von Fe ab (bzw. der Verlauf von links nach rechts ist abhängig von der Geschwindigkeit der FeCl₂-Bildung/Größe der Fe-Oberfläche und Aktivität). Da Fe und Cr nahezu die gleichen Gitterparameter haben (d. h. den gleichen Atomradius aufweisen), führt diese Reaktion beim Chromieren zu vernachlässigbarer Änderung der geometrischen Abmessung des Substrats und damit seines Gewichts. Dieser Effekt liefert für die experimentelle Prüfung des Mechanismus ein brauchbares Kriterium (13) und wird im Kapitel 5 zur Deutung der experimentellen Ergebnisse herangezogen.

Die Wasserstoffreduktion (II) und thermische Zersetzung (III) werden durch Fe katalysiert und erfolgen durch Ablagerung. Als Folge der Schichtentstehung wird eine Zunahme der Abmessung und des Gewichts des Werkstücks beobachtet. In dem Maße, wie die Anreicherung der Oberfläche mit dem eindiffundierenden Element fortschreitet, nimmt die Bedeutung der Reduktionsreaktion auf Kosten der Substitutionsreaktion zu. Die Cr-Abscheidung wird durch die Abnahme der eisenhaltigen Oberfläche der Probe begrenzt. Aus den Reaktionsgleichungen folgt weiter, dass der MX₂-Dampfdruck hoch sein sollte und dass Sorge zu tragen ist, dass die Reaktionsprodukte HX und FeX₂, schnell aus dem System entfernt werden. Mit einem Trägergas, z. B. H₂ oder gespaltenem NH₃, kann dieses erreicht werden, ebenso durch Umsetzung von HX und FeX₂ mit dem Chrom der Aufchromungsmasse als Umkehrung der Austauschreaktion (siehe Reaktion I) (14).

Die thermodynamische Tendenz einer Reaktion kann vorhergesagt werden, wenn man die dabei auftretenden Werte für die freie Energie kennt. Eine graphische Darstellung des Ellingham-Diagramms (15) zeigt, dass die Beziehung zwischen der freien Standard-Bildungsenergie und Temperatur für alle Metallzusammensetzungen einschließlich von Halogeniden benutzt werden kann (soweit Daten vorliegen). Dies hat den Vorteil, dass die relative Stabilität von Zusammensetzungen bei verschiedenen Temperaturen mittels GEMINI 2 vorhergesagt werden kann. Die ΔF° -Werte von CrCl₂ und CrF₂ zum Beispiel sind bei 900–1100°C groß und negativ. Es ist daher unwahrscheinlich, dass beim Chromieren mit diesen Medien eine thermische Zersetzung eine Rolle spielt, während sich CrI₂ bei solchen Temperaturen leicht zersetzt. Es dürfte möglich sein, die Zersetzungsreaktion dieser Zusammensetzungen durch Hochfrequenzerhitzen oder die Verwendung einer Glimmentladung zu beschleunigen. Bei ersterer erhöht man die Bildungsrate, und zwar durch Erhöhen der Substrattemperatur (16). Diese Maßnahme wurde in die vorliegende Arbeit nicht benutzt.

2.3 Einfluss der Stahlzusammensetzung beim Chromieren

Wie im Abschnitt 2.1 dargestellt, können auf Stählen Schichten mit unterschiedlichem Schichtaufbau hergestellt werden, wobei die Zusammensetzung des Stahls, insbesondere der C-Gehalt, die Art der Schicht bestimmt.

C hat eine bedeutende Rolle. Seine Wirkung zeigt sich in der Erweiterung der γ -Schleife und der nachteiligen Cr-Carbidbildung (14), welche die Cr-Diffusion entsprechend behindert. In Stählen kommt es wegen der Diffusion des C von innen nach außen zu einer Entkohlung der äußeren Kernzone und Bildung von Cr-Carbiden. Bei Stählen mit niedrigem C-Gehalt geht die Cr-Diffusion relativ rasch vor sich, und es bilden sich Fe-Cr-Mischkristallcarbide, die typischerweise an der Oberfläche ca. 40 % Cr aufweisen.

Das Chromieren von Stählen mit mittlerem C-Gehalt (0,25–0,35 % C) ergibt Schichten, die aus einer dünnen zusammengesetzten Schicht von Cr-Carbid auf einer Diffusionsschicht aus einer Mischcarbidschicht von Fe-Cr bestehen. Bei höherem Kohlenstoffgehalt (> 0,6 % C) besteht die Beschichtung aus mehreren Cr-Carbidphasen, die bis zu 20 μ m Dicke erreichen können.

Die Einführung von zusätzlichen Elementen bei der Diffusionsbeschichtung ermöglicht, dass sowohl die hergestellten Cr-Konzentrationsprofile als auch die Qualität der Beschichtung bei hohen Temperaturen auf bestimmte Anwendungen zugeschnitten werden können.

Die Legierungselemente und Verunreinigungen haben auf Cr-Diffusionsbeschichtung unterschiedliche Wirkungen (14):